PERFORMANCE OF COLD IN PLACE RECYCLE METHOD FOR DIFFERENT STABILIZATION AGENTS

ABDUL RAHIM BIN ABDUL HAMID

A project report submitted in partial fulfilment of the requirements for the award degree of Master of Engineering (Civil-Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2015

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisor Dr. Nor Zurairahetty Mohd. Yunus for her valuable advice and great encouragement as well as for her excellent guidance and assistance to complete this research. I am also indebted for the amount of time and effort spent reading and correcting my thesis.

A special thanks to all my classmates, especially Hasrul Ibrahim, Busu Puteh, Raja Shahrom, Rasyid Zainal Abidin, Robin Liew, Eda Suhali, Amy Teing, Ilias Abdullah, Afendi Ariff, Jaharatul Dini and others, which had adviced and reminded me in everything in writings this projects. And for those about to geotechnic, we salute you.

ABSTRACT

Cold in Place Recycling (CIPR) is a treatment process of road that had a structural defect. The process consists of recycling asphalt from the pavement layer to a certain layer in order to improve the pavement structure. The process involves breaking up and pulverizing the existing pavement. This material will be named Recycle Asphalt Pavement (RAP). Even though the CIPR method is proved successfully implemented but due to lack of knowledge and understanding about this method, it's only applied in about 10% of total Malaysian roads length. The aim of this study is to encourage interested parties to have more understanding in the CIPR treatment by broaden its spectrum. By providing the results of the performances for various types of the stabilization agents, it can be used as an optional for any user to use any of these stabilization agents type. For this study four (4) types of stabilizing agents will be used such as cement, lime, foamed bitumen and bitumen emulsion. From this study it is shown that cement and lime can be effective stabilizing agents but foamed bitumen and bitumen emulsion had score the lowest.

ABSTRAK

'Cold in Place Recycling (CIPR)' adalah proses rawatan yang dijalankan pada jalan yang mengalami kerosakan struktur. Proses ini adalah termasuk kerja kerja mengitar semula aspalt dari lapisan permukaan jalan ke bahagian bawahnya didalam memperbaiki struktur pavemen. Proses ini termasuk kerja – kerja memecah dan mengaul pavemen sedia ada ini. Material ini akan dinamakan 'Recycle Asphalt Pavement (RAP)'. Walaupun kaedah CIPR ini berkesan tetapi kurangnya pengetahuan tentang kaedah ini maka ianya kurang digunakan. Penggunaannya di Malaysia adalah kira – kira 10 % sahaja dari panjang jalan keseluruhan. Tujuan kajian ini adalah untuk menggalakkan mana – mana pihak yang berminat untuk mempunyai lebih kefahaman tentang CIPR dengan meluaskan spektrumnya. Dengan menyediakan keputusan dari performance untuk beberapa jenis agen penstabil; ianya boleh dijadikan seleksi pada mana – mana pengguna untuk menggunakan agen – agen penstabil ini. Untuk kajian ini (4) jenis agen penstabil digunakan iaitu simen, kapur, bitumen berbusa dan bitumen emulsi. Dari kajian ini menunjukan bahawa simen dan kapur boleh menjadi agen penstabil yang baik tetapi bagi bitumen berbusa dan bitumen emulsi menunjukan skor yang terendah.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	ACKNOWLEDGEMENTS	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	X
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xiv
1	INTRODUCTION	
	1.1 Background	1
	1.2 Problem Statement	2
	1.3 Objectives of the Study	2
	1.4 Scope of the Study	3
	1.5 Significance of the Study	3
	1.6 Organization of the Thesis	4
2	LITERATURE REVIEW	
	2.1 Introduction	5
	2.2 Types of Road	8

