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ABSTRACT 

 

 

 

 

Carbon nanotubes (CNT) and silicon nanowires (Si NW) are nominated as 

the channel material for the next generation of transistors. Although previous works 

have shown that both CNT- and Si NW- based Field-Effect-Transistors (FET) are 

able to deliver better performance than conventional devices, phonon scattering 

occurs. The goal of this research is to examine the phonon scattering effects on the 

performance of CNTFET and Si NWFET. The influence of phonon scattering is 

incorporated into the models by adding the transmission probability into the 

Landauer-Buttiker ballistic current equation. Results show that the phonon scattering 

effects have deteriorated the current and become significant with the increase of bias 

voltages. At 𝑉𝐷 = 0.1𝑉, the current of a CNTFET (Si NWFET) has 0.44% (15.2%) 

of reduction while at  𝑉𝐷 = 0.8𝑉 , the current of a CNTFET (Si NWFET) has 

degraded by 6.5% (40%). There are two types of phonons, acoustic phonons and 

optical phonons, with different Mean Free Paths (MFP). The acoustic phonon is the 

primary cause of current reduction at a low gate bias (𝑉𝐺 ≤ 0.6𝑉), while the optical 

phonon is dominant in reducing the current at a high gate bias. Besides, transistors 

with a short channel length operate close to the ballistic region, which is expected, as 

they approach the phonon MFP. In addition, the potential of CNTFET and Si 

NWFET to construct as logic gates is confirmed through Voltage Transfer 

Characteristic (VTC) by showing correct outputs for a given input.  Moreover, the 

accuracy of the simulation results is assessed by comparing them with published 

models and experimental data, exhibiting good agreement with both. It is revealed 

that the use of a high-k dielectric and a thinner oxide are able to suppress the Short 

Channel Effects (SCE). Finally, it is experimentally proven that the device 

performance is improved by using a local bottom gate structure for CNTFET and a 

feedback FET for Si NWFET.  
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ABSTRAK 

 

 

 

 

Carbon nanotubes (CNT) dan silicon nanowires (Si NW) dicadangkan 

sebagai bahan saluran untuk transistor generasi seterusnya. Penyerakan fonon 

berlaku dalam Transistor Kesan Medan (FET) berasaskan CNT- dan Si NW- 

walaupun kajian sebelum ini menunjukkan bahawa ia mempunyai prestasi lebih baik 

berbanding dengan peranti lazim. Tujuan kajian ini adalah untuk mengkaji kesan 

penyerakan fonon terhadap prestasi CNTFET dan Si NWFET. Kebarangkalian 

penghantaran ditambahkan ke persamaan arus balistik Landauer-Buttiker untuk 

menyepadukan pengaruh penyerakan fonon dalam model. Keputusan menunjukkan 

bahawa arus merosot akibat kesan penyerakan fonon dan menjadi penting dengan 

penambahan voltan pincang. Pada  𝑉𝐷 = 0.1𝑉, arus dalam CNTFET (Si NWFET) 

berkurang sebanyak 0.44% (15.2%) manakala pada 𝑉𝐷 = 0.8𝑉, arus dalam CNTFET 

(Si NWFET) merosot sebanyak 6.5% (40%). Dua jenis fonon, iaitu fonon akustik 

dan fonon optik, dengan lintasan bebas min fonon (MFP) yang berbeza, di mana 

fonon akustik merupakan sebab utama pengurangan arus pada get pincang rendah 

( 𝑉𝐺 ≤ 0.6𝑉 ) manakala fonon optik dominan dalam pengurangan arus pada get 

pincang tinggi. Selain itu, seperti yang dijangka, transistor bersaluran pendek 

mengendali hampir di kawasan balistik kerana ia menuju ke MFP fonon. Tambahan 

pula, output betul yang ditunjukkan dengan pemberian input melalui Ciri 

Perpindahan Voltan (VTC) mengesahkan potensi CNTFET dan Si NWFET dibina 

sebagai get logik. Di samping itu, kejituan keputusan simulasi ditaksir dengan 

menunjukkan perbandingan yang baik dengan model dan data eksperimen yang terbit. 

