PHYSICOCHEMICAL AND MICROBIAL PROFILE OF OIL PALM EMPTY FRUIT BUNCHES COMPOST TREATED WITH EFFECTIVE MICROORGNISMS

LIM LI YEE

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

APRIL 2015

Dedicated to my parents, siblings and friends for their love and understanding.

ACKNOWLEDGEMENTS

I want to take this opportunity to thanks the people at Institute of Bioproduct Development and Faculty of Chemical Engineering who supported and assisted me during my graduate studies in pursuit of my Master of Bioprocess Engineering degrss. I would like to express my greatest graditute and appreciation to my my main thesis supervisor, Dr. Chua Lee Suan, for encouragement, guidance, critics and friendship. I am also very thankful to my co-supervisor Professor Madya Dr. Lee Chew Tin for her guidance, advices and motivation. This thesis would not have been the same as presented here without their continued support and interest.

Special thanks to Professor Dr. Mohamad Roji Sarmidi, Pn. Siti Zulaiha Hanapi, En. Aidee Kamal Khamis, Pn. Siti Hajar Mat Sarip and Pn. Muna bte. Muhamed, Pn. Roslinda bt. Abd. Malek and all IBD members for their ideas, criticism and assistance with laboratory analysis to my research work.

Finally, my fellow postgraduate students should also be recognised for their support. My sincere appreciation also extended to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

This study investigated the effects of Effective Microorganisms (EM·1TM) on the composting process of ground oil palm empty fruit bunches (EFB). The maturity of the compost was monitored based on its important physical (temperature, pH and colour), chemical (organic and inorganic components) and microbiological properties. The compost with the addition of EM·1TM (ETC) matured 8-10 days earlier than the control sample (Ctl). The prolonged thermophilic phase was not observed for ETC because ETC could reach 50-55 °C within 2 to 3 hours on the first day of a 10-day experiment and maintained the temperature between 26-42 °C until the end of the process. Compared to control, ETC decreased the total organic carbon (TOC) and carbon to nitrogen (C/N) ratio by 10.78% and 17.26, respectively, but increased the microbial population (37.4% higher than Ctl) and the production of essential inorganic elements (Mg, K, Ca, Cu and B), as well as the key metabolite (5aminolevulinic acid) for plant growth. The increment of nitrate nitrogen $(NO_3 - N)$ was found to be higher in ETC, this may be due to a decrease of ammonium nitrogen (NH_4^+-N) in the process of nitrogen mineralization. Both Ctl and ETC reached a NH_4^+/NO_3^- ratio of 0.16 after maturation of the compost. Interestingly, the pH of the compost was found acidic (between pH 4.5 and 5.0) for the first week of composting, and then gradually increased to neutral and slightly alkaline pH (around pH 7.5-8.5) at the end of the process. The acidic condition was due to the accumulation of organic acids. The findings of this study concluded that the inoculation of EFB compost with EM·1[™] could provide a better degradation of EFB compared to Ctl.

ABSTRAK

Kajian ini bertujuan untuk menyelidik kesan Mikroorganisma Efektif (EM·1TM) dalam proses pengkomposan sisa tandan kosong buah kelapa sawit (EFB). Kematangan kompos dipantau dengan berasaskan ciri-ciri fizikal (suhu, pH dan warna), kimia (komponen organik dan inorganik) dan mikrobiologi yang penting. Kompos yang ditambahkan dengan EM·1[™] (ETC) matang 8-10 hari lebih awal daripada kompos kawalan (Ctl). Fasa termofilik berpanjangan tidak dikesan untuk ETC kerana suhu setinggi 50-55 °C dikekalkan selama 2-3 jam dalam sehari sahaja bagi tempoh masa sepuluh hari yang pertama. Seterusnya, suhu kompos dikekalkan antara 26-42 °C hingga proses tamat. ETC menunjukkan penurunan dalam jumlah karbon organik (TOC) dan nisbah karbon kepada nitrogen (C/N), iaitu masingmasing 10.78% dan 17.26. Penambahan polulasi mikrob (37.4% lebih tinggi daripada Ctl), penghasilan unsur inorganik penting (Mg, K, Ca, Cu dan B) dan metabolit penting (asid 5-aminolevulinik) untuk pertumbuhan tumbuhan juga dapat diperhatikan. Penambahan nitrogen nitrat (NO₃-N) adalah lebih tinggi bagi ETC akibat daripada penurunan kandungan nitrogen ammonium (NH_4^+-N) semasa proses Nisbah NH_4^+/NO_3^- 0.16 tercapai apabila sampai waktu peminerelan nitrogen. pematangan kompos. Kompos mempunyai pH berasid (pH 4.5-5.0) pada minggu pertama dan pHnya semakin meningkat ke neutral dan alkali lemah (pH 7.5-8.5) disebabkan pengumpulan asid organik. Kesimpulannya, penambahan EM·1[™] untuk pengomposan EFB dapat menghasilkan degradasi EFB yang lebih baik daripada Ctl.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF EQUATIONS	xiv
	LIST OF ABBREVIATIONS	XV
	LIST OF APPENDICES	xvii
	LIST OF SYMBOLS	xviii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	3
	1.3 Significance of the Study	3
	1.4 Objective	4
	1.5 Scopes of Study	4
2	LITERATURE REVIEW	6
	2.1 Composting of Organic Wastes	6

	2.1.1	Composting of Oil Palm Empty Fruit	
		Bunches	8
2.2	Four P	Phases in Composting	11
	2.2.1	First Mesophilic Phase	11
	2.2.2	Thermophilic Phase	12
	2.2.3	Second Mesophilic Phase	13
2.3	Factor	s Affecting Composting Process	14
	2.3.1	Temperature	15
	2.3.2	Carbon to Nitrogen (C/N) Ratio	16
	2.3.3	Oxygenation	17
	2.3.4	Moisture Content	18
	2.3.5	pH Level	18
	2.3.6	Particle Size	19
2.4	Divers	ity of Microorganisms During Composting	20
	2.4.1	Bacteria	21
	2.4.2	Fungi	22
	2.4.3	Actinomycetes	23
2.5	Micro	biological Additives	24
	2.5.1	Effective Microorganisms (EM) for	
		Composting	25
2.6	Evalua	ation of Compost Maturity	27
2.7		cial Effect of Mature Compost in	
	Agricu	Iltural Application	28
	2.7.1	Plant Growth Promotion	29
	2.7.2	Stress Tolerance and Diseases Suppression	30
2.8	Metab Comp	olite of 5-Aminolevulinic Acid (ALA) in ost	31
	2.8.1	5-Aminolevulinic Acid and Its Functions as Biodegradable Herbicides and	33
		Insecticides	33

		2.8.2	Importance of 5-Aminolevulinic Acid for Plant Growth Promotion and Stress Tolerance	37
3	MET	HODO	LOGY	40
	3.1	Raw N	Aaterials for Composting	40
	3.2	-	ation of Effective Microorganisms ated Solution (EMAS)	41
	3.3	Prepar	ration of Compost	41
	3.4	pН		43
	3.5	Carbo	n to Nitrogen (C/N) Ratio	43
		3.5.1	Total Kjedahl Nitrogen	43
		3.5.2	Total Organic Matter (TOM), Total Organic Carbon (TOC) and Moisture Content	45
	3.6	Macro	- and Micro-Nutrients Analysis	45
	5.0		ž	46
		3.6.1	Samples Preparation for Potassium (K) and Magnesium (Mg) Cell Test	46
		3.6.2	Sample Preparation for Calcium (Ca) Cell Test	46
		3.6.3	Sample Preparation for Phosphorus (P), Micro-Nutrients and Inorganic Nitrogen Cell Test	47
	27	Matab		47
	3.7		olite Profiling	47
		3.7.1	5-Aminolevulinic Acid (ALA) Extraction	47
		3.7.2	Low Molecular Weight Organic Acids (LMWOAs) Extraction	48
	3.8	Identif	fication of Microorganisms	48
4	RESU	ULTS &	DISCUSSION	50
	4.1	Physic	cal Properties of Compost	50
		4.1.1	Temperature Profile of Composting	50

		4.1.2	Moisture Content and Its Correlation with Temperature Profile	53
		4.1.3	Acidic to Slightly Alkaline pH of Compost	55
	4.2	Chemi	cal Properties of Compost	57
		4.2.1	Degradation Based on Total Organic Carbon (TOC)	57
		4.2.2	Total Organic Nitrogen (TON) and Carbon to Nitrogen (C/N) Ratio	60
		4.2.3	Elemental Components for Plant Growth	63
	4.3	Activa	tion of Microbial Profile	67
	4.4	5-Ami	nolevulinic Acid (ALA) in Compost	71
	4.5	Low M (LMW	Iolecular Weight Organic Acids OAs)	73
5	CONC	CLUSIC	ONS AND RECOMMODATIONS	77
REFERENCE	S			79
Appendices A-I	K			97-108