2.3	Types of Road Defect	8
2.4	Types of Treatment	11
	2.4.1 Treatment for Functional Defects	11
	2.4.1.1 Patching	11
	2.4.1.2 Crack Sealing	12
	2.4.1.3 Overlay	13
	2.4.1.4 Mill and Pave	13
	2.4.1.5 Hot in Place Recycle	14
	2.4.2 Treatment for Structural Defects	15
	2.4.2.1 Reconstruction	15
	2.4.2.2 Cold in Place Recycle	16
2.5	Type of Stabilizing Agents and its Properties	17
	2.5.1 Portland Cement	18
	2.5.2 Lime	19
	2.5.3 Foamed Bitumen	19
	2.5.4 Bitumen Emulsion	20
	2.5.5 Fly Ash	21
	2.5.6 Calcium Chloride	21
2.6	Depth of Treatment	22
	2.6.1 Partial Depth Recycle	22
	2.6.2 Fully Depth Recycle	22
2.7	Summary	23

3 METHODOLOGY

3.1	Introduction	24
3.2	Pre – Construction Stage	26
	3.2.1 Pavement Evaluation Stage	26
	3.2.1.1 Surface Condition Survey	26
	3.2.1.2 International Roughness Index	27
	3.2.1.3 Falling Weight Deflectometer Test	28
	3.2.1.4 Dynamic Cone Penetrometer Test	29
	3.2.1.5 Trial Pit	29

	3.2.2 1	Design Mix Stage	30
		3.2.2.1 Grading	31
		3.2.2.2 Optimum Moisture Content	31
		3.2.2.3 Optimum Bitumen Content	32
		3.2.2.4 Unconfined Compressive Strength	33
		Test	
		3.2.2.5 Indirect Tensile Test	34
		3.2.2.6 Stabilizing Agent Requirement	35
3.3	Const	ruction Stage	37
	3.3.1	In - situ moisture content	37
	3.3.2	Application of Stabilizing Agents	38
	3.3.3	Pulverization Process	38
	3.3.4	Trimming and Compaction	40
	3.3.5	Curing and Protection	40
	3.3.6	Asphalt Layer	41
3.4	Post C	Construction Stage	41
3.5	Summ	nary	41

4 **RESULTS AND DISCUSSION**

4.1	Introduction	42
4.2	Background of Case Study	44
	4.2.1 Pavement Evaluation	44
	4.2.1.1 Surface Condition Survey	44
	4.2.1.2 International Roughness Index	45
	4.2.1.3 Falling Weight Deflectometer Test	46
	4.2.1.4 Dynamic Cone Penetrometer Test	47
	4.2.1.5 Trial Pits	48
	4.2.2 Design Mix	49
	4.2.2.1 Cement Sieve Analysis	50
	4.2.2.2 Foamed Bitumen Sieve Analysis	51
	4.2.2.3 Bitumen Emulsion Sieve Analysis	51
	4.2.2.4 Lime Sieve Analysis	52

4.2.2.5 Control Sieve Analysis	53
4.2.2.6 Proposed Percentage of	54
Stabilization Agents	
4.2.3 Post Construction Stages	57
4.2.3.1 Surface Condition Survey	57
4.2.3.2 International Roughness Index	58
4.2.3.3 Falling Weigh t Deflectometer Test	58
4.2.3.4 Dynamic Cone Penetrometer Test	59
4.3 Graph Interpretation	60
4.3.1 Sieve Analysis	60
4.3.2 Surface Condition Survey	62
4.3.3 International Roughness Index	63
4.3.4 Falling Weight Deflectometer Test	64
4.3.5 Dynamic Cone Penetrometer Test	65
4.3.6 CBR Ratio on Sub grade	66
4.3.7 Optimum Bitumen Content	67
4.3.8 Optimum Moisture Content	68
4.3.9 Indirect Tensile Strength Test	69
4.3.10 Unconfined Compressive Strength Test	70
4.4 Summary	71

5 CONCLUSION

5.1	Direct Performance of Stabilization Agent	73
5.2	Indirect Performance of Stabilization Agent	74
5.3	Dense of the Road Base	74

