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ABSTRACT 

Voltage sag and harmonics have significant negative impact on power 

quality. Propagation of distorted waveform in the system ultimately instigates a 

range of power quality issues. Protection against this situation is necessary because it 

adversely affects reliability and quality of power supply. Custom Power Devices 

(CPD) such as Dynamic Voltage Restorer (DVR) and Unified Power Quality 

Conditioner (UPQC) provide a level of reliability and power quality that is urgently 

required. The basic purpose of this thesis is to implement new control strategies to 

mitigate voltage sag/swell and to suppress harmonics to evaluate CPD performance. 

The CPD system is controlled by Fuzzy Logic Controllers (FLCs) with 49 rules and 

25 rules, respectively and their performances are compared with Proportional 

Integral (PI) controller. This thesis focuses on FLC with fewer rules to avoid 

complexity, reduce computation time and consume less memory space. The proposed 

strategy depends on d-q transformation, phase-locked loop synchronization and 

constant DC link voltage. Simulation results depict better reliability of fuzzy logic 

techniques with non-linear loads when compared with PI technique. The capability 

of DVR and UPQC using FLC especially with fewer rules is demonstrated using test 

models built in Matlab/Simulink software. Both equipments potentially restore sags 

and improve overall harmonic profile while reducing total harmonic distortion to 

values within the prescribed criterion set by IEEE standards. The proposed FLC 

approach with reduced rule base, is superior to PI and FLC with 49 rules, assures 

effective performance, with normalization and tuning of parameters especially the 

membership functions and scaling factors. It yielded excellent voltage profile with 

best possible compensation during system contingencies, conforming to the IEEE 

standards that affirm FLC as an effective solution for power quality problems. 
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ABSTRAK 

 

 

Voltan lendut dan harmonik mempunyai kesan negatif yang signifikan 

terhadap kualiti kuasa. Perambatan gelombang terherot dalam sistem peda akhirnaya 

menyebabkan pelbagai isu kualiti kuasa yang lain. Perlindungan terhadap keadaan ini 

adalah perlu kerana ia memberi kesan buruk terhadap kebolehpercayaan dan kualiti 

bekalan kuasa. Peranti Kuasa Langganan (CPD) seperti Pemulih Voltan Dinamik 

(DVR) dan Penyesuai Kualiti Kuasa Disatukan (UPQC) menyediakan tahap 

kebolehpercayaan dan kualiti kuasa yang amat diperlukan. Tujuan asas tesis ini 

adalah untuk melaksanakan strategi kawalan baru untuk mengurangkan voltan lendut 

dan menyekat harmonik bagi menilai prestasi CPD. Sistem CPD dikawal oleh 

pengawal logik kabur (FLC) dengan 49 peraturan dan 25 peraturan, dan prestasi 

mereka dibandingkan dengan pengawal kamiran berkadaran (PI). Tesis ini 

menumpukan kepada FLC dengan peraturan yang sedikit untuk mengelakkan 

kekompleksan, mengurangkan masa pengiraan dan menggunakan ruang memori yarg 

kecil. Strategi yang dicadangkan bergantung kepada transformasi d-q, penyegerakan 

Gelung Terkunci Fasa dan voltan pautan DC malar. Keputusan simulasi 

menunjukkan kebolehpercayaan yang lebih baik dengan teknik logik kabur dengan 

beban tidak linear berbanding teknik PI. Keupayaan DVR dan UPQC menggunakan 

FLC khususnya dengan bilangan peraturan yang rendah ditunjukkan menggunakan 

model ujian dibina dalam perisian Matlab / Simulink. Kedua-dua peralatan 

berpotensi menghilangkan lendut dan meningkatkan keseluruhan profil harmonik di 

samping mengurangkan Jumlah Herotan Harmonik kepada nilai-nilai dalam kriteria 

yang ditetapkan oleh piawaian IEEE. Pendekatan FLC yang dicadangkan dengan 

asas peraturan yang dikurangkan, PI dan FLC yang baik dengan 49 peraturan akan 

memastikan prestasi yang berkesan, dengan penormalan dan penalaan parameter  

terutama rangkap keahlian dan faktor penskalaan,  menghasilkan pengaturan voltan 

yang sangat baik dan meningkatkan profil voltan sewaktu  kesilapan diluar jangkaan 

