
BLOCK-BASED NEURAL NETWORK MAPPING ON GRAPHICS PROCESSOR
UNIT

ONG CHIN TONG

UNIVERSITI TEKNOLOGI MALAYSIA

BLOCK-BASED NEURAL NETWORK MAPPING ON GRAPHICS PROCESSOR
UNIT

ONG CHIN TONG

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical-Computer and Microelectronic System)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2015

iii

Dedicated, in thankful appreciation for support, encouragement and understanding to

my beloved mother, father, brother and supervisor....

iv

ACKNOWLEDGEMENT

First and foremost, thank God for giving me the strength to complete this
project. I wish to express my greatest appreciation to my supervisor, Assoc Prof Dr.
Muhammad Nadzir bin Marsono for his generous guidance, advice and motivation
throughout this study. His critical suggestion and comments help me to develop the
study project into understandable and workable effort.

Besides that, I would also like to thank Dr Vishnu P. Nambiar from Intel for
providing me the suggestion of this topic. Thank you for willing to allocate his time to
guide me throughout my works.

Finally, acknowledgements are also for my family, especially my parents.
Thank you for their support, inspiration, and encouragement during the study and
completion of this thesis.

Ong Chin Tong

v

ABSTRACT

Block-based neural network (BbNN) was introduced to improve the training
speed of artificial neural network. Various works had been carried out by previous
researchers to improve training speed of BbNN system. Multithread BbNN training on
field-programmable gate array (FPGA) limits training speed due to low performance
of Nios II software used for communication between central processing unit (CPU)
and FPGA. This project aims to improve training speed of multithread BbNN block by
mapping BbNN model into Compute Unified Device Architecture (CUDA) core. In
this project, each BbNN block is mapped into a CUDA core with each core running
on a single thread. The functional verification of BbNN core is carried out based
on the BbNN output accuracy value. Near 100 percent accuracy value obtained is
used to verify the CUDA mapped BbNN. The performance trade-off analysis had
been carried out by comparing the accuracy value obtained from BbNN evolution
on GPU versus CPU implementations. From the results obtained, it is found out
that the performance of CUDA-mapped BbNN can only be as fast as CPU-mapped
implementation. Although CUDA-mapped BbNN implementation run multiple BbNN
blocks training in parallel, large data transfer between CPU and GPU dominates
the performance gain in training multiple BbNN blocks in parallel. Besides that, a
significant gain in training speed can only be seen if the order of complexity for GPU
execution is at a higher order compared to the order of CPU-GPU data transfer. The
result obtained in this project provides recommendation for future research works on
how to further improve the training speed of CUDA-base BbNN implementation.

vi

ABSTRAK

Block rangkaian neural (BbNN) telah diperkenalkan untuk menyingkatkan
masa pemprosesan rangkaian neural. Pelbagai kerja telah dijalankan oleh penyelidik
sebelum ini untuk menyingkatkan masa pemprosesan BbNN. Prestasi multithread
BbNN menggunakan field-programmable gate array (FPGA) akan dihadkan oleh
prestasi perlahan daripada perisian Nios II yang digunakan untuk berkomunikasi antara
central processing unit (CPU) dan FPGA. Projek ini bertujuan untuk menerokai kaedah
bagi menyingkatkan masa pemprosesan dengan memetakan BbNN mengunakan
teras Compute Unified Device Architecture (CUDA). Dalam projek ini, setiap blok
BbNN dipetakan ke dalam teras CUDA dengan setiap teras berjalan dengan satu
thread. Dengan mendapat ketepatan yang hampir kepada 100 peratus, BbNN yang
dipetakan ke dalam CUDA telah disahkan betul. Perbandingan antara prestasi GPU
dan CPU kemudian dijalankan dengan mendapatkan perbezaan ketepatan dan masa
pemprosesan BbNN. Daripada keputusan projek ini, didapati kelajuan pemprosesan
BbNN yang dipetakan ke dalam teras CUDA hanya seiras dengan masa pemprosesan
BbNN CPU. Walaupun BbNN yang dipetakan ke dalam teras CUDA diprocess secara
selari, prestasi masa pemprosesan CUDA telah didominasi oleh jumlah besar data
yang perlu disampaikan antara CPU dan GPU. Di samping itu, peningkatan prestasi
pemprosesan CUDA hanya dapat diperlihat sekiranya kerumitan pembilangan berada
dalam order yang lebih tinggi daripada kerumitan data yang perlu disampaikan.
Keputusan yang diperolehi daripada projek ini dapat menyediakan cadangan untuk
kajian masa hadapan mengenai cara untuk meningkatkan lagi prestasi BbNN yang
dipetakan ke dalam teras CUDA.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF APPENDICES xii

1 INTRODUCTION 1
1.1 Problem Background 1
1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope 3
1.5 Methodology 3
1.6 Report Organization 5

