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ABSTRACT 

 

 

 

 

 A 150 MHz very high frequency plasma enhanced chemical vapor deposition 

(150 MHz VHF-PECVD) system was utilized to fabricate two-dimensional carbon 

nanostructure from the mixture of CH4 and H2. Morphology and structural properties 

of the grown nanostructure were investigated by means of microscopic imaging, 

Raman spectroscopy and X-ray diffraction technique. FESEM imaging had revealed 

two different carbon nanowalls (CNW), namely wavy-like and dense structure. A 

significant change in the film density and wall size were observed when H2 flow rate 

and substrate temperature were varied. It was found that a suitable intermixing of H2 

and CH4 is necessary for synthesizing good quality CNW. A limited or excessive 

amount of H2 flow produced CNW having high defects density and poor surface 

coverage due to variation in the concentration of H radicals. In addition, a drastic 

change in film morphology was observed at growth temperature between 750 °C to 

850 °C due to high rate of surface reactions. The growth of CNW was found to be 

more efficient at smaller electrode spacing due to better flux of hydrocarbon radicals 

towards the substrate surface. Typical characteristics of CNW were observed from 

strong D band, narrow bandwidth of G band and single broad peak of 2D band of 

Raman spectra indicating the presence of disordered nanocrystalline graphite 

structure with high degree of graphitization. The occurrence of strong peak at [002] 

plane with interplanar distance of 0.34 nm confirmed the growth of 2D highly 

graphitized CNW. It can be concluded that a capacitively coupled 150 MHz VHF-

PECVD is a promising alternative technique for CNW fabrication due to its 

capability to dissociate CH4 to CHx and H radicals more efficiently. 
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ABSTRAK 

 

 

 

 

 Satu sistem pengendapan wap kimia berfrekuensi sangat tinggi 150 MHz, 

telah diguna pakai untuk menghasilkan karbon berstruktur nano dua dimensi 

daripada percampuran gas CH4 dan H2. Ciri permukaan serta sifat struktur nano yang 

tumbuh telah dikaji menggunakan teknik pengimejan mikroskop (FESEM), 

spektroskopi Raman dan teknik pembelauan sinar X. Imej FESEM telah 

mendedahkan dua jenis sintesis tembok nano karbon (CNW) yang berlainan, iaitu 

berombak dan tumpat. Perubahan ketumpatan saput dan saiz tembok yang ketara 

telah diperoleh semasa pertumbuhan pada kadar aliran H2 dan suhu substrat yang 

berbeza. Didapati, percampuran gas yang sesuai di antara H2 dan CH4 adalah perlu 

bagi menghasilkan sintesis CNW yang berkualiti. Kadar aliran H2 yang terhad atau 

berlebihan akan menghasilkan saput CNW yang berketumpatan kecacatan tinggi 

serta kawasan liput permukaan yang buruk akibat daripada perubahan kepekatan 

radikal H. Pada suhu pertumbuhan antara 750 °C ke 850 °C, permukaan saput telah 

mengalami perubahan drastik akibat daripada kadar tindak balas permukaan yang 

tinggi. Pertumbuhan CNW didapati lebih cekap pada jarak elektrod yang dekat, 

disebabkan oleh aliran fluks radikal hidrokarbon kepada permukaan substrat yang 

lebih elok. Ciri-ciri khusus spektra Raman bagi CNW yang telah diperhatikan iaitu 

keamatan jalur D yang tinggi, lebar jalur G yang sempit dan puncak 2D berjalur 

lebar, membuktikan kehadiran struktur nano-hablur grafit yang bercelaru dengan 

darjah penggrafitan yang tinggi. Kemunculan puncak satah [002] yang tinggi dengan 

jarak antara satah 0.34 nm, mengesahkan kewujudan struktur grafit dua dimensi. 

Kesimpulannya, sistem pengendapan wap kimia berfrekuensi sangat tinggi 150 MHz, 

merupakan satu kaedah alternatif yang memberansangkan bagi pertumbuhan CNW 

hasil daripada kemampuannya untuk menguraikan CH4 kepada radikal CHx dan H 

dengan lebih berkesan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Section Overview 

 

 

 This thesis presents the investigative report on two-dimensional carbon 

nanostructure (2D-CN) fabrication and structural characterizations; focusing on 

carbon nanowalls (CNW), grown by very high frequency RF plasma enhanced 

chemical vapour deposition (VHF-PECVD). The thesis starts with a brief review of 

the most popular one-dimensional (1D) and 2D carbon nanostructure and their 

potential applications, characteristics of graphite-based nanomaterial, bottom-up 

approach of depositing thin film for carbon nanostructure, structural properties 

characterization, experimental results and finally the conclusion and suggestions. 

