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ABSTRACT 

 

In today's era, all aspects of complex occupational task, plus the importance 

of early identification of developmental disorders in children, demand the essential 

need for screening children’s handwriting at elementary schools. Many underlying 

competence structures may interfere with handwriting performance. Children starting 

their academic programme should be tested for their handwriting abilities and 

readiness through regular routine screening. Screening a vast majority of 4 to 7+ 

years old necessitate the use of automated systems to collect data, keep tracks, and 

increase the speed of analysis and accuracy. Based on Handwriting Proficiency 

Screening Questionnaire (HSPQ) evaluated by their teachers, 120 pupils were 

individually tested on their use of graphic production rules. Then, the samples were 

divided into two group of writers; below average writers (test group) and above 

average writers (control group) based on the score of HSPQ. Each participant was 

required to copy four basic lines in two opposite directions and trace a sequence of 

rotated semi circles. This research examines the dynamic features such as ratio of 

time taken and standard deviation of pen pressure. In this study, three classification 

methods: Artificial Neural Network, Logistic Regression and Support Vector 

Machine (SVM) were chosen to classify children with handwriting problem. 10-fold 

cross-validation method is used for testing and training. At the end of this study, the 

results among these classifiers and features were compared. Based on the results, it 

can be concluded that the performance of SVM with Radial Basis Function kernel is 

the best among classifiers as it gives 100% of screening accuracy. 
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ABSTRAK 

 

Dalam era hari ini, semua aspek dalam tugas pekerjaan yang kompleks, 

termasuk kepentingan pengenalan awal dalam gangguan perkembangan kanak-

kanak, menuntut kepentingan membuat pemeriksaan awal tulisan tangan kanak-

kanak awal persekolahan. Banyak struktur kecekapan asas boleh mengganggu 

prestasi tulisan tangan. Kanak-kanak yang memulakan program akademik mereka 

perlu diuji berdasarkan kebolehan tulisan tangan dan kesediaan melalui pemeriksaan 

rutin biasa. Pemeriksaan terhadap majoriti 4 hingga 7+ tahun, memerlukan sistem 

automatik untuk mengumpul data, menyimpan trek, dan meningkatkan kelajuan dan 

ketepatan analisis. Berdasarkan Kemahiran Soal Selidik Pemeriksaan Tulisan Tangan 

(HSPQ) yang dinilai oleh guru-guru mereka, 120 murid diuji secara individu ke atas 

penggunaan mereka terhadap kaedah pengeluaran grafik. Kemudian, sampel 

dibahagikan kepada dua kumpulan penulis; penulis di bawah purata (kumpulan 

ujian) dan di atas purata (kumpulan kawalan) berdasarkan skor HSPQ. Setiap peserta 

dikehendaki menyalin empat baris asas dalam dua arah yang bertentangan dan 

mengesan urutan separuh bulatan. Kajian ini telah mengkaji ciri-ciri dinamik seperti 

nisbah masa yang diambil dan sisihan piawai tekanan pen. Dalam projek ini juga, 

tiga kaedah klasifikasi: Rangkaian Neural Buatan, Regresi Logistik dan Mesin 

Vektor Sokongan (SVM) telah dipilih untuk mengelaskan kanak-kanak yang 

mempunyai masalah tulisan tangan. Kaedah 10 ganda pengesahan silang telah 

digunakan untuk ujian dan latihan. Di akhir projek ini, keputusan antara tiga kaedah 

pengelas dan ciri-ciri dinamik ini dibandingkan. Berdasarkan keputusan, dapatlah 

disimpulkan bahawa prestasi SVM dengan kernel Fungsi Asas Jejari adalah yang 

terbaik antara pengelas yang lain dengan mencapai 100% ketepatan seringan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Overview 

 

All aspects of complex occupational task as well as the importance of early 

identification of developmental problems in children, arises the importance to screen 

children’s handwriting at elementary schools.  On the development of digitalized 

modern world today such as keyboard with its fast typing task, can never be 

substitute handwriting. When writing or drawing, children perceptually extract 

relationships and perform according to their ability and skills. Many underlying 

competence structures may interfere with handwriting performance.  

 

Penmanship must be a process associated with joy, esprit and self expression; 

instead of pressure, boring and complicated job for beginners.  Academics argue 

handwriting is more than the transcription of ideas; it is directly related to how 

people generate and process those ideas.  Handwriting is a language act, rather than 

just a motor act.  It is about training the memory and hand to work together to correct 

and generate mental images and patterns of letters then interpret these into motor 

patterns of letters, automatically and without effort (Bloom, 2008). Reports 

emphasize that by ignoring poor handwriting may leads to fails to address a 

significant and continuing barrier to children's’ achievement.  The average or poor 

handwriting children have only 40% chance of achieving level 4, in national tests 

(Bloom, 2008); which indicates that bad handwriting can lead to unsuccessful in the 
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examination by 40%. Therefore children need to develop the sub skills for 

handwriting at a young age, improving their basic hand eye and motor coordination, 

balance and visual perception. 