Ia menunjukkan Kesan Saluran Pendek (SCE) dapat dikurangkan dengan 

menggunakan dielektrik high-k dan oksida yang lebih nipis. Akhirnya, eksperimen 

menunjukkan bahawa penggunaan local bottom gate structure untuk CNTFET dan 

feedback FET untuk Si NWFET dapat meningkatkan prestasi peranti.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

 The scaling law introduced by Robert Dennard in 1974, known as Dennard 

scaling, indicates that transistor density, switching speed and power dissipation 

should improve with a scaling trend. Dennard scaling is related to Moore’s Law, 

which states that the number of transistors that can be placed on a single die doubles 

every two years. It is expected that the chip size is reduced by approximately 0.7 

times by each new development of an integrated circuit (IC) [1].  

 

 

Each generation of downscale transistors aims to enhance the overall 

performance by providing higher speed, lower power, and higher packing density. 

However, the physical limitations of the materials and tools have restricted the 

scaling trend. The International Technology Roadmap for Semiconductors (ITRS) 

has noted that the semiconductor industry is entering the Third Era of Scaling, or 3D 

Power Scaling, where the number of transistors can be increased by stacking multiple 

layers of transistors to prolong the scaling trend [2].  



2 
 

Table 1.1 : Challenges in scaling [2]. 

 

Near-term 

(2013-2020) 

1. Fluctuation of threshold voltage. 

2. Reduction of saturation current.  

3. Mobility degradation. 

4. Difficulties in controlling the leakage current.  

 

Long-term 

(2021-2028) 

1. Reliability of new materials.  

2. Problems in scaling the supply power.  

3. Complexity of circuit design. 

4. Integration of multiple functions into a single chip. 

5. Difficulties in using 3-D integration to increase the chip density.  

 

 

The obstacles in scaling the physical dimensions of transistors can generally 

be divided into near-term and long-term challenges. First, the use of high-k materials 

will cause variations in the threshold voltage and a deterioration in mobility. The 

decreasing of the saturation current and the control of the leakage current on small-

size transistors are also concerns that represent near-term problems. Meanwhile, the 

uncertainty of the characteristics of new materials and the difficulties in scaling the 

supply power are among the long-term challenges. Problems in increasing the 

functionality and chip density have also added to the complexity of circuit design. 

Table 1.1 lists the challenges mentioned above. 

 

 

Novel materials such as carbon nanotubes (CNT) have been introduced to 

overcome the limitations faced by current technology. In late 1991, Iijima discovered 

multi-walled CNTs (MWNT), which contains at least two layers of graphite with an 

inner diameter of 4 nm, when he was studying fullerene synthesis by arc discharge. 

Since then, CNTs have started to attract more interest. Two years later, in 1993, 

Iijima et al. used the same method to synthesize single-wall CNTs (SWNT) [3]. 

 

 

Along with the intensive research on CNTs, silicon nanowires (Si NW) have 

also attracted the attention from researchers. In 1964, Wagner and Ellis successfully 
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synthesize silicon whiskers using a vapour-liquid-solid (VLS) mechanism that set the 

basis for the growth of Si NWs. In 1998, Morales and Lieber synthesized Si NWs 

with nanometres dimensions and introduced laser ablation (LA) as a new technique 

to synthesize Si NWs [4].  

 

 

 

 

1.2 Problem Statements 

 

 

One-dimensional (1D) materials such as Si NWs and CNTs have been 

proposed as potential candidates for future generations of semiconductors due to 

their superior electrostatic performance over the bulk complementary metal-oxide-

semiconductor (CMOS) devices that suffer from short channel effect (SCE) as the 

physical dimensions of transistors continue to decrease. The common SCEs 

experienced by short channel devices include [5]: 

 

1. Drain-induced barrier lowering (DIBL), in which the increased drain voltage 

lowers the potential barrier between the source and the channel, causing the 

reduction of the threshold voltage and contributing to a higher leakage 

current. 

2. The switching speed between the ON and OFF states becomes slower, i.e., 

the subthreshold swing (SS) is increased. 

 

Carbon-based transistors have been proposed to solve these problems and 

prolong the life of Moore’s Law. Thus, the use of a new and reliable material, CNTs, 

is recommended due to its high carrier mobility and long mean free path (MFP), 

which can deliver excellent performance on electronic circuits. The cylindrical 

structure of Si NWs also exhibits excellent properties compared to a planar structure, 

providing another way to continue device scaling by reducing the SCE.  
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Table 1.2 : CNTs and Si NWs characteristics. 

 

 

CNTs 

[6] 

 

1. 1D structure enables a ballistic transportation of carriers. 