Toward the end of this chapter, the aim and outline of the thesis will be discussed. 

 

 

 

 

 

 

 



2 

1.2 Background of the Study 

 

 

1.2.1 Brief Description of Renowned Carbon Nanostructures 

 

 

 Low dimensional carbon material popularity has been increased since the 

groundbreaking discovery by Iijima (1991), where he first reported on the growth of 

helical graphitic microtubules or as nowadays widely known as carbon nanotubes 

(CNT), which has been the pioneer of bottom-up fabrication of carbon 

nanostructures. Thirteen years later, another great experimental discovery by 

Novoselov et al. (2004) regarding the electrical properties of graphene has made 

carbon nanostructure as the most promising material for future application in 

nanoelectronics, photovoltaic and energy storage. Since then graphite-based material 

has been in the highlight and intensively studied. 

 

 

 Carbon nanostructures are originated from manipulation of graphene 

honeycomb atomic lattice, expressed in various shapes and dimensions. 1D carbon 

nanostructures such as CNT, filamentous carbon (FC) and carbon nanorods (CNR) 

are labeled as 1D because of their one-direction growth (Hiramatsu and Hori, 2010). 

For example, CNT is composed of manipulation of graphene sheets into rolled or 

hollow cylindrical form. A single wall CNT (SWCNT) is only consists of one roll of 

graphene sheet, meanwhile a multi-wall CNT (MWCNT) possesses two or more 

rolled-graphene sheets to form tubular graphitic structure.  

 

 

 A two-dimensional carbon nanostructures (2D-CN) such as carbon 

nanosheets (CNS), carbon nanoflakes (CNF) and carbon nanowalls (CNW) are a 

self-organized of stacked flat graphene sheets forming graphitic building block of 

walls or petal-like structure. The structure exhibits sharp edges with high aspect ratio 

that is typically in the range of few nanometer to tens of nanometer. For example, a 

CNW is composed of combination of planar graphene layers, stacking towards each 
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other to form almost vertical graphitic walls. The sharp edges of the wall determine 

its aspect ratio. 

 

 

 

 

1.2.2 General Characteristic and Application of 1D and 2D Carbon 

Nanostructures 

 

 

 Bulk carbon material has contributes toward many industries such as 

polymer, composite, firefighting, electrochemical sensors and energy production. As 

the rapid emergence of nanotechnology, there has been a lot of interest in producing 

carbon nanomaterials, which characteristics and properties are expected to surpass 

their bulk material. For example, diamond has been considered as the hardest bulk 

material on earth, indebted to its sp
3
 carbon units of zinc-blende atomic lattice. 

However, CNT is predicted to overtake diamond in hardness (Kumar and Ando, 

2010), as it possesses sp
2
 carbon bond units of honeycomb lattice, which is 

approximately 56 times stronger than steel wire. In summary, graphite-based 

nanostructures exhibit interesting mechanical, physical and chemical properties due 

to the existence of honeycomb crystal lattice. 

 

 

 1D and 2D carbon nanostructure are blessed with excellent mechanical 

properties, high carrier mobility, large and sustainable current density and high 

absorption of light in the visible range. Most of these features are highly demanded 

in nanoelectronics, electron field emission, and blackbody-like coating. For example, 

the exploitation of excellent mechanical and electrical properties of CNT has proven 

to be beneficial in scanning probe microscopy. In a report by Ye et al. (2004), they 

had successfully fabricated a large-scale production of CNT cantilevers for atomic 

force microscopy (AFM) imaging with good image capturing characteristics. Besides 

that, high current density of CNT (10
9
-10

10
 A/cm

2
) has made it possible to adapt with 

the continual decreasing size of Si integrated circuits. This has been proven by the 

fabrication of CNT as field effect transistors (FET) as reported by Wind et al. (2002); 
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Javey et al. (2004). In pursuit of producing a high efficiency solar cell, high light 

absorption material is needed to collect maximum amount of solar energy. SWCNT 

forest has been proven to behave like a blackbody material, as it is capable of 

absorbing a wide range of light. Works by Mizuno et al. (2009) have shown that 

vertically aligned SWCNT forest is capable to absorb light of wide spectral range 

(0.2 – 200 μm).  

 

 

 As for 2D-CN, its application may vary depending on its morphology and 

film quality. According to Hiramatsu and Mori (2010), 2D-CN with sharp edges, 

aligned and medium spacing of walls are demanded for application in field emission. 