х

LIST OF TABLES

TABLE NO.	TA	BL	Æ	Ν	0.	
-----------	----	----	---	---	----	--

TITLE

PAGE

2.1	Properties and the nutrients content of shredded EFB	9
2.2	Co-composting of EFB with different substrates and the properties of final product	10
2.3	Characteristic of four stages of composting process	14
2.4	Carbon to nitrogen (C/N) ratio of organic materials	16
2.5	Factors and their best range for composting process	19
2.6	Common characteristics for mature compost	28
2.7	Effects of ALA as a biodegradable herbicide and insecticide	35
3.1	Research activities carried out throughout the 64 days composting process	43
4.1	Macro- and micro-nutrients (g per kg of compost) detected during the composting process	65
4.2	Intensity of low molecular weight organic acids detected in the compost	75
A1	Chemical composition of the agar plates used for the identification of each microorganism group	106

LIST OF FIGURES

FIGURE	NO.
--------	-----

TITLE

PAGE

2.1	Inputs and outputs of the composting process	7
2.2	Four stages of composting process	8
2.3	Temperature profile of compost at mixing interval	15
2.4	Structure of ALA	32
2.5	Biosynthesis of ALA and its biological role in tetrapyrrole compounds synthesis	32
3.1	Collected shredded empty fruit bunches (EFB) and the grinded sample	40
3.2	Compost bin and its dimension	42
3.3	(a) Kjedaltherm KBL 20s and (b) Vapodest 50s used for total Kjeldahl nitrogen analysis	44
4.1	Temperature profile of the composting process	51
4.2	Moisture content recorded throughout the composting process	54
4.3	pH values recorded throughout the composting process	55
4.4	Carbon dioxide emission throughout the composting process with 120 mg CO^2 -C kg ⁻¹ d ⁻¹ as the minimum threshold for compost maturity	58
4.5	Total organic carbon (TOC) degradation throughout the composting process	59

Total organic nitrogen (TON) content recorded	
throughout the process	61
C/N ratio recorded throughout the composting process	63
The (a) total bacterial and microbial population, (b) total lactobacillus count, and (c) total actinomycetes population in Ctl and ETC observed throughout the 9	
weeks composting process	70
5-aminolevulinic acid (ALA) recorded throughout the process	71

	process	71
A1	Grinding machine	97
A2	Commercial EM·1 [™] microbial inoculants and molasses	98
A3	EM solutions before and after activation	98
A4	pH meter used for the pH determination	99
A5	(a) Spectroquant [®] test kits and (b) Spectroquant [®] NOVA 60 analyzer used for macro- and micro- nutrients analysis	100
A6	SPECTRONIC 200 UV-Vis spectrophotometer	105
A7	Correlationship between TOC degradation and carbon dioxide emission for (a) Ctl and (b) ETC	107
A8	The relationship between TOC and C/N ratio for (a) Ctl and (b) ETC and the relationship between TON and C/N ratio for (c) Ctl and (d) ETC	108

4.6

4.7

4.8

4.9

LIST OF EQUATIONS

EQUATION NO.	TITLE	PAGE
1	Total Kjeldahl nitrogen (%)	44
2	Moisture content (%)	45
3	Total organic matter content (%)	45
4	Percentage of carbon content (%)	46

LIST OF ABBREVIATIONS

EFB	-	Oil palm empty fruit bunches
$EM \cdot 1^{TM}$	-	Effective Microorganisms
TOC	-	Total organic carbon
ALA	-	5-Aminolevulinic acid
ОМ	-	Organic matters
MA	-	Microbiological additives
Cfu	-	Colony-forming unit
PGRs	-	Plant growth regulators
SB	-	Sugar beet
DOC		Dry olive cake
AM	-	Arbuscular Mycorrhizal
LAB	-	Lactic acid bacteria
BOD	-	Biological oxygen demand
COD	-	Chemical oxygen demand
PDT	-	Photodynamic therapy
PPIX	-	Protoporphyrin IX
PDD	-	Photodynamic diagnosis
TDPH	-	Tetrapyrroles-dependent herbicides
Phen	-	1,10-phenanthroline
Glu	-	glutamic acid

PS	-	photosystem	
IAA	-	Indole-3-acetic acid	
EMAS	-	Effective Microorganisms activated solution	
ETC	-	EM·1 TM -treated compost	
Ctl	-	Control sample	
ТОМ	-	Total organic matter	
LMWOAs	-	Low molecular weight organic acids	
LCMS	-	Liquid chromatography mass spectrometry	
ESI	-	Electrospray ionization	
TON	-	Total organic nitrogen	
ATP	-	Adenosine triphosphate	
ADP	-	Adenosine diphosphate	
NA	-	Nutrient agar	
MRS	-	deMan-Rogosa-Sharps agar	
AIA	-	Actinomycetes isolation agar	
RBC	-	Rose bengal chloramphenicol agar	
PBG	-	porphobilinogen	
ALAD	-	5-Aminolevulinic acid dehydratase	
ALAS	-	5-Aminolevulinic acid synthetase	
POME	-	Palm oil mill effluents	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Grinding machine	97
В	Commercial EM·1 [™] microbial inoculants and molasses and the EM solutions before and after activation	
С	pH meter for the pH determination	
D	Spectroquant® test kits and Spectroquant® NOVA 60 analyzer used for macro- and micro-nutrients analysis	100
E	Detailed macro-nutrient cell test	101
F	Detailed micro-nutrient cell test	103
G	Detailed inorganic nitrogen cell test	104
Н	SPECTRONIC 200 UV-Vis spectrophotometer	
Ι	Chemical composition of the agar plates used for the identification of each microorganism group	
J	Correlationship between TOC degradation and carbon dioxide emission rate	107
K	Correlationship of TOC and TON to C/N ratio	

LIST OF SYMBOLS

С	-	Carbon
Ν	-	Nitrogen
CO_2	-	Carbon dioxide
Р	-	Phosphorus
Mg	-	Magnesium
Zn	-	Zinc
Cu	-	Copper
Mn	-	Manganese
H_2S	-	Hydrogen sulfide
NO ₂	-	Nitrite
Ca	-	Calcium
Fe	-	Iron
В	-	Boron
NH ₃	-	Ammonia
$\mathrm{NH_4}^+$	-	Ammonium
NO ₃ -	-	Nitrate
Н	-	Hydrogen
0	-	Oxygen
N		Nitrogon and

CHAPTER 1

INTRODUCTION

1.1 Research Background

Malaysia is the major palm oil production country after Indonesia (MPOB, 2014). The solid wastes from oil plantation such as trunks, fronds and oil palm empty fruit bunches (EFB), have always been discussed in environmental conservation forums. Thus, composting is likely to become an effective alternative in managing these organic wastes. Technically, composting is a bioconversion process which allows the conversion of organic wastes into stable amorphous dark brown to black colloidal humus-like substances (de Bertoldi *et al.*, 1983). Therefore, composting recycles organic wastes and the mature compost can also be used as biofertilizer for a wide range of crops. This microbial added bio-fertilizer is believed to promote soil health for sustainability of crop production. This indirectly overcomes the high cost, environment pollution and soil organic matter depletion problems of excessive chemical fertilizer usage.

As a microbiological process, the addition of microbial additive which consisted of consortia of beneficiary microorganisms would increase the composting rate and the product quality. One of the commonly used microbial additives in Malaysia is Effective Microorganisms ($EM \cdot 1^{TM}$) from Japan. This microbial additive enhances microbial diversity of soil, detoxifies pesticides, suppresses plant disease and soil borne pathogens, enhances nutrient cycling and produces soil enhancing

metabolites to increase plant yield (Higa and Wididana, 1991; Monica *et al.*, 2011). It contains a variety of natural-occurring beneficial local microorganisms such as lactic acid bacteria, yeast, fungi, photosynthetic bacteria and actinomycetes. However, the scientific data of EM·1TM covering the exact strains and composition of various strains are often not revealed and generally remained as trade secrets. The performance of EM·1TM on EFB composting was investigated in this study before large scale application.

A complete composting process can be examined by various physical, biological and chemical parameters including temperature, microbial activities, total organic carbon content (TOC), total nitrogen content, carbon-to-nitrogen (C:N) ratio, formation of humic substances, CO_2 production, moisture content and pH level (de Bertoldi *et al.*, 1983; Michael and Kathleen, 2001). These parameters are of great importance to be an indicator for compost maturity and stability (Marta Benito *et al.*, 2003; M. Benito *et al.*, 2005; Forster *et al.*, 1993; Tiquia, 2005). The application of immature compost can be problematic to the ecosystem. This is because decomposition process is still continuing and hence inducing the anaerobic conditions in soil pores.