sistem, yang mematuhi piawaian IEEE dan mengesahkan FLC sebagai penyelesaian 

yang berkesan untuk masalah kualiti kuasa. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Contemporary power system is an arrangement of composite networks 

involving various generating stations and load centers integrated through extensive 

transmission and distribution networks. Power supply interruptions and outages are a 

nuisance affecting domestic, commercial and in particular industrial customers. This 

results in considerable financial losses with high impact on production costs. In the 

present competitive world market, dispersed generation trends and general awareness 

of the people towards better quality of power have forced the restructuring of power 

systems. Expectations on improved quality and reliability of power supply to the 

customers have increased.Power Quality (PQ) is defined in IEEE Std book Electrical 

Power System Quality (Dugan, et al., 1996) as “the concept of powering and 

grounding sensitive electronic equipment in a manner suitable for the equipment” 

(Reid, 1996). This phenomenon incorporates all possible situations in which power 

system supply voltage (voltage quality) or load current (current quality) waveforms 

deviate from sinusoidal waveform. PQ is a criterion for proper electrical system to 

function efficiently without compromising the performance (Singh and Dwivedi, 

2012). 

PQ problems encompass severe disturbances such as voltage sag, voltage 

swell, current and voltage harmonics, and unbalanced load. Inferior PQ leads to low 
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power factor and low efficiency, generating large current unbalance. PQ disturbances 

may be either caused by the quality of the supply voltage (source) or by the quality 

of the current drawn by the load. Advanced power electronic devices and equipments 

widely employed nowadays draw harmonic currents and reactive power from AC 

mains due to their inherent non-linear V-I characteristics. Such non-linear loads 

pollute the network by injecting current harmonics. This consequently deteriorates 

utility voltage and causes a drop in supply voltage and amplifies losses.  

Considerable attention has been given to PQ due tomodern industrial shift 

towards mechanized automation. This inclination trend relies heavily on sensitive 

power electronic devices. These devices are much more susceptible to distortion in 

supply voltage than their previous generation counterparts. This has caused 

complications not only for the utilities but also for the end-users themselves. Modern 

power semiconductor devices are in all likelihood not only the prime source of 

harmonic insertion but also augment reactive power in the system. Rigorous 

utilization of power converters as rectifiers creates non-sinusoidal current thus 

polluting the supply. Consequently, the harmonic components will contaminate 

voltage at the point of common coupling. Besides, these polluted voltages and 

currents proliferate into the supply system, amplify losses, cause measurement 

imprecision and create severe electromagnetic compatibility problems. Introduction 

of system harmonics have brought PQ issues to the fore-front and compelled 

suffering utilities to provide distortion-free sinusoidal power supply. At the same 

time customers are also bound by regulations through proper standards to curb the 

quantity of harmonic currents and unbalance in all the three phases due to different 

loading conditions which augments harmonic distortions that a load may produce. 

The situation calls for alleviation of PQ issues in the shape of “Custom Power 

Devices (CPD)” which are capable enough to present customized resolution to PQ 

problems. CPD improve the quality and reliability of power delivered to customers 

and are based on electronic power converters and provide the ability to make quick 

adjustments to control the electrical system. The strength and benefits of these 

devices become diverse, when they are combined and this concept leads to the 

evolution of multi-type CPD. The function of CPD is not only to minimize the 
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effects of voltage sag and swell, but also to limit the harmonic distortion caused by 

the presence of non- linear loads in the network (Ghosh and Ledwich, 2001; 

Khadkikar and Chandra, 2008; Renuga, et al., 2013). 

Current harmonics are considered as the most frequent PQ issues while 

voltage sag is the most detrimental. These problems incur huge financial losses. 

Research reveals that voltage sag/swells and harmonic distortions at the Point of 

Common Coupling (PCC) are mainly liable to severe impact on sensitive loads. Even 

worse case scenario is the malfunctioning of system equipments (Kolhatkar and Das, 

2007; Hari, et al., 2011; Khadkikar, 2013). 