In contrast, high-density film with less aligned walls structure is more suitable for 

gas storage application. In a report by Krivchenko et al. (2013), densest CNW film 

with minimal edges size possessed the best optical absorption behavior and they 

exhibit higher light absorption by one order of magnitude compared to CNT forest. 

On the other hand, the most promising application for 2D-CN such as CNW is to be 

employed as templates for growth of nanostructure and this has been proven fruitful 

for application in energy storages devices. For example, in the works of Hassan et al. 

(2014), they had managed to fabricate MnO2 thin film with CNW/Ni as templates 

and found that dense and sharp edges CNW film with minimal defects lead to fast 

electron and ion transport and stable electrochemical cyclic activity thus providing a 

unique capacitive behavior.  

 

 

 

 

1.2.3 General Approach and Bottom-up Synthesis of Carbon Nanostructures 

 

 

 Conventional thin film deposition method such as CVD has been renowned 

of its versatility in fabricating numerous nanostructures including carbon. There have 

been numerous reports regarding the growth of carbon nanostructure using modified 

CVD method such as DC-PECVD, RF-PECVD, Microwave PECVD (MPECVD) 

and electron beam excited PECVD (EBEPECVD). Typically, precursor gas such as 
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methane and acetylene are employed as the carbon source. For the growth of CNT, 

arc-discharge method and catalytic thermal CVD have been commonly employed in 

tremendous reports while PECVD is often employed in purpose to increase 

deposition rate and to lower the growth temperature. However, the history of 2D-CN 

growth is involved with accidental event prior to fabricating CNT. The earliest report 

on 2D-CN can be found in the work of Ando et al. (1996), where he observed both 

CNT and other petal-like graphite sheets using hydrogen arc discharge method. 

Meanwhile, in 2002, Wu et al. (2002) had reported the growth of CNW on catalyzed 

substrates using MPECVD. This can be considered as the first report to use the term 

“carbon nanowalls”. Currently, 2D-CN is fabricated by using various PECVD with 

modification, for example PECVD with hydrogen radical injection. 

 

 

 

 

1.2.4 Motivation to Conduct Research on 2D Carbon Nanostructures 

 

 

 As has been briefly reviewed previously, 2D carbon nanostructures exhibit 

unique mechanical, physical and chemical properties. Hence, intensive research on 

its fabrication method and film properties can be fruitful as a stepping-stone toward 

providing alternative in many fields of applications such as renewable energy and 

nanoelectronics. 

 

 

 To date, the understanding regarding growth mechanism of 1D and 2D 

carbon nanostructures are still premature. For 1D carbon nanostructure such as CNT, 

two growth mechanisms; i) tip-growth model and ii) base-growth model have been 

widely accepted, however these growth mechanisms are only applicable for CNT 

growth on catalyzed substrate. Still, there have been reports on CNT growth on non-

catalyzed substrate (Rumelli et al., 2011.). For 2D-CN, there have been a number of 

reports on its growth mechanism and is proven direct yet random. Briefly, the growth 

of 2D-CN is initialized with the nucleation stage of precursor gas followed by 
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random assembly of nanoflakes on top of agglomerated nanoislands (Kondo et al., 

2009). 

 

 

 As conclusion, the understanding on growth mechanism model of carbon 

nanostructures is proven beneficial in order to further control and manipulate their 

growth properties for different application. It is hoped that the result of this study can 

be used to provide clarification on 2D-CN growth properties. Furthermore, the 

fabrication of 2D-CN using VHF-PECVD is less to be found, thus this study will 

help to provide a report on the ability of VHF-PECVD to grow CNW. It must be 

noted that VHF-PECVD is simpler to setup compared to radical injection PECVD 

and MPECVD. 

 

 

 

 

1.3 Statement of Problems 

 

 

 All previously mentioned superior physical properties of 2D-CN however, 

currently exhibits some difficulties especially in material preparation and processing 

requirement, which are unique compare to the well-established Si processing. To 

date very few researchers have achieved to produce CNW with tunable morphology 

since its application is highly dependent on film density and structural arrangement 

of the walls. Besides that, current researches on the fabrication of CNW often 

employed a highly modified PECVD system such as MPECVD and capacitively-

coupled PECVD with hydrogen radical injection. The conventional PECVD with 

13.56 MHz RF plasma source is simpler to assemble compared to MPECVD and 

PECVD with hydrogen radical injection, which employed a two-stage plasma source 

to operate.  
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1.4 Objectives of Study 

 

 

 The objectives of this study are as followed; 

 

1) To optimize the growth condition of CNW by varying H2-to-CH4 gas flow 

 rate ratio, substrate temperature, electrode separation and deposition time. 