As a major plant growth regulation factor (PGRF), the production of 5aminolevulinic acid (ALA)is not only detected in plants, but also in some microorganisms including anoxygenic and oxygenic photosynthetic bacteria, *Pseudomonas* sp., *Escherichia coli, Clostridium thermoaceticum, Methanosarcina* sp. and so on as a primary or secondary metabolite (Choorit *et al.*, 2011; Gilles *et al.*, 1983; Noparatnaraporn *et al.*, 2000; Sasaki *et al.*, 2002; Sonhom *et al.*, 2012). ALA can be used as herbicides or insecticides when it is applied at high concentration (>0.6mM), but become a plant growth promoter at low concentration (0.0006-2mM). The detection of ALA production during composting process can further confirm the agronomic value of the final product.

1.2 Problem Statement

The main objective of composting was to convert organic waste into value added bio-product such as bio-fertilizer. The application of compost as bio-fertilizer can only be carried out using mature compost. A non-matured compost is not suitable to be applied because of the presence of potential harmful substances and toxic, emergence of pathogens, as well as high loss of nutrients (Bertoldi *et al.*, 1983). As compost maturity is based on the degree of degradation of organic matters (OM), the transformation of C and N become one of the major functions for the study of compost maturity. Many researches on the OM degradation, the transformation of element C and N, the formation of humic substances together with some physical analysis such as appearance, temperature profile, pH and moisture content of compost are always performed for the determination of compost maturity and stability, but limited study has been carried out on the composting of EFB, which is the major agricultural waste in Malaysia, using Effective Microorganisms, EM·1TM as microbial inoculants.

1.3 Significance of the Study

Since composting is a microbial process, the addition of microbiological additives (MA) can be significantly importance in the acceleration of the decomposing rate, especially during the initiation of composting. Although many researchers have focused on the use of Effective Microorganisms, EM·1TM for municipal solid waste management, wastewater treatment and agricultural application, the roles of microbial biomass and their interactions during composting have not been deeply studied based on scientific approach. The application of EM·1TM on different plants at different locations in terms of efficacy and consistency remains a major challenge since the performance could vary due to the variance in soil fertilities, soil and microbial composition and constituents, plant types, and climates change. Therefore, the fundamental understanding of the microbial

populations throughout the composting process is essential for the determination of composting maturity and stability.

Furthermore, the degradation of the OM during composting also releases some plant growth promoting metabolites such as 5-aminolevulinic acid (ALA). The production of the metabolites is strongly depended on the raw material, its composition of OM, as well as the microorganisms present. Besides, the presence of the metabolites in the mature compost can further enhance the compost quality as a bio-fertilizer. Since the metabolite profile of compost is poorly studied so far, ALA production in the EM·1TM-inoculated EFB compost is important to be carried out using the non EM·1TM-inoculated sample as control.

1.4 **Objective**

The main objective of this study was to characterize the physical (temperature, pH and moisture content), chemical (total organic carbon, total nitrogen, carbon to nitrogen ratio, 5-aminolevulinic acid and low molecular weight organic acids contents) and microbial profile (total microbial, actinomycetes, lactobacillus and yeast count) of ground oil palm empty fruit bunches (EFB) compost using Effective Microorganisms (EM $\cdot 1^{TM}$) as inoculants.

1.5 Scopes of Study

The scopes of the study included,

 To determine the compost maturity and stability by monitoring the physical (temperature, pH and moisture content) and chemical properties (C:N ratio, elemental analysis, 5-aminolevulinic acid concentration and low molecular weight organic acids content).

- 2. To identify the compost maturity and stability based on the microbial profile (total bacteria, lactic acid bacteria, actinomycetes and yeast).
- 3. To investigate the relationship between the physical, chemical and microbial profile of the EM-inoculated EFB compost experimentally.

REFERENCES

- Abdulla, H. M. (2007). Enhancement of rice straw composting by lignocellulolytic actinomycete strains. *Int. J. Agri. Biol.*, *9*(1), 106-109.
- Abdullah, N., and Sulaiman, F. (2013). The Oil Palm Wastes in Malaysia.
- Abels, C.,and Ackermann, G. (2001). Chapter 9 Fluorescence diagnosis. In R.-M. S.
 Piergiacomo Calzavara-Pinton & O. Bernhard (Eds.), *Comprehensive Series in Photosciences* (Vol. Volume 2, pp. 165-174): Elsevier.
- Al-Thabet, S. S. (2006). Promotive effect of 5-amino levulinic acid on growth and yield of wheat grown under dry conditions. Journal of Agronomy, 5(1), 45-49.
- Ali, T., Bylund, D., Essén, S. A.,and Lundström, U. S. (2011). Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. *Soil Biology and Biochemistry*, 43(12), 2417-2422.
- Arnon, D. I.,and Stout, P. R. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper.*Plant Physiology*, 14(2), 371-375.
- Al-Thabet, S. S. (2006). Promotive effect of 5-amino levulinic acid on growth and yield of wheat grown under dry conditions. *Journal of Agronomy*, 5(1), 45-49.
- Atlas, R. M. (2004). *Handbook of microbiological media* (3rd ed.). United State of America: CRC Press.
- Aziz, A. A., Das, K., Mohamad, H.,and Anis, M. (2002). Effects of physical and chemical pre-treatments on xylose and glucose production from oil palm press fibre. *Journal of Oil Palm Research*, 14(2), 10-17.
- Baeta-Hall, L., Ceu Saagua, M., Lourdes Bartolomeu, M., Anselmo, A. M., and Fernanda Rosa, M. (2005). Bio-degradation of olive oil husks in composting aerated piles. *Bioresour Technol*, 96(1), 69-78.
- Baharuddin, A. S., Kazunori, N., Abd-Aziz, S., Tabatabaei, M., Abdul Rahman, N. A., Hassan, M. A., Wakisaka, M., Sakai, K., and Shirai, Y. (2009a).

Characteristics and microbial succession in co-composting of oil palm empty fruit bunch and partially treated palm oil mill effluent. The Open Biotechnology Journal, 3, 92-100.

- Baharuddin, A. S., Wakisaka, M., Shirai, Y., Abd-Aziz, S., Abdul Rahman, N. A., and Hassan, M. A. (2009b). Co-composting of empty fruit bunches and partially treated palm oil mill effluents in pilot scale. International Journal of Agricultural Research, 4(2), 69-78.Barker Allen, V. (1997). Composition and Uses of Compost *Agricultural Uses of By-Products and Wastes* (Vol. 668, pp. 140-162): American Chemical Society.
- Barker, A. V. (Ed.). (1997). Composition and uses of compost. Amer. Chem. Soc., Washington, D.C.
- Bary, A., Cogger, C.,and Sullivan, D. (2002). What does compost analysis tell you about compost? Paper presented at the Biologically Intensive and Organic Farming Research Conference, Yakima, WA.
- Bashan, Y., Salazar, B., Puente, M. E., Bacilio, M.,and Linderman, R. (2009).
 Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. *Biology and Fertility of Soils*, 45(6), 585-594.
- Beale, S. I.,and Weinstein, J. D. (1990). Tetrapyrrole metabolism in photosynthetic organisms. In H. A. Dailey (Ed.), *Biosynthesis of heme and chlorophylls* (pp. 287-391). New York: McGraw-Hill.
- Beffa, T., Blanc, M., Marilley, L., Fischer, J. L., Lyon, P. F.,and Aragno, M. (1995).
 Taxonomic and metabolic microbial diversity during composting. In M. d.
 Bertoldi, P. Sequi, B. Lemmes & T. Papi (Eds.), *The Science of Composting, Part 1* (pp. 149-161). London, England: Chapman and Hall.
- Benito, M., Masaguer, A., Moliner, A., and De Antonio, R. (2006). Chemical and physical properties of pruning waste compost and their seasonal variability. *Bioresource Technology*, 97(16), 2071-2076.
- Benito, M., Masaguer, A., Moliner, A., Arrigo, N.,and Palma, R. (2003). Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. *Biology and Fertility of Soils*, 37(3), 184-189.