 

Children starting their academic program should be tested for their 

handwriting abilities and readiness the same way as they are tested for optometry and 

dentistry through regular routine screening.  Screening a vast majority of 4 to 7+ year 

old children not only to increase the speed of analyzing and processing data but also 

to collect data and keep track and increase the accuracy. Additionally, it significantly 

helps psychologists to monitor improvements and come up with modified new 

standard assessments based on the real large database.  Moreover, this system will 

truly give a great benefit to the educational system and consequently the whole 

society’s psychological and physical health.  

 

Various softwares have been presented for handwriting recognition and 

movement analysis but, softwares directly related to child handwriting analysis with 

the prospective of screening children in general, and addressing difficulties are rare 

and the research is in its early stage.  This research will hypothesize and examine the 

dynamic features that used by Khalid (Khalid, et al., 2010(a, b)).  In contrast to 

Khalid approach (Khalid, 2012), different technique will be used to measure the 

influence of each feature in classifying pupil's handwriting performance. In this 

project, we propose using three classification methods which are Artificial Neural 

Network (ANN), Logistic Regression (LR) and Support Vector Machine (SVM). 
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1.2  Problem Statement 

 

 Writing is an important development skill for a child to master even though 

computers are widely used nowadays.  Several study have been done to analyze 

pupils with handwriting difficulties, however most of the studies that involve in 

handwriting movement only give an attention to children with known physical or 

psychological problem.  Nevertheless, not all these problems can be categorized as 

clear cut disease and condition. Hence, an effective solution should be identifying to 

indicate pupils who have difficulties in writing. 

 

 Several classifiers had been used in the literature reviews (Khalid, 2012; 

Guest et. al., 2003; Chindaro et. al., 2004) such as Hidden Marcov Model, Artificial 

Neural Network and Logistic Regression to select those who have handwriting 

problem.  However, the maximum classification accuracy of these classifiers is just 

around 83% which is not highly enough to highlight the behavior differences 

between average and below average writers.  Thus, it is the attention of this study to 

pilot the objective and select the best classification technique to increase the 

accuracy of prediction.  

 

In contrast with similar method known by Khalid (2012), each different 

feature was tested individually and this study describe experiments carried out using 

Support Vector Machine (SVM) in addition to those classification methods used in 

previous researches.  SVM is a supervised learning method that has proven it’s 

efficiently over classic Neural Networks and its subset (Burges, 1998).  The 

advantages of SVM are good generalization performance, able to handle high 

dimensional data and able to map the data into new high dimensional feature space 

for better classification using kernel functions. 
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1.3  Objectives of Study 

 

The objectives of this study are: 

 

i. To compare three classification methods to determine pupils who have 

difficulties in writing. 

ii. To classify children either at risk of handwriting difficulties or not based on 

drawing task.  

 

1.4  Scope of Study 

 

The scope of the study is used as the guideline of the study.   In order to achieve the 

objectives, the scope of the project has been confined as follows: 

 

i. Data collection: normal healthy children between 7 to 12 years old in Skudai 

district performing copying and tracing tasks. 

ii. Apply the different types of classifiers which are Artificial Neural Network, 

Logistic Regression and Support Vector Machine. 

iii. Analyse the parameters based on the collected data. 

iv. The standard deviation of pen pressure, ratio of time taken and the used of 

progression rules are the significant features that were used to identify 

children who are at risk of handwriting difficulties. 
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1.5 Significant of Study 

 

 This study investigates handwriting performance of a normal children aged 

between 7 and 12 years old.   From the results, it may be helpful to the teachers 

because it can serve as a guide to deal with the problems and topic related to 

handwriting difficulties.  The teachers also can monitor the students who have been 

indentified to have difficulties in writing and enable them to plan an action based on 

instructional programme that suited to the students' strengths and weaknesses. 

 

Moreover, this study significantly helps psychologists to monitor 

improvements and come up with modified new standard assessments based on the 

real large database.   On the other hand, this system will truly give a great benefit to 

the educational system and consequently the whole society’s psychological and 

physical health.  

 

 The student will be the most benefited by the results of this study. The 

finding will guide them in terms of their limitation and weaknesses.  In addition, the 

students who have difficulties in handwriting can have more attention on the 

writing's physical process  , thus limiting use of higher order cognitive planning, 

skills and generation of content.  Therefore, the students will manage to write and 

complete their writing task efficiently. 

 

1.6 Thesis Organization 

 

This thesis consists of five chapters. Chapter 1 introduces the background of 

the research, problem statement, objective of the study, scope of the study and the 

overall thesis outline. 

 

Chapter 2 focuses on the handwriting problems as well as the development of 

handwriting project.  This chapter also give the explanation about dynamic features 
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that used in this study.  Furthermore, the classification methods which are artificial 

neural network, support vector machine and logistic regression have been discussed 

at the end of this chapter. 

 

Chapter 3 reports the details of the dataset used in this study.  It includes the 

process of developing the supplementary screening as well as extraction of dynamic 

features. Besides, this chapter also discusses the implementation of three 

classification methods used in this study. 

 

Chapter 4 explains and discusses the results obtained and the analysis made. 

Comparisons between the classifiers’ results are made in order to achieve the final 

objective of this study. Among these classifiers, further analysis has done with 

increasing the number of features for the best classifier only. 

 

Finally, Chapter 5 gives the conclusion of this study.  Last but not least, this 

chapter also gives some recommendation on future development of this study. 
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