 

 

2) To determine the influence of H2 flow rate percentage, substrate temperature 

 and electrode separation on CNW growth. 

 

 

3) To characterize the surface morphology, crystallinity and degree of 

 graphitization of grown CNW. 

 

 

 

 

1.5 Scope of Study 

 

 

 In order to meet the research objectives, the experimental works must be 

thoroughly outlined and highlighted. The focus of this research can be categorized 

into two different components, which includes the fabrication of CNW using VHF-

PECVD and characterization of its surface morphology and structural properties.  

 

 In the fabrication of CNW, growth parameters played a crucial role in 

determining the film quality. Parameters investigated in this study are summarized in 

Table 1.1. 
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Table 1.1 : Summary of chosen experimental parameters.  

No. Parameter Range/ value Unit 

1. CH4-to-H2 flow rate ratio 17:0 – 17:20 
Standard cubic centimeter, 

(sccm) 

2. Substrate temperature 700 - 850 Celcius, (°C) 

3. Electrode separation 25 – 55  Milimeter, (mm) 

4. RF power 25 Watt, (W) 

 

 

 Meanwhile, the substrates chosen for this study were quartz glass and single 

crystal Si. Typically, the growth of CNW does not require the presence of catalyst, 

however in this study some samples will be equipped with thin film of Ni catalyst in 

order to see its influence on film morphology. 

 

 

 For characterization of CNW film, properties such as; i) surface morphology, 

ii) crystallinity, and iii) degree of graphitization were chosen. In order to study the 

surface morphology, microscopic imaging such as field emission scanning electron 

microscopy (FESEM) was employed. The crystallinity and structural properties of 

film such as defect and stacking of graphene layers were investigated using grazing 

incidence x-ray diffraction (GIXRD) and Raman spectroscopy. 

 

 

 Finally, the growth parameters and structural characterization were correlated 

in order to determine the optimum growth condition of CNW using VHF-PECVD. It 

will also reveal the ability and feasibility of 150 MHz VHF-PECVD in synthesizing 

2D carbon nanostructure with tunable morphology. 
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1.6 Significance of Study 

 

 

 As has been mentioned earlier in this chapter, carbon nanostructures exhibit 

unique and promising material properties for future application in variety of fields. It 

is hoped that this study will bring more enlightenment regarding the fabrication 

technique and film properties of CNW.  

 

 

 To date, most fabrication approach of CNW involve highly modified and 

complex system of PECVD. Thus, this study is hoped to evaluate the potential of 

simpler PECVD system (VHF-PECVD) to fabricate CNW. There are also reports on 

the utilization of high frequency PECVD such as in the works of Dikosnimos et al. 

(2005), however to the best of our knowledge, there are no reports on CNW film 

grown via 150 MHz VHF plasma source. Microwave PECVD can be classified as 

ultrahigh frequency plasma source at typical value of 0.915 and 2.45 GHz but it 

always involves the use of magnetron, which require very high voltage to operate. 

 

 

 In most cases, the growth of CNW does not require any catalyst, thus it is less 

time-consuming procedure, as there is no substrate and surface plasma treatment 

needed. Furthermore, it has become possible to grow CNW in various type flat 

surface such as Si wafer, stainless steel and glass. Another important feature of CNW 

is its blackbody-like behavior. Combination of both features will provide the solar 

cell and energy storage industry an alternative of new coating material in purpose to 

improve solar cell efficiency. 
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1.7 Thesis Layout 

 

 

This thesis consists of five chapters. Each of the chapters will be briefly 

discussed and they are interrelated to each other bounded by the scope of study. 

 

 

Chapter 1 deals with the overview of 1D and 2D carbon nanostructures, and 

their potential applications, recent fabrication technique and motivation to provide 

the need of study by highlighting its drawbacks. Therefore, an alternative is proposed 

concerning the specific problem, which has been addressed in the objectives of the 

study. 

 

 

Chapter 2 is a detail review on the types of morphology of CNW and recent 

reports that cover recent fabrication technique and its influence on growth properties 

of CNW film. It also discusses the experimental results of recent literature regarding 

its structural properties. The parameters that affect the process were addressed in this 

chapter. 

 

 

Chapter 3 describes the methods, technique and characterization preferred to 

be implemented in this study. Samples were taken for analysis and all the analytical 

methods are described in this chapter. 

 

 

Chapter 4 is the full result of this study. The parameters that contribute and 

give impact to the study will be discussed. Each of the result will be transformed into 

simplified graphical representation for further clarification and discussion.. 

  

 

 Chapter 5 is the conclusion obtained from the study. It gives an insight on 

how the objectives have been met. The chapter ends with suggestions that were made 

for future research. 
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