- Benito, M., Masaguer, A., Moliner, A., Arrigo, N., Palma, R. M.,and Effron, D. (2005). Evaluation of maturity and stability of pruning waste compost and their effect on carbon and nitrogen mineralization in soil. *Soil Science*, 170(5), 360-370.Bertoldi, M. d., Vallini, G.,and Pera, A. (1983). The Biology of Composting: a Review. *Waste Management & Research*, 1, 157-176.
- Bernal, M. P., Alburquerque, J. A.,and Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. *Bioresource Technology*, 100(22), 5444-5453.
- Bernal, M. P., Paredes, C., Sánchez-Monedero, M. A.,and Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. *Bioresource Technology*, 63(1), 91-99.
- Bertoldi, M. d., Vallini, G., and Pera, A. (1983). The Biology of Composting: a Review. Waste Management & Research, 1(2), 157-176.
- Bertoldi, M. d., Vallini, G., Pera, A., and Zucconi, F. (1982). Comparison of three windrow compost systems. *Biocycle*, 23(2), 45-50.
- Boulter-Bitzer, J. I., Trevors, J. T., and Boland, G. J. (2006). A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. *Applied Soil Ecology*, *34*(1), 65-81.
- Boulter, J. I., Boland, G. J.,and Trevors, J. T. (2000). Compost: a study of the development process and end-product potential for suppression of turfgrass disease. *World J Microb Biot*, 16, 115-134.
- Bruggenwert, M. G. M. (2001). EM research in the Netherlands. Paper presented at the In Proceedings of the 6th International Conference on Kyusei Nature Farming, South Africa.
- Carlos, H., Jane, Y., Shuichi, O., Masaki, S., and Panfilo, T. (2002). Program for the integrated management of solid wastes at EARTH University: a small community's self-management experience in the Humid Tropical Region.
 Paper presented at the 7th International Conference on Kyusei Nature Farming Chrischurch, New Zealand.
- Cassendra Bong, P. C. (2014). Effective microorganism on organic matter degradation, carbon mineralisation and nitrogen mineralisation duing composting of empty fruit bunches. (MSc Degree of Bioprocess and Chemical Engineering), University Technology Malaysia, Skudai, Johor, Malaysia.

- Castaldi, P., Garau, G., and Melis, P. (2008). Maturity assessment of compost from municipal solid waste through the study of enzyme activities and watersoluble fractions. *Waste Management*, 28(3), 534-540.
- Chagas, P. R. R., Tokeshi, H.,and Alves, M. C. (2001). Effect of calcium on yield of papaya fruits on conventional and organic (Bokashi EM) systems. Paper presented at the In Proceedings of the 6th International Conference on Kyusei Nature Farming, South Africa.
- Chakraborty, N.,and Tripathy, B. C. (1992). Involvement of Singlet Oxygen in 5-Aminolevulinic Acid-Induced Photodynamic Damage of Cucumber (Cucumis sativus L.) Chloroplasts. *Plant Physiology*, 98(1), 7-11.
- Chami, Z., Cavoski, I., Mondelli, D.,and Miano, T. (2013). Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil. *Environmental Science and Pollution Research*, 1-11.
- Chang, Y. (1967). The fungi of wheat straw compost: II Biochemical and physiological studies. *Transactions of the British Mycological Society*, 50(4), 667-677.
- Chang, Y.,and Hudson, H. J. (1967). The fungi of wheat straw compost: I Ecological studies. *Transactions of the British Mycological Society*, 50(4), 649-666.
- Chaudhuri, P. S., Pal, T. K., Bhattacharjee, G.,and Dey, S. K. (2000). Chemical changes during vermicomposting (*Perionyx excavatus*) of kitchen wastes. *Tropical Ecology*, 41(1), 107-110.
- Chon, S. U. (2006). Phototoxic effect of 5-aminolevulinic acid, a biodegradable photodynamic biomaterial, on rice and barnyardgrass. *Korean Journal of Environmental Agriculture*, 25(3), 286-275.
- Chon, S. U. (2007). Herbicidal and insecticidal potentials of 5-aminolevulinic acid, a biodegradable substance. *The Korean Journal of Pesticide Science*, 11(1), 52-58.
- Choorit, W., Saikeur, A., Chodok, P., Prasertsan, P.,and Kantachote, D. (2011). Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. *Journal of Bioscience and Bioengineering*, 111(6), 658-664.

- Chung, S.-Y., Seo, K.-H.,and Rhee, J. I. (2005). Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. *Process Biochemistry*, 40(1), 385-394.
- Civeira, G. (2010). Influence of Municipal Solid Waste Compost on Soil Properties and Plant Reestablishment in Peri-Urban Environments. *Chilean Journal of Agricultural Research*, 70(3), 446-453.
- Coelho, L., Reis, M.,and Dionísio, L. (2013). Variation in microbial population during composting of agro-industrial waste. *Applied Microbiology and Biotechnology*, 97(9), 4179-4186.
- Daly, M. J.,and Stewart, D. P. C. (1999). Influence of "effective microorganisms" (EM) on vegetable production and carbon mineralization - A preliminary investigation. *Journal of Sustainable Agriculture, 14*(2-3), 15-25.
- Davis, C. L., Hinch, S. A., Donkin, C. J., and Germishuizen, P. J. (1992). Changes in Microbial-Population Numbers during the Composting of Pine Bark. *Bioresource Technology*, 39(1), 85-92.
- Duong, T. T., Penfold, C.,and Marschner, P. (2012). Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. *Plant and Soil, 354*(1-2), 197-209.
- Elango, F., Tabora, P., and Vega, J. M. (1997). Control of Black Sigatoka Disease (Mycosphaerella fijiensis) using Effective Microorganisms. Paper presented at the 5th International Conference on Kyusei Nature Farming Bangkok, Thailand.
- Epstein, E. (1997). *The science of composting*. United State of America: Technomic Publishing Company, Inc.
- Finstein, M. S., Cirello, J., MacGregor, S. T.,and Miller, F. C. (1980). Discussion of Haug, R. T. "Engineering principles of sludge composting". *Journal of the Water Pollution Control Federation*, 52, 2037-2042.
- Finstein, M. S., and Morris, M. L. (1975). Microbiology of municipal solid waste composting. Adv Appl Microbiol, 19, 113-151.
- Forster, J., Zech, W.,and Würdinger, E. (1993). Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. *Biology and Fertility of Soils, 16*(2), 93-99.

- Fukuda, H., Casas, A.,and Batlle, A. (2005). Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. *The International Journal of Biochemistry & Cell Biology*, 37(2), 272-276.
- Gao, M., Liang, F., Yu, A., Li, B.,and Yang, L. (2010). Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. *Chemosphere*, 78(5), 614-619.
- Garcia-Garcia, E., Pun, J., Hodgkinson, J., Perez-Estrada, L. A., El-Din, M. G., Smith, D. W., Martin, J. W.,and Belosevic, M. (2011). Commercial naphthenic acids and the organic fraction of oil sands process water induce different effects on pro-inflammatory gene expression and macrophage phagocytosis in mice. *J Appl Toxicol*.
- Gaur, A. C. (1997). Bulky organic manures and crop residues.
- Gaur, A. C.,and Singh, G. (1995). Recycling of rural and urban wastes through conventional and vermicomposting. *Recycling of Crop, Animal, Human and Industrial Wastes in Agriculture, FDCO*, New Delhi, India, 31-35.
- Gilles, H., Jaenchen, R., and Thauer, R. (1983). Biosynthesis of 5-aminolevulinic acid in Methanobacterium thermoautotrophicum. Archives of Microbiology, 135(3), 237-240.
- Godden, B., and Penninckx, M. J. (1984). Identification and evolution of the cellulolytic microflora present during composting of cattle manure: on the role of Actinomycetes sp. *Ann Microbiol (Paris)*, *135B*(1), 69-78.
- Goh, C. S., Tan, K. T., Lee, K. T.,and Bhatia, S. (2010). Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 101(13), 4834-4841.Golueke, C. G. (1982). When is compost "Safe"? *Biocycle*, 23(2), 28-38.
- Golueke, C. G. (1991). Principles of composting. The Staff of Biocycle Journal of Waste Recycling, The Art and Science of Composting, The JG Press, Pennsylvania, 14-27.
- Gómez-Brandón, M., Lazcano, C.,and Domínguez, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. *Chemosphere*, 70(3), 436-444.
- Goodfellow, M., and Williams, S. T. (1983). Ecology of Actinomycetes. Annual Review of Microbiology, 37(1), 189-216.

- Goyal, S., Dhull, S. K., and Kapoor, K. K. (2005). Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. *Bioresour Technol*, 96(14), 1584-1591.
- Hader, U. (2001). Influence of EM on the quality of grass/hay for milk production.Paper presented at the In Proceedings of the 6th International Conference on Kyusei Nature Farming, South Africa.
- Hameeda, B., Rupela, O. P., Reddy, G.,and Satyavani, K. (2006). Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). *Biology and Fertility of Soils*, 43(2), 221-227.
- Hanekon, D., Prinsloo, J. F.,and Schoonbee, H. J. (2001). A comparison of the effect of anolyte and EM on the faecal bacterial loads in the water and on fish produced in pig cum fish integrated production units. Paper presented at the 6th International Conference on Kyusei Nature Farming, South Africa.
- Hara, M., Takahashi, I., Yamori, M., Tanaka, T., Funada, S.,and Watanabe, K. (2011). Effects of 5-aminolevulinic acid on growth and amylase activity in the radish taproot. *Plant Growth Regulation*, 64(3), 287-291.
- Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., and Boudabous, A. (2001).
 Microbial characterization during composting of municipal solid waste.
 Bioresour Technol, 80(3), 217-225.
- Haug, R. T. (1979). Engineering principles of sludge composting. Journal of the Water Pollution Control Federation, 51, 2189-2195.
- Haug, R. T. (1993). The Practical Handbook of Compost Engineering. Lewis Pub., Boca Raton, Florida, USA.
- He, Y., Xie, K., Xu, P., Huang, X., Gu, W., Zhang, F.,and Tang, S. (2013). Evolution of microbial community diversity and enzymatic activity during composting. *Res Microbiol*, 164(2), 189-198.
- Higa, T. (1991). Effective Microorganisms: A Biotechnology for mankind. Paper presented at the Proceedings of the first international conference on Kyusei Nature Farming, U.S. Department of Agriculture, Washington, D. C., USA.
- Higa, T.,and Parr, J. F. (1994). *Beneficial and effective microorganisms for a sustainable agriculture*. Atami, Japan: International Nature Farming Research Center.

