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ABSTRAK 

 

 

 

 

Dalam tesis ini, persamaan momentum dan haba teori pemindahan untuk 

cecair “Power-Law” bukan Newtonian dalam silinder diselesaikan secara berangka. 

Model kondenser yang mudah digunakan untuk menganalisis kesan kelakuan cecair 

“Power-Law”  dalam keadaan operasi industri. Keputusan ke atas struktur terperinci 

aliran dan suhu dibentangkan menggunakan pelbagai parameter berikut:- “Power-

law” nombor (0.4 < n < 1.8), dan Reynolds nombor (1 ≤ Re ≤ 104). Pada nombor 

Reynolds yang rendah, cecair masih melekat pada permukaan silinder. Ini bermakna 

ciri pemindahan haba yang baik bagi nilai n kurang daripada 1 (iaitu Bendalir 

Newtonian). Bila bilangan Reynolds bertambah, fenomena pemindahan haba yang 

lebih tinggi masih diperhatikan tetapi tidak sebaik nombor Reynolds yang rendah. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

 

 

 

 

ABSTRACT 
 

  

 

 

 In this thesis, equations using momentum and heat transfer theory for Power-

Law, non-Newtonian fluids over circular cylinder are being solved numerically. A 

simple model of condenser is used to analyze the effect of the Power-law fluids 

behavior in industrial operating conditions. Results on the detail structure of the flow 

and temperature are presented using the following parameter range: - Power-law 

index (0.4 < n < 1.8), and generalized Reynolds number (1 ≤ Re ≤ 104). At low 

Reynolds number, the flows remain attached to the surface of the cylinder. This 

implies higher heat transfer characteristic for value of n less than 1 (ie. Newtonian 

Fluid). As the Reynolds number increases, higher heat transfer phenomena are still 

observed but not as good as those of low Reynolds. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Research Background  

  

 

Air conditioning is one of the most successful creation that human being had 

done.  The pioneer of electrical air conditioning is invented by Willis Carrier which 

is being implemented in one of the cinema in New York. The problem arises when 

weather is too hot for the audiences to watch a movie during summer period. 

 

To date, there are many air conditioning system is being invented. The most 

common air conditioning system which used in domestically is single and multi split 

unit system. For commercial usage, air conditioning system which are being used are 

such as water cooled chiller, air cooled chiller, variable refrigerant flow system, 

water cooled package and etc. Offices and shopping mall are most likely adopting 

water cooled chiller system due to the efficiency of the air conditioning system and 

power consumption. In construction industry, heating, ventilation and air 

conditioning system is known as HVAC. 

 

Water cooled chiller system shall consist of the following main items such as 

cooling tower, condenser pumpsets, chiller, chiller pumpset and etc. The main focus 

shall be on the chiller system since it is the heart of heat transfer process. The chiller 

is comprises of two (2) major component which is the evaporator and condenser. 

The focus in this study shall be on the condenser side. A shell and tube condenser 

operates by guiding condenser water with higher temperature into the shell and 

across the baffle tube which have refrigerant running in the tube and exits through 

the other side of the shell.  
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According to Malaysia government construction sector, JKR design code and 

guidelines for air conditioning system, the optimum operating temperature for 

condenser water system shall have 87˚F for chilled water return and have 97˚F for 

condenser water supply. In such, there will be a difference of ΔT = 10˚F. 

Conventionally, the fluid which is implemented into the system is mostly treated 

water. This is due to it cost and availability in the market. 

 

Fluid can be categorized into two different ways either according to the 

response to the externally applied pressure or according to the effects of produce 

under the effect of shear stress. When comes to classification, it leads to the fluid 

either be “compressible” or “incompressible” where the volume of the fluid 

dependent on pressure applied. Compressible fluid will usually relates to gaseous 

due to its flow characteristic, liquids shall usually relates to incompressible due to 

the response of shear  

 

When comes to classification of fluid behavior, it can be categorized into 

Newtonian fluid and also non-Newtonian fluid. When both types of fluids are 

monitored, the basic component being studied is viscosity. The common value, 𝑛 for 

Newtonian fluid is equals to 1 where shear stress is usually direct proportional to the 

shear rate. For non- Newtonian fluid,    is the apparent viscosity of the fluid where 

it is not constant. The value power-law index, 𝑛 for non-Newtonian fluid is either 

more than one (n> 1) or less than one (n< 1).  

 

According to Oswald-de Waele equation for Power-Law fluid, the shear 

stress can be rewritten as Eqn.(3):- 

 

𝜏 = − (
𝜕𝑢

𝜕𝑦
)
𝑛

= [ (
𝜕𝑢

𝜕𝑦
)
𝑛−1

] (−
𝜕𝑢

𝜕𝑦
) 

(3) 

where  (
𝜕𝑢

𝜕𝑦
)
𝑛−1

 is the the effective viscosity, 𝜇𝑒𝑓𝑓. 

(4) 

 For Non-Newtonian Power-Law, viscosity of the shall be based on the 

equation as in Eqn (5):- 
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 = k (
𝜕𝑢

𝜕𝑦
)
𝑛−1

𝑒𝑥𝑝 [𝛼 (
1

𝑇 − 𝑇𝑜
−

1

𝑇𝛼 − 𝑇0
)] 

(5) 

 

 When flow behavior index, 𝑛 plays into the picture, these fluids are known to 

be Power-Law fluid and can be categorized into different group as such where 𝑛 < 1 

is known as Pseudoplastic fluid and 𝑛 > 1 is known as Dilatant fluid.  