75

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Surface Condition Survey Score Chart	27

5.1	Surface Condition Survey Score Chart	21
3.2	Requirement for cement stabilized in CIPR layer	36
	material	
3.3	Requirement for bitumen emulsion treated in CIPR	36
	layer material	
3.4	Requirement for foamed bitumen treated in CIPR	37
	layer material	
3.5	Curing Period for Stabilizing Agents	40
4.1	Surface Condition Survey	45
4.2	International Roughness Index	45
4.3	Falling Weight Deflectometer	46
4.4	Dynamic Cone Penetrometer Test	48
4.5	Initial Pavement Evaluation	49
4.6	Cement Sieve Analysis	50
4.6	Foamed Bitumen Sieve Analysis	51
4.8	Bitumen Emulsion Sieve Analysis	52
4.9	Lime Sieve Analysis	53
4.10	Control Sieve Analysis	54
4.11	UCS and OMC analysis for Cement	55
4.12	ITS, UCS and OMC analysis for Foamed Bitumen	55
4.13	ITS and OMC analysis for Bitumen Emulsion	56

4.14	UCS and OMC analysis for Lime	56
4.15	Surface Condition Survey	57
4.16	International Roughness Index	58
4.17	Falling Weight Deflectometer	59
4.18	Dynamic Cone Penetrometer	60

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1	Typical cross section of a flexible pavement	6
2.2	Typical cross section of a flexible pavement	6
2.3	Pavement Condition vs Time	7
2.4	The patching treatment for pothole	11
2.5	The crack sealing treatment for crack	12
2.6	Overlay treatment	13
2.7	Mill and pave treatment	14
2.8	HIPR treatment	15
2.9	Reconstruction	16
2.10	CIPR treatment	17
3.1	Methodology Flow Chart	25
3.2	International Roughness Index Indicator	28
3.3	The Falling Weight Deflectometer Machine	28
3.4	Example of Optimum Moisture Content Vs Dry	32
	Density Graph	
3.5	Example of 5 different graphs to determine the	33
	Optimum Bitumen Content	
3.6	Machinery Arrangement for Cement / Lime	39
	Stabilizing Agents	
3.7	Machinery Arrangement for Bitumen Emulsion	39
	Stabilizing Agents	
3.8	Machinery Arrangement for Foamed Bitumen	39
	Stabilizing Agents	

4.1	Cement Grading	61
4.2	Foam Grading	61
4.3	Emulsion Grading	61
4.4	Lime Grading	62
4.5	Control Grading	62
4.6	Surface Condition Survey Graph vs Stabilizing	63
	Agents	
4.7	International Roughness Index Graph vs Stabilizing	64
	Agents	
4.8	Falling Weight Deflectometer Test Graph vs	65
	Stabilizing Agents on Roadbase	
4.9	Dynamic Cone Penetrometer Test Graph vs	66
	Stabilizing Agents on Road base	
4.10	CBR Test Graph vs Stabilizing Agents on Sub grade	67
4.11	Optimum Bitumen Content vs Stabilizing Agents	68
4.12	Optimum Moisture Content vs Stabilizing Agents	69
4.13	Indirect Tensile Strength Test vs Stabilizing Agents	70
4.14	Unconfined Compressive Strength Test vs	71
	Stabilizing Agents	

LIST OF SYMBOLS

A	-	Corrected area
A_0	-	Initial surface area of the sample
d	-	Diameter
З	-	Axial strain
γ_b	-	Bulk density
γ _{dry}	-	Dry density
h	-	Height of the specimen
Р	-	Reading of axial load at failure
π	-	3.142
q_u	-	Unconfined compressive strength
S_t	-	Tensile strength
v	-	Volume
<i>W</i> ₁	-	Weight after compaction
<i>W</i> ₂	-	Weight of nearest 1 gram

CHAPTER 1

INTRODUCTION

1.1 Background

This study is about the treatment process of a road which had experienced in structural defect. The selected road is FT 64 lies in between the Benta Town to the Jetty Terminal in Kuala Tahan River. The selected area is 1 KM length and divided to (5) five section. Each section consists of 200 meters for the cement, foamed bitumen, bitumen emulsion, lime and control.

