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ABSTRACT 

 

 

 

 

Constitutive phosphorylation activity by receptor tyrosine kinases due to activating 

mutations have been linked to human malignancies. Substitution mutation of 

tyrosine 849 to serine residue led to the constitutive phosphorylation of platelet-

derived growth factor receptor alpha (PDGFRα) as found in hypereosinophilic 

syndrome sample. An in silico study was conducted to identify whether PDGFRα 

catalytic domain can adopt an inactive conformation. The activating mutation Y849S 

was investigated to elucidate its role in destabilizing the inactive state of wild type 

PDGFRα catalytic domain. Three dimensional structure of PDGFRα catalytic 

domain in inactive conformation was modelled and refined with MD simulations 

using GROMOS96 force field with 53a6 parameter in GROMACS version 4.6.3. 

The model consists of juxtamembrane (JM) region and kinase domain.  Presence of 

conserved tyrosine and tryptophan residues in JM region suggested its stabilizing 

role in inactive structure. Analysis of MD trajectories indicated that mutation Y849S 

at the C-terminal lobe had caused the loss of intramolecular hydrogen bondings 

which contributed to the increase of JM region fluctuations in the N-terminal lobe, 

higher hydrophilicity of activation loop (A-loop) that might loosen its packed 

conformation, and more solvent-exposed of JM region as a result of its reduced 

hydrophobicity. The shorter, non-aromatic side chain of serine residue at the position 

849 is incapable to preserve the hydrogen bond network played by tyrosine residue 

in the wild type model. In conclusion, it is suggested, at least based on the model 

from this study that Y849 might play as stabilizing role in inactive conformation of  

PDGFRα catalytic domain by linking the inter-lobe interactions of A-loop and JM 

regions. Substitution of serine at the same position perturbs the interactions thus 

destabilize the inactive conformational state of the model. 
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ABSTRAK 

 

 

 

 

Aktiviti pemfosforilan berterusan oleh kumpulan reseptor tirosin kinase akibat 

pelbagai mutasi pengaktifan telah dikaitkan dengan malignan pada manusia. Mutasi 

penggantian Y849 kepada residu serin membawa kepada aktiviti pemfosforilan 

penerima faktor pertumbuhan berasaskan platelet jenis alfa (PDGFRα) berterusan 

seperti yang ditemui pada sampel sindrom hipereosinofilik. Satu kajian  

in silico telah dijalankan bagi menyiasat kesan mutasi pengaktifan Y849S terhadap 

keadaan ternyahaktif domain katalitik PDGFRα liar. Struktur tiga dimensi domain 

katalitik PDGFRα liar telah dimodelkan dan diperbaiki secara simulasi dinamik 

molekul (MD) menggunakan medan daya GROMOS96 dengan parameter 53a6 pada 

perisian GROMACS versi 4.6.3. Model yang dibina terdiri daripada kawasan 

jukstamembran (JM) dan domain kinase. Kedudukan residu tirosin dan triptofan 

yang terpulihara di kawasan jukstamembran mencadangkan peranannya sebagai 

penstabil struktur liar yang ternyahaktif. Analisis trajektori MD mendapati mutasi 

Y849S di lobus penghujung-C menyebabkan kehilangan jaringan ikatan hidrogen 

yang membawa kepada peningkatan kelenturan kawasan JM di lobus penghujung-N, 

pertambahan darjah hidrofilik yang mungkin melonggarkan konformasi padat 

gegelung pengaktifan, dan kawasan JM yang lebih terdedah pelarut akibat 

pengurangan kadar hidrofobiknya. Residu serin dengan rantai sisi tanpa gelang 

aromatik yang lebih pendek pada kedudukan 849 menghadkan keupayaannya 

mengekalkan jaringan ikatan hidrogen yang dimainkan oleh residu tirosin pada 

model liar. Berdasarkan model yang dibina, Y849 mungkin berperanan sebagai 

penstabil konformasi ternyahaktif domain katalitik PDGFRα secara menghubungkan 

interaksi hidrogen antara lobus menerusi segmen JM dan gegelung pengaktifan. 

Penggantian residu serin pada kedudukan 849 mengganggu interaksi tersebut 

seterusnya menyahstabilkan keadaan konformasi tidak aktif bagi PDGFRα. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Human receptor tyrosine kinases (RTKs) and their ligands are important 

regulators of intracellular signal transduction pathways mediating various processes 

at cellular level. The processes are including cell cycle and division, cell 

proliferation and differentiation, as well as cell growth and migration  (Lemmon and 

Schlessinger, 2010). The RTKs activity is tightly regulated; they will only transmit 

the signals received from extracellular environment into the cells when necessary. 

However, the normal, controlled signaling pathways in cells can be converted to 

oncogenic signaling when the RTKs are mutated or genetically altered. These 

oncogenic RTKs signaling resulted in deregulated kinase activity which led to 

malignant transformation (Blume-Jensen and Hunter, 2001).  

 

Platelet-derived growth factor receptor alpha (PDGFRα) is an example of 

RTKs where its function is determined by the binding of its mitogenic ligand, 

platelet-derived growth factor (PDGF). Thus implicate its involvement in signaling 

pathways controlling cell mitosis activity (Heldin and Westermark, 1999). The 

protein has phosphorylation activity which is performed by its kinase domain located 

at the cytoplasmic region of the receptor. The presence of tyrosine residues within 
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the kinase domain provides recognition site for downstream signaling transduction 

proteins (Heldin et al., 1998). Upon receptor dimerization as a result of extracellular 

ligand binding, the tyrosine residues will be phosphorylated and recognized by 

specific proteins in signal transduction pathways which will in turn trigger the 

signaling relay (Rönnstrand, 2010). 