- Higa, T.,and Wididana, G. N. (1991). changes in the soil microflora induced by effective microorganisms. Paper presented at the Proceedings of the first international conference on Kyusei Nature Farming, U.S. Department of Agriculture, Washington, D.C., USA.
- Hoshino, Y., Satou, N., and Higa, T. (2002). *Remediation and preservation of natural* ecosystems through application of effective microorganisms (EM).
- Hotta, Y., Tanaka, T., Takaoka, H., Takeuchi, Y.,and Konnai, M. (1997). Promotive effects of 5-aminolevulinic acid on the yield of several crops. *Plant Growth Regulation*, 22(2), 109-114.
- Huang, X., Shi, D., Sun, F., Lu, H., Liu, J., and Wu, W. (2012). Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber. *Environmental Science and Pollution Research*, 19(9), 3895-3905.
- Hultman, J., Vasara, T., Partanen, P., Kurola, J., Kontro, M. H., Paulin, L., Auvinen, P.,and Romantschuk, M. (2010). Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. *J Appl Microbiol*, 108(2), 472-487.
- Ishii, K., Fukui, M.,and Takii, S. (2000). Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol, 89(5), 768-777.
- Jayasinghe, G. Y. (2012). Sugarcane bagasses sewage sludge compost as a plant growth substrate and an option for waste management. *Clean Technologies and Environmental Policy*, 14(4), 625-632.
- Kala, D. R., Rosenani, A. B., Fauziah, C. I.,and Thohirah, L. A. (2009). Composting oil palm wastes and sewage sludge for use in potting media of ornamental plants. Malaysian Journal of Soil Science, 13, 77-91.
- Kananam, W., Suksaroj, T. T.,and Suksaroj, C. (2011). Biochemical changes during oil palm (Elaeis guineensis) empty fruit bunches composting with decanter sludge and chicken manure. ScienceAsia, 37, 17-23.
- Kelty, C. J., Brown, N. J., Reed, M. W. R.,and Ackroyd, R. (2002). The use of 5aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. *Photochemical & Photobiological Sciences*, 1(3), 158-168.
- Kengo, Y.,and Xu, H. L. (2001). Properties and Applications of an Organic Fertilizer Inoculated with Effective Microorganisms. *Journal of Crop Production*, 3(1), 255-268.

- Kennedy, J. C., Pottier, R. H.,and Pross, D. C. (1990). Photodynamic therapy with endogenous protoporphyrin: IX: Basic principles and present clinical experience. *Journal of Photochemistry and Photobiology B: Biology*, 6(1–2), 143-148.
- Khalil, A. I., Beheary, M. S.,and Salem, E. M. (2001). Monitoring of microbial populations and their cellulolytic activities during the composting of municipal solid wastes. World Journal of Microbiology and Biotechnology, 17(2), 155-161.
- Korkmaz, A.,and Korkmaz, Y. (2009). Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. *Scientia Horticulturae*, 119(2), 98-102.
- Labrie, C., Leclerc, P., Côté, N., Roy, S., Brzezinski, R., Hogue, R., and Beaulieu, C. (2001). Effect of chitin waste-based composts produced by two-phase composting on two oomycete plant pathogens. *Plant and Soil, 235*(1), 27-34.
- Lacey, J. (1973). Actinomycetes in soils, composts and fodders. Paper presented at the Actinomycetales: characteristics and practical importance, Academia, NewYork.
- Lee, D.-H., Jun, W.-J., Kim, K.-M., Shin, D.-H., Cho, H.-Y., and Hong, B.-S. (2003). Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using d-glucose. *Enzyme and Microbial Technology*, 32(1), 27-34.
- Lee, K.-H., Koh, R.-H., and Song, H.-G. (2008). Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions. *The Journal* of Microbiology, 46(6), 641-646.
- Lei, F.,and Gheynst, J. S. V. (2000). The effect of microbial inoculation and pH on microbial community structure changes during composting. *Proc. Biochem*, 35, 923-929.
- Liu, D. Y., Zhang, R. F., Wu, H. S., Xu, D. B., Tang, Z., Yu, G. H., Xu, Z. H., and Shen, Q. R. (2011). Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. *Bioresource Technology*, 102(19), 9040-9049.
- Liu, J., Xu, X.-h., Li, H.-t., and Xu, Y. (2011). Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. *Biomass and Bioenergy*, 35(8), 3433-3439.

- Liu, S., Zhang, G., Li, X.,and Zhang, J. (2014). Microbial production and applications of 5-aminolevulinic acid. *Applied Microbiology and Biotechnology*, 98(17), 7349-7357.
- Madigan, M. T., Martinko, J. M., Dunlap, P. V.,and Clark, D. P. (2009). Brock Biology of Microorganisms *Bacteria: Gram-Positive and Other Bacteria* (12 ed., pp. 445-486). San Francisco: Benjamin Cummings.
- Margarita, C., and Dengel, L. (2002). Experiences with Effective Microorganisms in disease and pest control in farms and gardens in India. Paper presented at the 7th International Conference on Kyusei Nature Farming, Christchurch, New Zealand.
- Marosz, A. (2012). Effect of Green Waste Compost and Mycorrhizal Fungi on Calcium, Potassium, and Sodium Uptake of Woody Plants Grown Under Salt Stress. *Water, Air, & Soil Pollution, 223*(2), 787-800.
- Mathur, S. P., Owen, G., Dinel, H.,and Schnitzer, M. (1993). Determination of compost biomaturity. *Biol*. *Agric. Hortic.*, 10, 65-85.
- Medina, A., Vassileva, M., Caravaca, F., Roldan, A.,and Azcon, R. (2004). Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarowia lipolytica. *Chemosphere*, 56, 449-456.
- Mehta, C. M., Gupta, V., Singh, S., Srivastava, R., Sen, E., Romantschuk, M., and Sharma, A. K. (2012). Role of Microbiologically Rich Compost in Reducing Biotic and Abiotic Stresses. In T. Satyanarayana & B. N. Johri (Eds.), *Microorganisms in Environmental Management* (pp. 113-134): Springer Netherlands.
- Memon, S. A., Hou, X., Wang, L.,and Li, Y. (2009). Promotive effect of 5aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiologiae Plantarum, 31(1), 51-57.
- Memon, S. A., Wang, L.-J., and Hou, X.-L. (2013). Effect of 5-Aminolevulinic Acid (ALA) on Antioxidative Enzymes, Chlorophyll Content and Photosynthesis of Pakchoi (*Brassica campestris* ssp. *Chinensis*) under Salt Stress. *Middle-East Journal of Scientific Research*, 18(7), 899-906.

- Meunchang, S., Panichsakpatana, S.,and Weaver, R. W. (2006). Tomato Growth in Soil Amended with Sugar Mill By-Products Compost. *Plant and Soil*, 280(1-2), 171-176.
- Michael, D., and Kathleen, S. (2001). Biological, Chemical, and Physical Processes of Composting *Compost Utilization In Horticultural Cropping Systems*: CRC Press.
- Miller, F., Macauley, B., and Harper, E. (1991). Investigation of various gases, pH and redox potential in mushroom composting Phase I stacks. *Australian Journal of Experimental Agriculture*, 31(3), 415-423.
- Mohamed Amanullah, M. (2007). Nutrient release pattern during composting poultry manure. *Research Journal of Agriculture and Biological Sciences*, 3(4), 306-308.
- Monica, S., Karthik, L., Mythili, S.,and Sathiavelu, A. (2011). Formulation of Effective Microbial Consortia and its Application for Sewage Treatment. J Microbial Biochem Technol, 3(3), 51-55.
- Malaysia Palm Oil Board (MPOB). (2014). The Oil Palm Tree. Retrieved 26 August 2014, from http://www.mpoc.org.my/The Oil Palm Tree.aspx
- Naeem, M. S., Jin, Z. L., Wan, G. L., Liu, D., Liu, H. B., Yoneyama, K., and Zhou, W. J. (2010). 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). *Plant and Soil*, 332(1-2), 405-415.
- Nishihara, E., Kondo, K., Parvez, M. M., Takahashi, K., Watanabe, K., and Tanaka, K. (2003). Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). *Journal of Plant Physiology*, 160(9), 1085-1091.
- Noparatnaraporn, N., Watanabe, M.,and Sasaki, K. (2000). Extracellular formation of 5-aminolevulinic acid by intact cells of the marine photosynthetic bacterium Rhodovulum sp. under various pH conditions. World Journal of Microbiology and Biotechnology, 16(3), 313-316.
- Okuda, A.,and Higa, T. (1999). Purification of wastewater with Effective Microorganisms and is utilization in agriculture. Paper presented at the In Proceedings of the 5th International Conference on Kyusei Nature Farming, Bangkok, Thailand.

