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ABSTRACT

Networked Control System (NCS) has gained the popularity recently due to
low installation and maintenance cost, high reliability, and less wiring. This control
approach of NCS differs from traditional control system since controller and plant
are physically separated and connected through a communication network. Despite
these advantages that the system offers, the main challenge of NCS is networked-
induced delay that occurs while data is exchanged between components. Data Sampling
Time scheduling with Offset (DSTOS) algorithm is an existing method and one of the
effective approaches developed to handle time delays τ by allocating data according
to priority for linear order system. In this work, the NCS of non-linear 2-link planar
robot is developed based on Controller Area Network (CAN) where Proportional and
Derivative (PD) controller is adapted to form a closed loop system. Based on this
configuration, DSTOS algorithm is reconfigured for non-linear system and implemented
such that the assignment of message priority is assigned according to the calculated
Maximum Allowable Loop Delay (MALD) in every loop to reduce network delay. The
NCS of 2-Link planar robot is formed based on two loops which consist of two sensor
nodes, two actuator nodes and two controller nodes that perform data exchange in CAN
2.0A data frames under various CAN speeds. Simulations are performed by using
MATLAB/SIMULINK with TrueTime Toolbox. Analysis of simulation results shows
that the CAN-based non-linear system is able to accommodate this method and meets
the real time and control requirements. By using DSTOS algorithm, the maximum
data latency of control loops is reduced by almost 15% as compared to system without
DSTOS. The reduction in link angle error is evident based on low value of IAE index.
DSTOS also promotes lower energy consumption of DC servomotor which is important
especially for industry.
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ABSTRAK

Sistem Kawalan Rangkaian (NCS) semakin popular di akhir ini disebabkan
kos pemasangan dan penyelenggaraan rendah, kebolehpercayaan tinggi dan kurang
pendawaian. NCS berbeza daripada sistem kawalan tradisional kerana pengawal dan
loji secara fizikalnya berasingan dan bersambung melalui satu rangkaian komunikasi.
Walaupun menawarkan banyak kelebihan, cabaran utama NCS adalah lengah masa
oleh rangkaian teraruh semasa data ditukar antara komponen. Algoritma penjadualan
masa dan Persampelan Data Berserta Ofset (DSTOS) adalah salah satu kaedah sedia
ada dan efektif dibangunkan untuk mengawal lengah masa τ dengan memperuntukkan
data mengikut keutamaan bagi sistem lelurus. Dalam penyelidikan ini, NCS robot 2-
lengan satah bukan-lelurus dibangunkan menggunakan Pengawal Rangkaian Kawasan
(CAN) di mana pengawal Perkadaran dan Pembezaan (PD) telah disesuaikan untuk
membentuk satu sistem gelung tertutup. Berdasarkan konfigurasi ini, algoritma
DSTOS diadaptasi untuk sistem bukan-lelurus dan dilaksanakan supaya keutamaan
data ditentukan mengikut kiraan Kelewatan Masa Maksimum Dibenarkan (MALD)
dalam setiap gelung bagi mengurangkan lengahan masa. NCS 2-lengan satah robot
dibentuk berdasarkan dua gelung, terdiri dari dua nod pengesan, dua nod pemacu dan
dua nod pengawal melakukan pertukaran data dalam bingkai data CAN 2.0A mengikut
kelajuan CAN yang berbeza. Penyelakuan ini menggunakan MATLAB/SIMULINK
dengan Penyelaku TrueTime. Analisa keputusan penyelakuan menunjukkan sistem
bukan-lelurus berdasarkan CAN mampu menampung kaedah ini dan memenuhi masa
sebenar dan keperluan kawalan. Dengan menggunakan algoritma DSTOS, peratusan
bagi maksimum lengah masa data bagi gelung kawalan menurun hampir kepada 15%

berbanding tanpa DSTOS. Pengurangan pada ralat sudut lengan terbukti berdasarkan
nilai rendah indeks IAE. DSTOS juga menggalakkan penggunaan tenaga lebih rendah
oleh DC motor servo yang sangat penting terutama di dalam industri.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