 

Figure 1:- Shear stress versus velocity gradient for Newtonian and non-

Newtonian fluid. 

 

Pseudoplastic fluid is also known as shear-thinning fluids where they have 

lower apparent viscosity,  at higher shear rates. However for Dilatant fluid, it is 

known as shear-thickening fluid where the apparent viscosity,  increase with higher 

shear rate. Most non-Newtonian fluids are known to be in Pseudoplastic form 

compare to Dilatant fluid where it is less common and rare. Many researcher had 

performed studies using Newtonian fluids either using, numerical method, 

experiment method and also theoretically. However, limited approached being 

conducted to study the behavior of fluid flow and heat transfer using power-law 

fluid. 

 

However in recent study, Avinash Chandra (2011) highlighted that power-

law fluids are widely being used in polymer food, pharmaceutical sectors, mineral 

processing industry, personal care products, agricultural chemical and etc. The study 
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of momentum and heat transfer characteristic of cylinders in fluid acts as an 

important criteria with the domain of transport phenomena. 

 

P.Koteswara Rao (2011) highlighted that the most common type of non-

Newtonian fluid which studied in industry is the shear thinning fluid. Typical 

example of novel heat exchangers, cooling of electronic components, use of square 

bars as flow dividers to form weld lines in engineering application in continuous 

thermal treatment of food stuff. The apparent viscosity of power-law fluid can 

decrease in several orders of magnitude from a very high value at low shear rates to 

vanishingly small value at high shear rates which encountered in pipes and pump 

flow. In two dimensional studies, it gives rise to flow field where the effective rate of 

deformation varies from point to point. Many material of industrial application 

notably polymeric system (melts and solutions) and multi-phase systems like foams, 

emulsions and slurries display a range of non-Newtonian characteristics including 

shear dependent viscosity, yield stress and visco-elasticity. It is useful in other 

application such as cross-section tubular, pin-type and in other novel designs of 

compact heat exchangers, in novel design of mixing impellers and in rake filters 

used of non-newtonian slurries. 

 

Amir Nejat (2012) highlighted that force convection is suitable for removing 

heat generated system such as electronic devices. Maximizing heat transfer and 

minimizing the pressure drop is ideal for cooling system. Force convection using 

moving fluid seems to be a reasonable method for removing heat generated from 

system. Heat transfer per unit area of fully developed laminar flow in a channel 

increases with a decrease in cross-section of the channel. It is important for the 

selection of the cooling fluid (coolant) and the appropriate arrangement of elliptical 

cylinder for range of low and moderate Reynolds number. 

 

Vijaya K.Patnana (2010) highlight that flow past a circular cylinder 

represents a classical problem in fluid mechanics. Non-Newtonian fluids being 

applied in many industrial applications such as the flow in tubular and pin-type heat 

exchanger, in the use of thin wires as measuring probes, in thermal processing of 

food particles. In view of so-called “structured” substance of multi-phase nature and 

high molecular weight encountered in industrial practice (pulps and paper 
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suspensions, food, polymer melts and solutions, foams, micellar solution and etc.) 

display shear-dependent flow behavior. Subjected to their high viscosity level, it is 

commonly encountered in laminar flow condition in processing such material. 

 

 

 

 

1.2 Research Objective 

 

  

The objective of this thesis is: 

1) To analyze fluid flow and heat transfer behavior using power law 

fluid across the Shell and Tube evaporator. 

2) Analytical method will be employed. 

3) Drag and heat transfer co-efficient will be determined. 

 

 

 

 

1.3 Problem Statement 

 

 

Power consumption for chiller system is dependent on the refrigerant cycle 

which is plotted in the Pressure- Enthalpy curve. Workdone is measure using the 

area within the refrigerant cycle to measure power consumption. Power consumption 

for chiller can be reduced by either reducing the pressure lift of chiller water supply 

or the condenser water return. 

 

Many types of fluids are being applied as a coolant. However, these fluids are 

mostly Newtonian fluid. Introducing power-law fluid (non-Newtonian) different n-

term of power-law fluid will be considered into the condenser side instead of the 

chiller side. 

 

Boundary condition of the model will be selected and therefore will affect the 

result of fluid flow and heat transfer. The aforementioned parameters and properties 

will be further discussed in later chapter. 
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1.4 Scope of Research 
 

 

This thesis is to conduct a research on power-law fluid across shell and tube 

condenser by integrating the information of power law fluids into the system. Heat 

transfer and fluid flow behavior are indentified, verify and validate. The scopes of 

this thesis are as follows, 

i) Identification type of Power-Law fluid. 

ii) Development of model 

iii) Identification of power-law properties. 

iv) Analysis of the power-law characteristics. 

v) Analytical and numerical computation on heat transfer and fluid flow. 

vi) Analysis of heat transfer and fluid flow for power-law fluid. 

vii) Obtaining the effects of power-law fluid which incorporated into the  

model. 

 

 

 

 

1.5 Organization of Thesis 

 

 

To complete this project, the following steps are required to be implemented, 

i) Data collection from the published journals. 

ii) Selection of power-law fluid. 

iii) Setting of boundary conditions. 

iv) Numerical analysis of fluid flow and heat transfer on circular  

cylinder. 

v) Computational of velocity and temperature profiles using Matlab. 

vi) Repeat steps (iii) to (vi) for different power-law fluid. 

vii) Discuss the fluid flow and heat transfer across circular cylinder  

model. 

viii) Conclusion 

A weekly activity of this thesis has been presented in Gantt chart and appended in 

Appendix 1 and 2 for thesis 1 and 2 respectively. 
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