- Olivo, M.,and Wilson, B. C. (2004). Mapping ALA-induced PPIX fluorescence in normal brain and brain tumour using confocal fluorescence microscopy. *International Journal of Oncology*, 25(1), 37-45.
- Özer, N.,and Köycü, N. (2006). The Ability of Plant Compost Leachates to Control Black Mold (Aspergillus niger) and to Induce the Accumulation of Antifungal Compounds in Onion Following Seed Treatment. *BioControl*, 51(2), 229-243.
- Padmavathiamma, P. K., Li, L. Y.,and Kumari, U. R. (2008). An experimental study of vermi-biowaste composting for agricultural soil improvement. *Bioresource Technology*, 99(6), 1672-1681.
- Perner, H., Schwarz, D., Bruns, C., M\u00e4der, P.,and George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. *Mycorrhiza*, 17(5), 469-474.
- Pham, T. H.,and Nguyen, T. K. L. (2010). The impact of effective microorganism (EM) spray on the growth, productivity and quality of papaya. J. Sci. Dev., 8(Eng.Iss.2), 216 - 222
- Rashad, F. M., Saleh, W. D.,and Moselhy, M. A. (2010). Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: 1. Composting, quality, stability and maturity indices. *Bioresource Technology*, 101(15), 5952-5960.
- Rault, A., Bouix, M.,and Béal, C. (2009). Fermentation pH Influences the Physiological-State Dynamics of Lactobacillus bulgaricus CFL1 during pH-Controlled Culture. *Applied and Environmental Microbiology*, 75(13), 4374-4381.
- Rebeiz, C. A., Juvik, J. A.,and Rebeiz, C. C. (1988). Porphyric insecticides: 1. Concept and phenomenology. *Pesticide Biochemistry and Physiology*, 30(1), 11-27.
- Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J.,and Wu, S. M. (1984). Photodynamic herbicides: 1. Concept and phenomenology. *Enzyme and Microbial Technology*, 6(9), 390-396.
- Rebellido, R., Martinez, J., Aguilera, Y., Melchor, K., Koerner, I.,and Stegmann, R.(2008). Microbail populations during composting process of organic fraction

of municipal solid waste. *Applied Ecology and Environmental Research*, 6(3), 61-67.

- Regula, J., MacRobert, A. J., Gorchein, A., Buonaccorsi, G. A., Thorpe, S. M., Spencer, G. M., Hatfield, A. R.,and Bown, S. G. (1995). Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX--a pilot study. *Gut*, 36(1), 67-75.
- Rizwan, A., Ghulam, J., Muhammad, A., Zahir, A. Z.,and K.Azeem. (2007). Bioconversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. *Annals of Microbiology*, 57(4), 471-479.
- Ros, M., García, C.,and Hernández, T. (2006). A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. *Waste Management*, 26(10), 1108-1118.
- Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K.,and Swings, J. (2003). Microbiological aspects of biowaste during composting in a monitored compost bin. *J Appl Microbiol*, 94(1), 127-137.
- Sadhu, S.,and Maiti, T. K. (2013). Cellulase production by bacteria: a review. *British Microbiology Research Journal*, 3(3), 235-258.
- Sangakkara, U. R.,and Higa, T. (2000). Kyusei Nature Farming and EM for enhanced smallholder production in organic systems. Paper presented at the In Proceedings of the 13th International Scientific Conference of IFOAM, FiBL, Basel, Switzerland.
- Sangsoo, S., Byungjin, A., Kyuho, M.,and Kwanghyun, K. (2002). Swine waste management through Kyusei Nature Farming and EM. Paper presented at the 7th International Conference on Kyusei Nature Farming.
- Sasaki, H., Kitazume, O., Nonaka, J., Hikosaka, K., Otawa, K., Itoh, K., and Nakai, Y. (2006). Effect of a commercial microbiological additive on beef manure compost in the composting process. *Anim. Sci. J.*, 77, 545–548.
- Sasaki, K., Tanaka, T.,and Nagai, S. (1998). Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. In A. M. Martin (Ed.), *Bioconversion of Waste Materials to Industrial Products* (pp. 247-292): Springer US.

- Sasaki, K., Tanaka, T., Nishio, N.,and Nagai, S. (1993). Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. *Biotechnology Letters*, 15(8), 859-864.
- Sasaki, K., Watanabe, M., Tanaka, T., and Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. *Applied Microbiology and Biotechnology*, 58(1), 23-29.
- Sattayasamitsathit, S.,and Prasertsan, P. (2014). Improvement of 5-aminolevulinic acid production by Rubrivivax benzoatilyticus PS-5 with self-flocculation by co-fermentation of precursors and volatile fatty acids under pH-controlled conditions. *Annals of Microbiology*, *64*(1), 385-389.
- Senesi, N. (1989). Composted materials as organic fertilizers. *The Science of the Total Environment,* 81/82, 521-542.
- Shalaby, E. A. (2011). Prospects of effective microorganisms technology in wastes treatment in Egypt. Asian Pacific Journal of Tropical Biomedicine, 6, 243-248.
- Sherry Hsiao-Lei, W., Lohr, V., and Coffey, D. (1984). Growth response of selected vegetable crops to spent mushroom compost application in a controlled environment. *Plant and Soil*, 82(1), 31-40.
- Shilev, S., Naydenov, M., Vancheva, V.,and Aladjadjiyan, A. (2007). Composting of Food and Agricultural Wastes. In V. Oreopoulou & W. Russ (Eds.), *Utilization of By-Products and Treatment of Waste in the Food Industry* (Vol. 3, pp. 283-301): Springer US.
- Song, H.-G., and Koh, R.-H. (2007). Effects of application of *Rhodopseudomonas* sp. on seed germination and growth of tomato under axenic conditions. *Journal* of Microbiology and Biotechnology, 17(11), 1805-1810.
- Song, U.,and Lee, E. (2010). Ecophysiological Responses of Plants After Sewage Sludge Compost Applications. *Journal of Plant Biology*, *53*(4), 259-267.
- Sonhom, R., Thepsithar, C.,and Jongsareejit, B. (2012). High level production of 5aminolevulinic acid by Propionibacterium acidipropionici grown in a lowcost medium. *Biotechnology Letters*, 34(9), 1667-1672.
- Sonia, M. T., Hafedh, B., Abdennaceur, H.,and Ali, G. (2011a). Studies on the ecology of actinomycetes in an agricultural soil amended with organic residues: II. Assessment of enzymatic activities of Actinomycetales isolates. *World Journal of Microbiology & Biotechnology*, 27(10), 2251-2259.

- Sonia, M. T., Naceur, J.,and Abdennaceur, H. (2011b). Studies on the ecology of actinomycetes in an agricultural soil amended with organic residues: I. identification of the dominant groups of Actinomycetales. *World Journal of Microbiology & Biotechnology*, 27(10), 2239-2249.
- Steger, K., Jarvis, A., Vasara, T., Romantschuk, M.,and Sundh, I. (2007). Effects of differing temperature management on development of Actinobacteria populations during composting. *Research in Microbiology*, 158(7), 617-624.
- Stratton, M. L., Barker, A. V., and Rechcigl, J. E. (1995). Compost. Soil Amendments and Environmental Quality, CRC Press, Boca Raton, Florida, 249-309.
- Strom, P. F. (1985a). Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. *Appl Environ Microbiol*, 50(4), 899-905.
- Strom, P. F. (1985b). Identification of thermophilic bacteria in solid-waste composting. *Appl Environ Microbiol*, 50(4), 906-913.
- Taherzadeh, M. J.,and Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. *BioResources*, 2(3), 472-499.
- Thambirajah, J. J., Zulkali, M. D.,and Hashim, M. A. (1995). Microbiological and biochemical changes during composting of oil palm empty-fruit-bunches. Effect of nitrogen supplementation on the substrate. Bioresource Technology, 52, 133-144. Tiquia, S. M. (2005). Microbiological parameters as indicators of compost maturity. *Journal of Applied Microbiology*, *99*(4), 816-828.
- Tomati, U., Galli, E., Pasetti, L.,and Volterra, E. (1995). Bioremediation of olivemill wastewaters by composting. Waste Management & Research, 13(6), 509-518.
- Toneva, V., Gechev, T.,and Minkov, I. (2001). Induction of Porphyrin Biosynthesis by 5-Aminolevulinic Acid, Glutamic Acid, and 1,10-Phenanthroline and Their Possible Photodynamic Action in Wheat and Mustard Plants. *Photosynthetica*, 39(4), 597-601.
- Traversa, A., Loffredo, E., Palazzo, A. J., Bashore, T. L.,and Senesi, N. (2013).
 Enhancement of Germination and Early Growth of Different Populations of Switchgrass (Panicum virgatum L.) by Compost Humic Acids. In J. Xu, J.
 Wu & Y. He (Eds.), *Functions of Natural Organic Matter in Changing Environment* (pp. 1051-1054): Springer Netherlands.