2. Able to withstand under extreme condition due to the strong covalent 

bond between the atoms. 

3. Exhibit metallic and semiconducting behavior which is useful as 

transistor and interconnect. 

 

Si NWs 

1. Good gate controllability to suppress leakage current and SCE [5]. 

2. Gate capacitance is inversely proportional to the wire diameter [7]. 

3. Compatible with recent Si-based technology. 

 

 

The extraordinary properties of CNTs and Si NWs, as listed in Table 1.2, 

have driven researchers to investigate the potential for CNTs and Si NWs to be used 

in future technology. It has been shown that CNTFETs and Si NWFETs are able to 

work as logic gates [8] outperforming the traditional MOSFETs [9, 10]. Indeed, the 

carrier transport in CNTFETs and Si NWFETs are affected by phonons, as shown in 

previous research, which is listed in section 2.16. However, there is lack of 

discussion on the effect of phonons on device performance. Therefore, it is important 

to evaluate the impact of phonon scattering in CNTFETs and Si NWFETs, as they 

are potential devices for the next generation of transistors. In short, the questions that 

arise in the research are:  

 

1. How to examine the phonon scattering effects in CNTFETs and Si NWFETs? 

2. What is the role of acoustic and optical phonons on CNTFETs and Si 

NWFETs at different gate biases? 

3. What is the device performance of CNTFET and Si NWFET models upon 

experiencing phonon scattering effects? 
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1.3 Objectives 

 

 

The objectives of the research are: 

 

1. To improve channel length-dependent models of CNTFETs and Si NWFETs 

to study the phonon scattering effects.  

2. To examine the effect of acoustic and optical phonons based on the current-

voltage (I-V) characteristic of CNTFETs and Si NWFETs at different gate 

biases. 

3. To verify the potential of the channel length-dependent models of CNTFETs 

and Si NWFETs to work as logic gates and the accuracy by experiencing 

phonon scattering effects.  

 

 

 

 

1.4 Scopes 

 

 

MATLAB is used to perform the simulations. The ballistic FETToy model of 

CNTFETs and Si NWFETs is modified by transforming it into channel length-

dependent models. The Landauer-Buttiker mechanism is used to express the ballistic 

current equation, and the phonon scattering effects are incorporated into the models 

by introducing the transmission probability at each contact into the ballistic current 

equation. The role of the acoustic and optical phonons at different gate biasing is also 

investigated. Next, the ballisticity of CNTFETs and Si NWFETs at different channel 

lengths is examined. Performance metrics such as DIBL, SS and on-off ratio are 

calculated. The potential of CNTFETs and Si NWFETs to work as logic gates is 

determined through the voltage transfer characteristic (VTC). Finally, the device 

performances are compared with published models and experimental data to assess 

the accuracy of the simulation results.  
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1.5 Contributions 

 

 

 This research has developed a channel length-dependent model of CNTFETs 

and Si NWFETs to investigate the phonon scattering effects in the devices. The 

impact of phonon scattering is incorporated into the models by introducing the 

transmission probability at the source and drain sides. The transmission probability is 

a simple equation, which is a function of the channel length and the effective mean 

free path (MFP). The role of acoustic and optical phonons at different gate biases 

towards the drive current is discussed. CNTFETs and Si NWFETs are able to 

construct as logic gates by showing correct outputs for a given inputs through VTC. 

 

 

 

 

1.6 Thesis Organization  

 

 

 Chapter 1 introduces the background of the research by briefly discussing the 

challenges in downsizing conventional MOSFETs and the advantages of CNTs and 

Si NWs as potential candidates for use as channel materials. The motivation of this 

research is defined through the problem statements, objectives and scopes. The 

contributions of the research will also be described. Chapter 2 discusses the basic 

theory and the methods used to synthesize CNT and Si NW. Next, the MOSFET 

operation, basic physics of semiconductor, fundamental of ballistic transistor and 

phonon scattering are described, followed by the review on the modelling works. 

Chapter 3 presents the flow of this research and the simulation steps used in 

MATLAB to compute the results. Chapter 4 discusses. The performance difference 

between the ballistic and the phonon scattering effects on the devices will also be 

discussed. Next, the potential of CNTFETs and Si NWFETs to be used as logic gates 

are investigated. The accuracy of the results is assessed against published models and 

experimental data. Chapter 5 presents the conclusions and summarizes the research 

based on the results obtained. Future work and recommendations are included, as 

well.  
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