A series of test had been conducted in the pre - construction stage, construction stage and post construction stage. Test such as Surface Condition Survey, International Roughness Index, Falling Weight Deflectometer and Dynamic Cone Penetration Test were conducted at site. (5) Five trial pits had been dug in order to obtain the sample and a direct thickness of each road layer had been measured.

Sample that had obtained at site will be tested such as sieved analysis test, optimum moisture content, optimum bitumen content, unconfined compressive test and the indirect tensile test. The Recycled Asphalt Pavement (RAP), the new aggregate and stabilizing agent were mixed in the design mix stage.

In order to have an optimum result, the stabilizing agents are added in increasing percentage of content. For cement and lime it is predetermine to use 2%, 3%, 4% and 5% of their content. Meanwhile for emulsion and foamed bitumen the content is increasing from 1% to 7%. And at the post construction the test that had conducted before will be conducted again with the new constructed road. This is to validate the data that had obtained before the treatment.

1.2 Problem Statement

Road base is an unbound layer. It is designed to be a layer that will carry and absorb loading from the vehicle and transmit it into the lower layer. So road base layer are often defect due to a higher and frequent loading imposed to it.

CIPR is a treatment process that recycled the original road base and adds with a new mixture and stabilization agent in order to withstand the imposed loading from the vehicle. The type of stabilization agent plays a significant role to boost the performance of the mixture. Thus in this study is conducted to obtained knowledge of the performance of each stabilizing agents used.

1.3 Objective of the Study

The aim of this study is to determine the performance of CIPR by using different type of stabilization agents. To achieve the above aim, the following objectives were set out at the beginning of the study as follows:

- 1) To determine the parameter and original properties of the road base.
- 2) To determine the new design mixture for the new road base layer.

1.4 Scope of the Study

The scope of study will be focused on the testing of existing pavement (pavement evaluation) and obtaining samples on trial pits. Sample that had been obtained on site are tested in order to determine the proportion of the RAP and the new aggregate. Then the pavement rehabilitation mix design with various type of stabilizing agents. The final tests are conducted at the post construction stage in order to validate the design. However this study is limited for the Partial Depth Recycled (PDR) which is to depth of the road base.

1.5 Significance of the Study

This study is conducted to have more understanding on the CIPR method itself. Many industrialists prefer the reconstruction method because the method is simple. It was done by scrapping unwanted layer and reconstructed again with totally new material. In terms of time of construction and the ease of construct the reconstruction method is the first choice, but in terms of sustainability and cost, the CIPR are the brilliant choice. CIPR method use up to 40% of recycled RAP which indirectly had saved the 40% of the material cost. And by recycled the RAP we can reduce the wastage of the construction.

This study also is conducted to have more data on the CIPR method by using various types of stabilization agents. This is to give the industrialists the options to propose and use the stabilization agents that had been tested. It is hope that industrialists will be educated for understanding and using this CIPR method with any of the stabilization agents.

1.6 Organization of the Thesis

There are five chapters covered in this thesis. Description for each chapter is shown as follow:

Chapter One of this report introduces the background of the project, problem statement and described the specific objectives addressed in the study as well as design components limitation.

Chapter Two presents a review of literature and relevant research associated with the problem addressed in this study such as the types of road defect, types of road treatment, the CIPR Method and the types of stabilization agents and explanation on method adopted in methodology.

Chapter Three presents the methodology of the project and procedures used for data collection that had obtained from the tests conducted.

Chapter Four contains an analysis of the data by graphing method. The results then will be discussed.

