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ABSTRACT 

 

 

 

 

Magnesium (Mg) and its alloys have been intensively studied as 

biodegradable implant materials as they do not require secondary surgical procedure 

for removal compared to the traditional metallic implant materials such as stainless 

steels, titanium alloys and cobalt chromium alloys. Apart from that, their relatively 

similar mechanical properties to bone structure make them as the attractive 

candidates for orthopaedic applications. Nevertheless, Mg has relatively poor 

corrosion resistances, rapid degradation rate and hydrogen gas evolution. This 

phenomenon limited the usage of Mg in biomedical applications. Hence, the 

corrosion properties of Mg-Zn-RE-xCa alloy were investigated by adding different 

amount of calcium (Ca). The alloys were produced using casting process and 

followed by immersion in Kokubo solution for 168 hours at room temperature to 

investigate the corrosion properties. Apart from immersion test, polarization and pH 

variation tests were also conducted to study the corrosion behavior of the alloys. The 

microstructure and morphology of the as-cast alloys were observed using optical 

microscope (OM). Other characterizations such as X-ray diffraction (XRD), scanning 

electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were 

used to investigate the phase formation, microstructures and elemental compositions 

of the as-cast and corroded specimens. Mechanical property such as hardness was 

investigated using Vickers hardness tester. It was found that formation of secondary 

IM1 (Ca3MgxZn15-x) (4.6 ≤ x ≤ 12) and Mg2Ca phases were observed when the Ca 

added in the alloys. The results also showed that the addition of Ca refine the grain 

size thus provide higher hardness. The addition of 0.5 wt.% Ca content was found to 

produce the lowest dissolution rate and highest corrosion resistance. However, 

further addition of Ca up to 6 wt.% led to an increased in corrosion rate.  

 

 



v 

 

ABSTRAK 

 

 

 

 

Magnesium (Mg) dan aloinya telah dikaji secara intensif sebagai bahan 

implan biodegradasi kerana bahan tersebut tidak memerlukan prosedur pembedahan 

kedua untuk penyingkiran implan berbanding dengan bahan-bahan implan tradisional 

yang diperbuat daripada logam seperti keluli tahan karat, aloi titanium dan aloi 

kromium kobalt. Selain itu, sifat mekanikal yang agak serupa dengan struktur tulang 

menjadikan bahan implant aloi Mg sebagai calon yang menarik untuk aplikasi 

ortopedik. Walau bagaimanapun, Mg mempunyai rintangan kakisan yang rendah, 

kadar degradasi dan evolusi gas hydrogen yang tinggi. Fenomena ini menghadkan 

penggunaan Mg dalam aplikasi bioperubatan. Oleh itu, sifat kakisan aloi Mg -Zn -RE 

- xCa telah dikaji dengan penambahan unsur kalsium (Ca) yang berbeza. Proses 

tuangan digunakan untuk menghasilkan aloi dan seterusnya aloi-aloi tersebut 

direndam dalam larutan Kokubo selama 168 jam pada suhu bilik untuk mengkaji 

sifat kakisan. Selain daripada ujian rendaman, ujian pengutuban dan variasi nilai pH 

juga telah dijalankan untuk mengkaji kelakuan kakisan aloi. Mikrostruktur dan 

morfologi aloi telah diperhatikan dengan menggunakan mikroskop optic (OM). 

Pencirian lain seperti belauan sinar-X (XRD), mikroskopi electron imbasan (SEM) 

dan spektroskopi serakan tenaga (EDS) telah digunakan untuk mengkaji 

pembentukan fasa, mikrostruktur dan komposisi aloi dan spesimen yang terkakis. 

Selain itu, sifat mekanik seperti kekerasan telah dikaji menggunakan penguji 

kekerasan Vickers. Hasil kajian menunjukkan bahawa pembentukan fasa sekunder; 

IM1 (Ca3MgxZn15-x) (4.6 ≤ x ≤ 12) dan Mg2Ca dapat dilihat apabila Ca ditambahkan 

ke dalam aloi. Hasil kajian juga menunjukkan penambahan Ca mengecilkan saiz 

butiran dan dengan itu menambahkan kekerasan aloi. Penambahan 0.5 % berat Ca 

didapati memberikan kadar keterlarutan yang terendah dan rintangan kakisan yang 

tertinggi. Walau bagaimanapun, penambahan Ca sehingga 6 % berat meningkatkan 

kadar kakisan aloi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Biomaterial implants are used as a replacement of a bone part or as a support 

in the healing process. Replacement of a bone part requires implants to stay in the 

body permanently, while support only requires that the implant remain in the body 

for a shorter period. When permanent implant is used for a temporary application, 

additional surgeries are required to remove these devices after the healing process. 

Thus, removal process increases the patient grim and cost of health care. In contrast, 

biodegradable materials require no additional surgeries for removal as they dissolve 

after the healing process is complete. This also eliminates the complications 

associated with the long term presence of implants in the body. Finally, after these 

materials degrade within the body, it is important that the body can metabolized the 

degradation products, and thus are bio-absorbable (Li and Zheng, 2013). 