- Tripathy, B. C.,and Chakraborty, N. (1991). 5-Aminolevulinic Acid Induced Photodynamic Damage of the Photosynthetic Electron Transport Chain of Cucumber (Cucumis sativus L.) Cotyledons. *Plant Physiology*, 96(3), 761-767.
- Tuomela, M., Vikman, M., Hatakka, A.,and Itavaara, M. (2000). Biodegradation of lignin in a compost environment: a review. *Bioresource Technology*, 72(2), 169-183.
- Umikalsom, M. S., Ariff, A. B., Zulkifli, H. S., Tong, C. C., Hassan, M. A., and Karim, M. I. A. (1997). The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. *Bioresource Technology*, 62(1–2), 1-9.
- Vargas-Garcia, M. C., Suarez-Estrella, F., Lopez, M. J.,and Moreno, J. (2010). Microbial population dynamics and enzyme activities in composting processes with different starting materials. *Waste Manag*, 30(5), 771-778.
- Wang, L. J., Jiang, W. B.,and Huang, B. J. (2004). Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. *Physiologia Plantarum*, 121(2), 258-264.
- Wang, L. J., Jiang, W. B., Liu, H., Liu, W. Q., Kang, L.,and Hou, X. L. (2005). Promotion by 5-Aminolevulinic Acid of Germination of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) Seeds Under Salt Stress. *Journal of Integrative Plant Biology*, 47(9), 1084-1091.
- Wang, X., Li, Q., Ding, J., Luo, M., Zhang, T.,and Zhou, Y. (2007). An Improved Method for the Extraction of Low Molecular Weight Organic Acids in Variable Charge Soils. *Analytical Sciences*, 23(5), 539-543.
- Watanabe, K., Nishihara, E., Watanabe, S., Tanaka, T., Takahashi, K., and Takeuchi, Y. (2006). Enhancement of Growth and Fruit Maturity in 2-year-old Grapevines cv. Delaware by 5-Aminolevulinic Acid. *Plant Growth Regulation, 49*(1), 35-42.
- Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H.,and Takeuchi, Y. (2000). Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. *Plant Growth Regulation*, 32(1), 97-101.
- Wei, Z. Y., Zhang, Z. P., Lee, M. R., Sun, Y. P.,and Wang, L. J. (2011). Effect of 5aminolevulinic acid on leaf senescence and nitrogen metabolism of pakchoi under different nitrate levels. *Journal of Plant Nutrition*, 35(1), 49-63.

- Willson, G. B. (1989). Combining raw materials for composting. *Biocycle*, August: 82-85.
- Wong, J. C.,and Selvam, A. (2009). Growth and Elemental Accumulation of Plants Grown in Acidic Soil Amended With Coal Fly Ash–Sewage Sludge Cocompost. Archives of Environmental Contamination and Toxicology, 57(3), 515-523.
- Xiao, M., and Wu, F. (2014). A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem. *Journal of Environmental Sciences*, 26(5), 935-954.
- Xu, D., Liu, D., Tang, Z., Yu, G., Yuan, J., Shen, Q., and Huang, Q. (2012). Structure of chemical components in different compost extracts characterized by chromatogram and spectroscopy analysis and its influence on plant growth promotion. *Journal of Material Cycles and Waste Management*, 14(4), 325-333.
- Yan, P. S.,and Xu, H. L. (2002). Influence of EM bokashi on nodulation, physiological characters and yield of peanut in nature farming fields. *Journal* of Sustainable Agriculture, 19(4), 105-112.
- Yang, J., Zhu, L., Fu, W., Lin, Y., Lin, J.,and Cen, P. (2013). Improved 5-Aminolevulinic Acid Production with Recombinant Escherichia coli by a Short-term Dissolved Oxygen Shock in Fed-batch Fermentation. *Chinese* Journal of Chemical Engineering, 21(11), 1291-1295.
- Yang, M.-I., Yin, K., Guo, Y.-p., Ma, E.-b.,and Zhang, J.-z. (2011). A Photosensitivity Insecticide, 5-Aminolevulinic Acid, Exerts EffectiveToxicity to Oxya chinensis (Orthoptera: Acridoidea). Agricultural Sciences in China, 10(7), 1056-1063.
- Zhang, C. P., Li, Y. C., Yuan, F. G., Hu, S. J., Liu, H. Y., and He, P. (2013). Role of 5-aminolevulinic acid in the salinity stress response of the seeds and seedlings of the medicinal plant Cassia obtusifolia L. *Botanical Studies*, 54(1), 1-13.
- Zhang, J., Li, D. M., Gao, Y., Yu, B., Xia, C. X.,and Bai, J. G. (2012). Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. *Biologia Plantarum*, 56(4), 780-784.
- Zhang, W. F., Zhang, F., Raziuddin, R., Gong, H. J., Yang, Z. M., Lu, L., Ye, Q. F.,and Zhou, W. J. (2008). Effects of 5-Aminolevulinic Acid on Oilseed Rape

Seedling Growth under Herbicide Toxicity Stress. Journal of Plant Growth Regulation, 27(2), 159-169.

- Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y.,and Yoneyama, K. (2006). Effect of 5-Aminolevulinic Acid on Development and Salt Tolerance of Potato (Solanum tuberosum L.) Microtubers in vitro. *Plant Growth Regulation*, 49(1), 27-34.
- Zia, M. S., Khalil, S., Aslam, M., and Hussain, F. (2003). Preparation of compost and its use for crop-production. *Sci. Tech. Develop.*, *22*, 32-44.
- Zimmermann, I.,and Kamukuenjandje, R. (2008). Overview of a variety of trials on agricultural applications of effective microorganisms (EM). *Agricola*, 17-26.
- Zucconi, F., Pera, A., Forte, M., and Bertoldi, M. d. (1981). Evaluating toxocity of immature compost. *Biocycle*, 22(2), 54-27.

Appendix A

Grinding machine

Figure A1 Grinding machine.

Appendix B

Commercial EM·1TM microbial inoculants and molasses and the EM solutions before and after activation

Figure A2 Commercial EM·1TM microbial inoculants and molasses.

Figure A3 EM solutions before and after activation. Fully activated EM gave a lighter color and gas production can be observed along the one week activation process due to the microbial respiration.

Appendix C

pH meter used for the pH determination

Figure A4 pH meter used for the pH determination.

Appendix **D**

Spectroquant® test kits and Spectroquant® NOVA 60 analyzer used for macroand micro-nutrients analysis

Figure A5 (a) Spectroquant® test kits and (b) Spectroquant® NOVA 60 analyzer used for macro- and micro-nutrients analysis. From left to right are the test kits for (first row) Potassium, Magnesium and Phosphorus; (second row) Calcium, Iron and Boron; (third row) Copper, ammonium, nitrate and nitrite.

Detailed macro-nutrient cell test

• Potassium (K) Cell Test

For K cell test, 2.0mL of the pretreated sample with the pH range of 3.0 - 12.0 was pipetted into the reaction cell ($20 - 30^{\circ}$ C). The cell was then closed and mixed thoroughly. After that, the pH of the sample was adjusted to a range of 10.0 - 11.5. Following that was the addition of 6 drops of Reagent K-1K. After mixing, a microspoon of Reagent K-2K was added into the cell and mixed thoroughly. The cell was left for an exactly 5 minutes of reaction time. Then, the sample was measured using a photometer and the amount of K was expressed as mg/L K (MERCK, Spectroquant® NOVA 60 analyzer).

• Magnesium (Mg) Cell Test

For Mg cell test, 1.0mL of pretreated sample $(20 - 30^{\circ}\text{C})$ with the pH range of 3.0 - 9.0 was pipetted into the reaction cell. The cell was then closed and mixed thoroughly. 1.0mL of reagent Mg-1K was added and the mixture was left for anexactly 3 minutes of reaction time. 3 drops of reagent Mg-2K was added and mixed well. The absorbent was measured in a photometer and expressed as mg/L Mg (MERCK, Spectroquant® NOVA 60 analyzer).