 

A rare disorder of eosinophil termed as hypereosinophilic syndrome (HES) 

found in a subgroup of patients with myeloproliferative neoplasm as per classified 

by the World Health Organization (WHO) (Gotlib, 2012).  Patients dominant by 

male were characterized with marked eosinophilia in the peripheral blood or tissue 

greater than 1,500/mm3 after excluding secondary caused such as parasite infections 

or allergies. Eosinophil is known as the secretor of inflammation and immune 

response mediators in body circulations. In view of the elevation in eosinophil 

number and toxicity effect of the secreted substances, treatment of HES patients 

attempts to limit end organ damage by controlling the excess eosinophil count 

(Gotlib, 2012). 

 

The PDGFRα was associated to the HES after the first discovery of fusion 

gene, FIP1L1-PDGFRΑ (F/P) in the eosinophil from patients’ blood sample. The 

F/P fusion protein showed constitutive kinase activity and linked to aberrant 

production of eosinophil in patients (Griffin et al., 2003).  Treatment of tyrosine 

kinase inhibitor type II, Imatinib or Gleevec gave a full remission to patients with the 

full elimination of F/P protein. 

 

However, only a small fraction of HES patients were found to express the 

F/P fusion protein whereas the rest number of patients remained idiopathic or 

unknown. Notable investigations in this rare disease had been carried out, involving 

group of idiopathic HES patients. Data obtained from in vitro and in vivo studies 

revealed several activating mutations that able to transform the PDGFRα protein into 

a constitutive activated tyrosine kinase (Cools et al., 2003; Elling et al., 2011; Stover 

et al., 2006). The question on how this mutated PDGFRα protein can give rise to 

aberrant number of eosinophil in HES patients while its normal biological function is 

not connected to eosinophil haematopoiesis still left in open discussion.  
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When a functional protein is exposed to external stimuli such as environment 

variation of temperature or pH, chemical modifications including phosphorylation, 

as well as binding of other substances, the molecule will accommodate structural and 

dynamical changes as a response mechanism. Protein is said to have conformational 

plasticity and structural flexibility in order to keep its functional role. Rather than 

looking into protein as single, rigid entities, it is more acceptable to define the 

molecules as ensemble of conformations (Orozco, 2014). With the advancement of 

computer power and improvement of algorithm codes, calculations of protein 

dynamic by molecular dynamic simulation has contributed in finding answers of 

many biological questions. Collaborative investigations between molecular 

simulations and experimental techniques help in problem clarification and drive the 

experimental studies forward as well as complement the missing information of the 

research subjects (Karplus and Lavery, 2014).  

 

 

 

 

1.2 Problem Statement 

 

 

Activating point mutation, Y849S in PDGFRα catalytic domain from HES 

patient sample that has been reported by Elling et al. (2011) opened a room for 

further investigation regarding the involvement of PDGFRα in hypereosinophilia 

which has very limited molecular marker so far. Crystallographic information of the 

homologous receptor type III RTKs indicated that the catalytic domain is tightly 

controlled via autoinhibitory mechanism and has to be induced for activation, 

preventing unnecessary phosphorylation activity. Constitutive kinase activity in 

mutant PDGFRα suggested that mutation Y849S perturbs the normal 

phosphorylation activity of PDGFRα resulting clinical implication of HES. It is not 

known whether similar autoinhibitory mechanism is adopted in PDGFRα and any 

possible stabilizing role is played by tyrosine 849. Exploration of mutational impact 

at atomic level by molecular modelling and dynamic simulation allow assessment of 

any significant structural changes between the wild type and mutant hence 

complement the experimental evidence. 
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1.3 Research Objectives 

 

 

o To predict the tertiary structure of wild type PDGFRα catalytic 

domain in inactive conformation by homology modeling 

o To compare the structural dynamic and conformational behaviour of 

predicted tertiary structure of wild type and mutant PDGFRα catalytic 

domain by molecular dynamic simulation 

 

 

 

 

1.4 Scope of Study 

 

 

For this study, the structure of PDGFRα catalytic domain in inactive 

conformation will be predicted as no resolved structure has been deposited in PDB 

library. To model the structure, the primary sequence of PDGFRα was first retrieved 

from UniProtKB protein database and subjected for sequence-structure alignments to 

search for best template. Crystal structures with high similarity to the query sequence 

were analysed by multiple sequence alignment to satisfy the requirement of template 

selection for modelling the wild type PDGFRα catalytic domain in inactive 

conformation. Automated protein modelling, I-TASSER server was employed to 

model the structure followed by model evaluation to check for stereo-chemical 

quality. The constructed wild type PDGFRα catalytic domain was then refined by 

MD simulation before subjected for mutagenesis. Both models were simulated and 

the MD trajectories were compared to elucidate the dynamical changes in the 

structures. 
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1.5  Research Significant 

 

 

 The role played by PDGFRα in eosinophil haematopoiesis remains 

inconclusive to date. Application of computational approach in this study will 

provide additional structural data to the current information on PDGFRα. While 

existing knowledge related to its druggability towards type II kinase inhibitors is 

clinically accepted, current study might broaden the potential of PDGFRα as 

molecular screening tool, thus improving the classification of idiophatic HES. It is 

hope that this research will open more scientific discussions and output from 

laboratories to bridge the knowledge gaps associated to HES and other diseases 

related to this protein. 
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