A control system is mainly composed of interconnected components which

include sensor, controller, actuator and the physical system or plant. The traditional

point-to-point architecture has been successfully implemented in many control systems

where sensors and actuators are directly wired to the controller and the controller

usually serves as the main ”brain” of the system. However, with the advancement of

technologies and the increase complexities in many system design, this conventional

architecture seems inadequate to accommodate the design requirement and may be

lacking to address the issue of reliability and compatibility required by industrial

need for distributed control. Thus, the traditional point-to-point architecture system in

industries is getting less favourable in many systems and being replaced by distributed

control system connected via communication network. This new alternative, or formally

named Networked Control System (NCS), is a feedback control system wherein control

loops are closed by means of real time control network and components are physically

separated and connected through the network as shown in Figure 1.1.
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Figure 1.1: A typical networked control [3]

The demand of networks as a media to interconnect components in industrial

control system is gaining attention due to development in the area of communication

and computer network technologies. The technologies have made it possible to include

communication on feedback control loop yet achieving real-time requirements. The

trend in modern industrial and commercial system is to integrate control system,

communication network and computing into higher levels of industrial operation and

information processes. This technology provides various communication line, network

nodes and protocols of data handling to be integrated which improved structure of the

system. This structure consequently eliminates the unnecessary wiring thus increasing

system agility and reducing the overall cost in designing and implementing the control

system. Obviously the vast development of communication network technologies has

contributed significantly and become more common in many fields ranging from DC

motors, auto-mobiles, aircraft, manufacturing and robotics. Figure 1.2 (a) shows an

NCS of drive-by-wire (DbW) system in automotive where the connection of various

components forming the real-time network system are achieved by adapting Controller

Area Network (CAN), Local Interconnect Network (LIN), Ethernet, FlexRay and



3

Media Oriented System Transport (MOST). Each of this network type has its own

communication structure and protocol which leads the network in the automotive to be

very heterogeneous in data type and exchange mechanism yet able to achieve the overall

system requirement [6]. Figure 1.2 (b) illustrates another example of NCS which is the

cooperation of a few robots to perform surgery locally or remotely (tele-operation). The

sensors, actuators and the control system are arranged in network based architecture to

perform real-time task with each of the data inherit time criticality in term of timeliness

of the data exchange [7].

(a)

(b)

Figure 1.2: Example of NCS based control system (a) CAN based Drive-by-Wire and
(b) Surgery robot [4, 5]
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Despite the importance of the NCS-based control systems, there are issues arise

in NCS development mainly the time delay experienced by the transmitted data which

occurs due to the protocol of the network system. The time delay has variable length

and predefined limit which mostly dependant on the configuration of the control system.

Typically, there are three type of data generated from sensor and controller and these

data share the bandwidth of the common network medium. It is crucial to control

efficiently the traffic of data generated through network medium such that the time

delay does not exceed its maximum bound, or named as maximum allowable loop delay

(MALD). The consideration of the MALD in the NCS design is vital as some control

systems are prone to have low performance in real time and control aspects [8] and even,

in the worst case, destabilize the system [4].

This time delay of data inherited in NCS is rather different from typical direct

control system because the delay in NCS is dynamic and non-linear in nature and this

makes the task of measuring and developing the relation between the delay and the

system specification remain a challenging issue. Among the many methods to reduce

the delay, the goal is to propose an appropriate traffic scheduling of the data such that

maximum delay requirement is met and furthermore will not influence the performance

of application system. Data sampling time scheduling is one of effective approaches

developed to handle the time delays, τ , by allocating the data according to priority and

the network will be fully utilized in term of its bandwidth as well as the delay or data

latency of the control data is less than the MALD [9]. The method is performed by

assigning different data sampling time, Ti for different control loops and the sampling

time of individual control loop is determined by finding the MALD and the availability

of the network bandwidth. The methodology is originally used for multiple control loop

of NCS on a periodic delay network, however, in many existing control system, the delay

is very random and in many cases are un-deterministic. In very specific type of real-time
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network such as CAN, the approach has to accommodate the transmission protocol

of the network. In addition, a few researchers have been evaluated the algorithm in

linear system, such as DC motor [10] and other system [11, 12] however, in non-linear

system where the delay is more dynamic there, however, has not been any report on the

application of the scheduling method in the non-linear system. Due to the promising

performance of the method in reducing the delay in control system, this serves as an

excellent research opportunity to be able to accommodate the method in non-linear

system and further to assess the performance, both in term of real time and control.