To reduce such unwanted nuisances, passive power filters were primarily 

used. Well-designed passive filters can be implemented in large sizes of MVAr 

ratings and provide almost maintenance free service due to absence of rotating parts. 

These filters are more economical to implement than their rotating counterparts i.e., 

synchronous condensers. A fast response time of the order of one cycle or less can be 

obtained. These compensation equipments have some drawbacks as they are not 

suitable for variable loads, since, they are designed for a specific reactive power as 

well as variation of the load impedance can detune the filter. To overcome passive 

power filters characteristic limitations such as producing superfluous resonance and 

augmenting harmonic currents, a step further in fruitful research efforts bore the 

development and manifestation of more advanced Active Power Filters (APF) 

technology. These however are presently very uneconomical but their installation 

proves indispensable for solving PQ problems in distribution networks such as 

compensation of harmonic current, reactive current and voltage sag. Ultimately, this 

would ensure a pollution free system with increased reliability and quality. APF 

family include different devices commonly called CPD. The concept of custom 

power was introduced by (N.G. Hingorani) in 1995. This term illustrates the value-

added power that electric utilities will present to their customers. The enhanced level 

of power consistency with minimal interruptions and less discrepancy will be 

guaranteed by the application of power electronic controllers either to the utility 

distribution systems or at the supply end of industrial and commercial customers. 

CPD are the proficiently progressive face of APF family and are pertinent to power 
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distribution systems for accomplishing stability and reliability of power supply to a 

large extent. Fundamentally, APF inject harmonic currents of the same magnitude 

but opposite polarity to cancel harmonics. Nevertheless harmonic distortions are only 

part of the problem, while fault or load variations may cause voltage sag. CPD 

comprise of DSTATCOM (Distribution STAtic COMpensator), DVR (Dynamic 

voltage restorer) and Unified Power Quality Conditioner (UPQC) etc. DSTATCOM 

is connected in shunt with the power system whereas DVR is a series connected 

device that injects series voltage to recompense supply voltage.DVR is recognized as 

the most appropriate to protect sensitive loads against PQ disturbances. DVR role is 

not only voltage sag mitigation but also harmonic distortion reduction caused by 

non-linear loads in the network. 

UPQC is the more advanced type of CPD combining two APFs. It’s good 

control methods with precise recognition of the disturbance signal, swift processing 

of reference signal and high dynamic response facilitates in preferred compensation. 

It charters two voltage source inverters (VSI): one act as a series APF (DVR) and the 

other as shunt APF (D-STATCOM), connected back to back through common DC- 

link capacitor. The former is regarded as the most fitting to prevail over voltage 

related problems while the latter as the most promising to manage current related 

problems. Practical implementation of such devices emerges feasible, given that 

superior quality supply voltage and drawn current is stressed profoundly. 

Nevertheless, simultaneous installation of both DVR and DSTATCOM may not be a 

worthwhile solution. Their combined configuration with back-to-back inverter 

system called UPQC was proposed by Fujita and Akagi (Fujita and Akagi, 1995). 

UPQC is ever since popularly used enormously and regarded as the ultimate solution 

for inferior PQ predicament by several researches (Sadaiappan, et al., 2010; Hari, et 

al., 2011). 

UPQC is probably the best CPD dealing with both load current and supply 

voltage imperfections. It consists of two VSI sharing the same capacitive DC-link. It 

is a very versatile device that can perform both the functions of load compensation 

and voltage control simultaneously. 
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1.2 Problem Statement 

Inadequacy of conventional PQ improvement equipment has necessitated 

vibrant and adaptable resolution to PQ problems. This has propelled the development 

of CPD. The contemporary and promising CPD that deals with voltage related issues 

is DVR, while the more flexible CPD is UPQC which deals mutually with load 

current and supply voltage imperfections. Various researches have been performed in 

relation to their performances under a variety of fault conditions with different 

conventional linear and non-linear control systems with the application of linear, 

non-linear and heavy loads. To be regarded as established equipments their 

performances ought to be scrutinized further with different control strategies for 

frequently utilized load conditions under frequently occurring fault conditions in the 

distribution system. This needs modelling and development of both the equipments 

along with their control schemes and algorithms for PQ improvement. Fuzzy Logic 

Control (FLC) has gained momentum during the last decade or so especially in 

power systems because it neither requires precise mathematical formulations nor fast 

processors. Besides it needs less data storage in the form of knowledge base which 

includes Membership Functions (MF’s) and rules. 