• Calcium (Ca) Cell Test

For Ca cell test, 1.0mL of pretreated sample $(20 - 30^{\circ}C)$ with the pH range of 3.0 - 9.0 was pipetted into the reaction cell. The cell was then closed and mixed thoroughly. 1.0 mL of Reagent Ca-1K was then added and mixed well. The mixture was left for an exactly 3 minutes of reaction time. After that, 0.5 mL of Reagent Ca-2K was added and mixed well. The concentration of Ca was measured using a photometer and expressed as mg/L Ca (MERCK, Spectroquant® NOVA 60 analyzer).

Detailed macro-nutrient cell test

• Phosphate (P) Cell Test

For P cell test, 1.0mL of pretreated sample was pipetted into the reaction cell. The cell was then closed and mixed thoroughly. One dose of Reagent P-1K was added and mixed well. The cell was then heated at 120° C for half an hour. The cell was cooled down and adjusted the pH to 0 - 10.0. 5 drops of Reagent P-2K was added and mixed well. One dose of Reagent P-3K was then added and mixed vigorously until the reagent was completely dissolved. The mixture was left for an exactly of 5 minutes reaction time. The concentration of P was measured using a photometer and expressed as mg/L P (MERCK, Spectroquant® NOVA 60 analyzer).

Detailed micro-nutrient cell test

• Iron (Fe) Cell Test

For Fe cell test, the total Fe(II) and Fe(III) were determined by adding 1.0mL of pretreated sample $(5 - 35^{\circ}C)$ with the pH range within 3.0 - 8.0 into the reaction cell and mixed thoroughly. One dose of Reagent Fe-1K was then added and mixed vigorously until the reagent was completely dissolved. The mixture was then left for an exactly 5 minutes of reaction time. The concentration of total Fe(II) and Fe(III) was measured using a photometer and expressed as mg/L Fe (MERCK, Spectroquant® NOVA 60 analyzer).

• Boron (B) Cell Test

For B cell test, 1.0 mL of Reagent B-1K was pipetted into the reaction cell and mixed well in 4.0mL of pretreated sample $(15 - 40^{\circ}C)$ with the pH range within 2.0 - 12.0. The mixture was left for an exactly 60 minutes of reaction time. The concentration of B was measured using a photometer and expressed as mg/L B (MERCK, Spectroquant® NOVA 60 analyzer).

• Copper (Cu) Cell Test

For Cu cell test, 5.0mL of pretreated sample $(10 - 30^{\circ}\text{C})$ with the pH range within 4.0 - 10.0 was pipetted into the reaction cell. The cell was then closed and mixed thoroughly. After that, the pH of the sample was adjusted to the pH of 7.0 - 9.5. Following that was the addition of 5 drops of Reagent Cu-1K. The cell was then mixed well and left for an exactly of 5 minutes reaction time. The concentration of Cu was measured using a photometer and expressed as mg/L Cu (MERCK, Spectroquant® NOVA 60 analyzer).

Detailed inorganic nitrogen cell test

• Ammonium (NH₄⁺) Cell Test

A 0.5mL of pre-treated sample ($20 - 30 \,^{\circ}$ C) with pH range within 4.0 - 13.0 was pipetted into the reaction cell and mixed thoroughly. One dose of Reagent NH₄-1K was then added and mixed vigorously until the reagent was completely dissolved. The mixture was then left for an exactly 15 minutes of reaction time. The concentration of NH₄⁺/N was measured using a photometer and expressed as mg/L NH₄⁺/N (MERCK, Spectroquant® NOVA 60 analyzer).

• Nitrate (NO₃⁻) Cell Test

A 0.5mL of pre-treated sample $(5 - 25 \,^{\circ}\text{C})$ with the pH range within 1.0 - 3.0 was pipetted into the reaction cell and mixed thoroughly. 1.0mL of Reagent NO₃-1K was then added and mixed vigorously until the reagent was completely dissolved (the cell becomes hot and must be held only by the screw cap during mixing). The mixture was then left for an exactly of 10 minutes reaction time. The concentration of NO₃⁻/N was measured using a photometer and expressed as mg/L NO₃⁻/N (MERCK, Spectroquant® NOVA 60 analyzer).

• Nitrite (NO₂⁻) Cell Test

Two level blue microspoons of Reagent NO₂-1K was placed into the reaction cell. A 8.0mL of pre-treated sample (15 - 25 °C) with the pH range within 1.0 - 12.0 was then pipetted into the cell and mixed vigorously until the reagent was completely dissolved. The mixture was then left for an exactly of 20 minutes reaction time. The concentration of NO₂⁻/N was measured using a photometer and expressed as mg/L NO₂⁻/N (MERCK, Spectroquant® NOVA 60 analyzer).

Appendix H

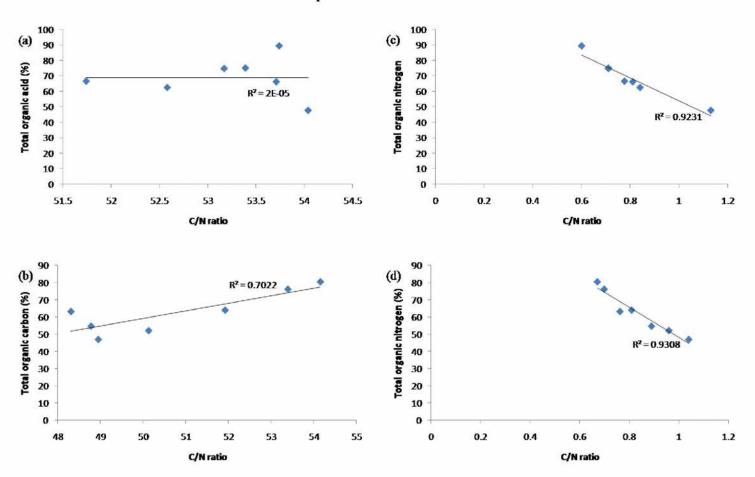
SPECTRONIC 200 UV-Vis spectrophotometer

Figure A6 SPECTRONIC 200 UV-Vis spectrophotometer.

Appendix I

Chemical composition of the agar plates used for the identification of each microorganism group

Table A1 Chemical composition of the agar plates used for the identification of each microorganism group.


Agar Plate	Chemical and Its Composition per Liter		Condition
Agar Plate Total Bacteria (Nutrient Agar) Actinomycetes (Actinomycete Isolation Agar)	 Agar Peptic digest of animal tissue Sodium chloride Beef extract Yeast extract Agar Glycerol Sodium propionate Sodium caseinate K₂HPO₄ Asparagine MgSO₄ · 7H₂O 	15.0g 5.0g 5.0g 1.5g 1.5g 15.0g 5.0g 4.0g 2.0g 0.5g 0.1g 0.1g	With final pH of 7.4 \pm 0.2 at 25°C With final pH of 8.1 \pm 0.2 at 25°C
Lactobacillus (Lactobacillus deMan-Rogosa- Sharpe Agar)	 FeSO₄ · 7H₂O Agar Glucose Beef extract Peptone Sodium acetate Yeast extract Ammonium citrate Na₂HPO₄ TweenTM 80 MgSO₄ · 7H₂O MnSO₄ · 5H₂O 	1.0mg 15.0g 20.0g 10.0g 10.0g 5.0g 5.0g 2.0g 2.0g 1.0g 0.1g 0.05g	With final pH of 6.5 ± 0.2 at 25°C
Yeast (Rose Bengal Chloramphenicol Agar)	 Agar Glucose Papaic digest of soybean meal KH₂PO₄ MgSO₄ · 7H₂O Rose Bengal Chloramphenicol solution 	15.0g 10.0g 5.0g 1.0g 0.5g 0.05g 10.0mL	With final pH of 7.0 ± 0.2 at 25°C

4 (a) 3.5 3 R² = 0.5294 2.5 TOC degradation (%) 2 1.5 1 0.5 0 5000 10000 25000 15000 20000 0 -0.5 -1 carbon dioxide emission (mg CO²-C kg⁻¹) 14 **(b)** R²=0.9224 12 10 TOC degradation (%) 8 6 4 2 ٠ 0 5000 10000 15000 20000 25000 -2 carbon dioxide emission (mg CO²-C kg⁻¹)

Correlationship between TOC degradation and carbon dioxide emission rate

Figure A6 Relationship between the TOC degradation and the carbon dioxide emission for (a) Ctl and (b) ETC.

Appendix K

Correlationship of TOC and TON to C/N ratio

Figure A7 The relationship between TOC and C/N ratio for (a) Ctl and (b) ETC and the relationship between TON and C/N ratio (c) Ctl and (d) ETC.