1.2 Statement of the problems

The existence of the communication network in control system introduces time

delay due to the exchange of data between the NCS components. The delay leads to the

instability of the system performance which from congested network traffic or data loss

during the transmission. The time delays can vary widely according to the transmission

time of data, the overhead time and the number of transmitting nodes in the system.

From the control point of view, the stability of the control system can be guaranteed

by transmitting the sample data within or less than a sampling period while most

control systems prefer shorter sampling period so that the system can accommodate

other necessary non-real time tasks and also to guarantee favourable performance is to

be achieved.

Since the system performance is dependant to the loop delay, it is required to

choose the period to length up to a certain MALD such that the stability of the control

loop is guaranteed. Loop delay is measured from the instant when sensor node samples

sensor data to the instant when data receive at actuator node. Sampled data at the sensor
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and controller nodes have to wait at the transmitter queue and this arbitration mechanism

introduces the main delay component in the network. When the delay happens to be

greater than the data sampling time interval, more than one sensor data will arrive in the

next same period of controller sampling intervals and, thus, only the current sensor data

is used to generate controller signal. This situation will cause the occurrence of data

rejection. On the other hand, when no sensor data arrives in the controller sampling

interval, this will result in the vacant sampling. Both the phenomena of data rejection

and vacant sampling are illustrated in Figure 1.3.

Figure 1.3: Data rejection and vacant sampling

Data rejection and vacant sampling not only degrades control performance

but also introduces distortion of the controller signal. The distortion of control input

causes high frequency noise in the actuator leading to excessive wear of the mechanical

parts [13]. Thus, in NCS, it is high fidelity that every sensor data should arrive at the

controller node before the next sensor data is sampled, as to ensure the desired system

performance can be achieved. In order to achieve this objective, the transmission of

these data has to be assigned in some coordinated order to avoid traffic congested so

that the delay does not exceed the pre-defined limit for each control loop.
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The existing algorithm of calculating the sampling time based on MALD and

assigning the offset for control data has been formulated in [14] and improved in [9].

However, both of the algorithms have been implemented in linear system which does not

portray the actual complexity of NCS in non-linear dynamic system. The reformulation

and adaptation of the algorithm such that it is implementable in non-linear systems

that inherit to some degree of complex dynamic can be considered as good research

opportunity. This is to illustrate that the delay in NCS for non-linear of dynamic system

can be minimized by formulating effective scheduling algorithm.

1.3 Research Objectives

The objectives of the research can be established as follows:

1. To reconfigure the model of network based industrial robot based on

CAN to be the platform of NCS for dynamic system.

2. To reformulate the off-line sampling times scheduling algorithm which

is calculated based on MALD of individual loop of control system

connected over CAN.

3. To verify the efficacy of the algorithm in CAN-based network control

system by means simulation.
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1.4 Scope of Study

The scopes of the work can be limited to the followings:

1. 2-Link Planar robots are to be used as the dynamic system.

2. CAN network is used as the field-bus to connect the sensors, actuators

and controller of the robot.

3. Verification is performed in simulation environment by using

TRUETIME, a MATLAB/Simulink based simulator for real-time control

systems.

1.5 Thesis overview

Throughout the thesis, the reason of study are carefully narrated in first chapter.

The background and some literatures on the field-bus technologies, the scheduling on

NCS and the specific CAN based networked control system is described in Chapter

2. The scheduling algorithm of data sampling time is discussed and implemented to

the established dynamic system as well as the preparations for simulation model is

presented in the Chapter 3. Simulations result and analysis of the developed simulation

model are discussed for various cases as presented in Chapter 4. Finally, conclusion and

recommendations are made in Chapter 5.
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