 

 

The first materials to be used as commercial biodegradable and bioabsorbable 

implant materials were polymers. The most commonly and earliest used absorbable 

materials include polyglycolic acid (PGA), poly L-lactic acid (PLA), and poly P-

dioxanon (PDS). However, applications of polymeric materials in load-bearing and 

tissue supporting applications is severely restricts due to low strength as the 

mechanical needs of the body required a greater amount of material (Brar et al., 

2009).  
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Metals due to their relatively high strength and fracture toughness possesses 

desirable mechanical properties, however, most of the metals are biologically toxic. 

Conventional implant, like cobalt, stainless, chromium, and nickel based alloys 

produce corrosion products, which are harmful to the human body (Brar et al., 2009). 

 

 

Pure magnesium (Mg) was indicated as suitable candidate for temporary 

implant, however, the major drawback of Mg is its low corrosion resistance which 

results to low mechanical strength in the physiological environment. Alloying 

elements can be added to increase the strength of pure Mg but alloying elements 

should be selected carefully to maintain the Mg biocompatibility (Brar et al., 2009).  

 

 

Magnesium and its alloys are biodegradable metals and exhibit improved 

mechanical properties and corrosion resistance. However most of the reported 

biomedical magnesium alloys contain aluminum and/or rare earth (RE) elements. Al 

is harmful to neurons, osteoblasts, and also associated with dementia and could lead 

to hepatotoxicity (Li and Zheng, 2013). Other alloying elements such as Zirconium 

(Zr) may lead to lung, liver and breast cancer (Song, 2007). With the purpose of 

searching for suitable alloying elements for biomedical magnesium alloys, 

researchers demonstrated that Calcium (Ca) and Zinc (Zn) could be appropriate 

candidates.  

 

 

Zinc is one of the essential elements in human body that also provide 

mechanical strengthening in Mg-based alloys. Zinc can improve mechanical 

properties of magnesium alloys through precipitation strengthening. Furthermore, 

zinc is one of the most abundant nutritionally essential elements in the human body, 

and has basic safety for biomedical application. Moreover, RE can strengthen the 

material by solid solution strengthening by forming complex intermetallic phases 

with Al or Mg. These intermetallic phases act as obstacles for the dislocation 

movement at elevated temperatures and cause precipitation strengthening (Li and 

Zheng, 2013). 

 

 

 

 



3 

 

Calcium is one of the main elements in the human bone and release of Mg 

and Ca may improve bone healing. Calcium contributes to solid solution 

strengthening and precipitation strengthening. It also acts to some extent as a grain 

refining agent and additionally contributes to grain boundary strengthening (Witte et 

al., 2008). The effect of Ca on corrosion resistance of Mg-Zn with addition of RE is 

very vague for biomedical applications. Thus, there is a need to investigate the effect 

of Ca addition on Mg-Zn-RE corrosion behavior. 

 

 

 

 

1.2 Problem Statement 

 

 

Stainless steels, Co-based alloys and titanium alloys are widely used in hard-

tissue implants, especially in load-bearing applications, owing to their high strength, 

ductility and good corrosion resistance. With regard to biomedical implants, such as 

plates, screws and pins, used to repair serious bone fracture, it is desirable to use 

materials that can degrade in the physiological environment so that a subsequent 

surgical procedure to remove the implants from the human body after the tissues 

have healed is not necessary. Repeated surgery increases morbidity and health costs. 

 

 

Magnesium and its alloys which are chemically active can degrade naturally 

in the physiological environment by corrosion and have high potential candidates in 

biodegradable hard-tissue implants. Alloying elements play important roles in 

magnesium alloys and the mechanical properties are usually the primary 

consideration when introducing alloying elements to the materials. Elements such as 

zinc (Zn), rare earth (RE) and calcium (Ca) are often added to Mg to improve on its 

corrosion behavior and at the same time provide adequate mechanical strength to be 

used as body implants. 
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1.3 Objective of the Research 

 

 

The objective of this research is to investigate the effect of calcium additions 

on the microstructure, degradation behavior and corrosion properties of Mg-Zn-RE-

xCa alloys in simulated body fluid (Kokubo solution). 

 

 

 

 

1.4 Scope of the Research 

 

 

The scopes of the research are: 

 

(i) Mg-2.2Zn-3.7RE-xCa (x = 0, 0.5, 1.5, 3 and 6) alloys were prepared 

by casting method. 

 

(ii) The specimens were subjected to microstructural analysis using 

optical microscopy (OM), X-ray diffraction (XRD), field emission 

scanning electron microscopy (FESEM), scanning electron 

microscopy and energy dispersive X-ray spectroscopy (EDS) and 

Fourier transformed infrared spectroscopy (FTIR) techniques. 

 

(iii) Mechanical property namely hardness was examined using Vickers 

hardness test. 

 

(iv) The corrosion resistance was examined in-vitro by potentiodynamic 

polarization test, pH variation and immersion test in simulated body 

fluid (Kokubo solution) at room temperature. 
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