Conventionally, the more advanced non-linear FLC system has been utilized 

with 49 rules which are computationally demanding and time consuming. As the 

number of the linguistic variables increases, the computational time and required 

memory increase. This is because the implementation of FLC require a large 

computational time for processing each step time in order to compute the appropriate 

control value to be applied to the system. Therefore, a reduction of the large fuzzy 

rule base is required. Although some studies have tried lesser rules (even 9 rules) but 

they cannot come up with conclusive performance of the equipments. An effort is 

needed to come up with the best possible number of rules for FLC system so that 

both DVR and UPQC can perform satisfactorily, conforming to IEEE laid standards 

for both harmonic compensation and voltage sag minimization and hence results in 

enhanced PQ. Studies showed that FLC with 49 rules takes double computational 

time as compared to FL with 25 rules (Karakose and Akin, 2010). Rule reduction 

will definitely lessen computation effort and reduce time consumption for 
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processing. Performance analysis and comparison of this reduced rule control 

strategy with classical PI and FLC with 49 rules for further evidence is necessitated 

under harmonic generating loads including Field Oriented Control-Induction Motor 

(FOC-IM) under frequently occurring fault conditions. 

1.3 Objectives of the Research 

The objectives of this research are as follows: 

 

i) To develop simulation models of DVR and UPQC in distribution system 

subject to the presence of voltage sag and harmonics with various load 

and fault conditions. 

 

ii) To design PI, FLC (49 rules) and FLC (25 rules) systems for DVR and 

UPQC to tackle voltage sag and harmonic problems in distribution 

network. 

 

iii) To investigate effectiveness of PI, FLC (49 rules) and FLC (25 rules) 

based DVR and UPQC and tuning and normalization of FLC (25 rules) to 

get similar or better performance in accordance with the IEEE 519-1159 

standards. 

1.4 Scopes of the Research 

The scopes of this research are shown below:  

 

i) The system is a distribution network comprising of two 11 kV adjacent 

feeders 
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ii) Performance of the designed models of DVR and UPQC is evaluated for 

mitigating PQ issues such as voltage sag/swell and harmonic distortions. 

 

iii) Performance of DVR and UPQC is investigated using PI control and FLC 

under linear, non-linear and FOC-IM load conditions. 

1.5 Significances of the Research 

Significances of this research are: 

i) Develop FLC knowledge base which includes MF’s and rules suitable for 

proper functioning of DVR and UPQC. The increasing need is to design 

highly reliable, efficient and low complexity controllers. FLC’s are able 

to make effective decisions on the basis of linguistic information. The 

application of FLC will definitely not only minimize computation efforts 

but also improve performance of these equipments in relation to voltage 

sag and harmonic mitigation.  

ii) Formulate the best possible control strategy for DVR and UPQC which 

will help improve PQ of the system with different load and fault 

conditions.  Amongst the three control strategies which are PI, FLC with 

49 rules and reduced25 rules the focus will be on FLC method with 25 

rules. Although, many works have been reported in literature regarding 

reduction of rules at the expense of enhanced complexities. The easier 

approach of tuning of parameters as well as scaling factors and 

normalization help excel the performance of this strategy as compared to 

PI control method. As compared to FLC 49 rules its performance will be 

improved as well as reduction in the computation time and memory space 

with the exception of a few results. 
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1.6 Organization of Thesis 

Contents of the thesis are arranged as follows.  

Chapter 2 defines the different terms and concepts associated with PQ and 

CPD. Literature survey is also included in this chapter.  

Chapter 3 explains in detail the methodology adopted in this work. Various 

control strategies employed for both DVR and UPQC are taken into consideration to 

improve PQ. 

Chapter 4 presents discussion of the results of PI, FLC (49 rules) and FLC 

(25 rules) control strategies for DVR and UPQC Matlab / Simulink test models. 

Chapter 5 summarizes the conclusion of this work and future work of this 

research. 
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