Chapter Five offers a summary of the findings and recommendations for future research.

REFERENCES

- Appa Roa G., Rajiv Kumar, Amar D.D. and Ryntathiang T.L (2013). "Green Approach for the Sustainable Development in India." European Journal of Sustainable Development.
- Abby Chin and Michael J. Olsen, (2014) "Evaluation of Technologies for Road Profile Capture, Analysis and Evaluation" Journal of SurveyingEngineer, ASCE
- Cawangan Jalan Technical Committee (2008) "Standard Specification For Road Works – Section 4: Flexible Pavement." Cawangan Jalan, JKR Malaysia
- JKR IKRAM (1994) "Interim Guide to Evaluation and Rehabilitation of Flexible Road Pavement" Cawangan Jalan, JKR Malaysia
- David Horhota, Paul Cosentino and Edward Kalajian. (2012). "Improving the Properties Reclaimed Asphalt Pavement for Roadway Base Application Final Report", Florida Institute of Technology.
- Hassan Mahdy (2012). "Misalignment of Dowel Bars in Rigid Pavement Joint"Highway and traffic engineering, public works department, faculty of engineering, Ain Shams University, Cairo, Egypt

- He Gui Ping (2006). "Study the Use of Reclaimed Asphalt Pavement (RAP) with Foamed Bitumen in Hong Kong." The Hong Kong Polytechnic University.
- James E. Shoenberger (1992) "User's Guide: Cold Mix Recycling of Asphalt Concrete Pavements" U.S Army Engineering and Housing Support Centre.
- Jan R. Prusinki (??) 'Recycling Flexible Pavements with Cement: Diverse Method Produce Durable Pavements'' Soil – Cement / Roller – Compacted Concrete Pavement, Portland Cement Association, Sugar Land, TX
- Kamran Muzaffar Khan, Mumtaz Ahmed Kamal, Faizan Ali, Shiraz Ahmed and Tahir Sultan (2012). "Performance Comparison if Cold in Place Recycled and Conventional HMA". IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE).
- Larry Santucci. (2007). "Recycling Asphalt Pavements— A Strategy Revisited" Institute of Transportation Studies, University of California Berkeley.
- Loizos A. and Papavasiliou V. (2005) "Evaluation of Foamed Asphalt Cold in Place Recyling Using Nondestructive Techniques" Polytechniou, Zografou Campus Athens, Greece.
- Marek Iwanski, Przemyslaw Buczynski (2014) "Properties of the Recycled Base Course With Respect to the Road Binder Type". The 9th International Conference "Environmental Engineering", Department of Transportation Engineering, Faculty of Civil Engineering and Architekture, Kielce University of Technology.
- REAM Committee (2005), "Specification for Cold in Place Recycling", REAM SP1/2005 by REAM, Malaysia.
- Research & Development (2013) "Guideline Notes Catalogue of Road Defect (CORD)" Highway Department of Hong Kong

- Smith, Brad Steven (2006) Design and Construction in Cold Regions : State of Practice" Brigham Young University
- Tyson D. Rupnow, Benjamin Franklin and David J. White (2015) "Class C Fly Ash Stabilization of Recycled Asphalt Pavement & Soil – A Case Study" Louisiana Transportation Research Center.
- V.V.L Kanto Rao, M.V.B. Rao, Satander Kumar, S.P Pokhriyal (2006) "structural Evaluation of Cement Concrete Roads in Mumbai City" Journal of Performance of Constructed Facilities, Vol 20, ASCE
- Yongjoo Kim and Hossin 'David' Lee, "Development of Mix Design Procedure for Cold in Place Recycling with Foamed Asphalt" Journal of Material in Civil Engineering. Vol 18, ASCE
- (2012). "Special Provision for CIR with Emulsified Asphalt". Department of Transport, State of Illinois.
- (2012) "Special Provision for FDR with Emulsified Asphalt". Department of Transport, State of Illinois.