2 LITERATURE REVIEW 6
2.1 Block-based Neural Network Fundamentals 6
2.2 Neural Network Structure of BbNN 6
2.3 BbNN Neuron Architecture and its Mathematical

Modeling 7
2.4 BbNN Training or Learning using Genetic Algo-

rithm 9
2.5 Genetic Algorithm for Solving Classification Prob-

lem 10
2.6 Related Works from Previous Implementations 11

viii

2.7 Platform Comparisons between GPU, CPU and
FPGA 13
2.7.1 Nvidia graphic processor (GPU) architec-

ture 15
2.7.2 GPU Accelerated Computing 15
2.7.3 CPU versus GPU 15
2.7.4 CUDA programming language 16

2.8 Motivation for Extended Work 16

3 PROPOSED IMPLEMENTATION 18
3.1 Proposed Implementation Methodology 18
3.2 BbNN Mapping Structure 19
3.3 Software and Hardware Requirements 19
3.4 Implementation and Development Process 20
3.5 Performance Benchmarking Using Tomita Classifi-

cation Problem 21
3.6 Chapter Summary 22

4 IMPLEMENTATION AND ANALYSIS 23
4.1 Consideration of Implementation 23

4.1.1 Default CUDA Memory Copy Method 24
4.1.2 High Performance Zero Copy Memory

Method 26
4.2 Functional Simulation and Verification 31
4.3 Chapter Summary 32

5 RESULTS AND DISCUSSION 33
5.1 Performance analysis 33

5.1.1 Comparison on BbNN Output Accuracy 35
5.1.2 Comparison on BbNN Total Execution

Time 35
5.2 Non-compute Intensive BbNN Structure 40
5.3 Chapter Summary 40

6 CONCLUSION AND RECOMMENDATION 41
6.1 Conclusion 41
6.2 Recommendation for Future Work 41

ix

REFERENCES 42
Appendix A 45

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparisons between the Architecture of CPU, GPU and
FPGA [8]. 14

5.1 Comparisons Result between GPU and CPU Implemented
BbNN. 34

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 General Structure of BbNN [2]. 2
1.2 Typical Structure of a Single Neuron [2]. 2
1.3 Project Methodology. 4
1.4 Report Organization. 5
2.1 2D Structure of BbNN Network. 7
2.2 Four Different Internal Structure of BbNN Neuron Configu-

rations [1]. 8
2.3 Genetic Algorithm [4]. 10
2.4 Encoding of BbNN chromosome [1]. 11
2.5 Functional block diagram used in Nambiar et al. field-

programmable gate array BbNN Implementation [3]. 13
2.6 CPU GPU Comparison in Terms of the Number of Their

Internal Cores. 16
3.1 Top Level View of BbNN GPU Mapping. 19
3.2 Process of Standard Development Life Cycle (SDLC). 20
4.1 Copying Memory Contents from CPU to GPU. 24
4.2 Parallel Execution of BbNN block Function Inside GPU. 25
4.3 Result Write Back from GPU DRAM Back to CPU Memory. 26
4.4 Nodes Mapping of BbNN CUDA Cores. 31
4.5 Device Memory Pointer Mapping for BbNN Gene’s

Parameters. 31
4.6 Training of CUDA mapped BbNN. 32
5.1 CPU cores frequency that has been lowered down. 34
5.2 Graph of Performance Analysis Versus BbNN Matrix. 38
A.1 BbNN output. 92
A.2 Setting of CPU Cores Frequency. 92
A.3 Picking between GPU and CPU bbnn Function. 93
A.4 Compiling and Executing BbNN CUDA Code. 93

xii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A CUDA mapped BbNN Code 45

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Block-based neural network (BbNN) was introduced by Merchant and Kong in
2001 [1]. It is composed of regular networks of neuron blocks that are connected in a
2-dimensional grid manner. BbNNs are generally used for classification problems [2].
Each block in the network structure is a basic processing element which consists of
four input/output nodes. BbNN has modular structure that allows it to be scaled easily
according to the complexity of the problem in hand. This can be done by modifying
the number of rows and columns of BbNN structure. BbNN internal configuration can
be varied during training according to the problem encounter as the training is carried
out using evolutionary algorithm such as genetic algorithm.

There are various techniques used to model BbNN model. This includes
general purpose processor (CPU)-based BbNN as well as field-programmable gate
array (FPGA)-based BbNN [2]. Implementation of BbNN on FPGA is suitable as
FPGA has similar structure as compared to BbNN. Each FPGA internal Logic Array
Block (LAB) can be directly mapped to BbNN. Although BbNN implementation using
FPGA seems to be providing a relatively promising performance, there still some room
for improvement in terms of its implementation performance as well as its usability.

2

Figure 1.1: General Structure of BbNN [2].

Figure 1.2: Typical Structure of a Single Neuron [2].

1.2 Problem Statement

From previous work done by Nambiar et al. [2], it was known that BbNN
implementation using FPGA was limit by the performance of Nios II software. They
suggested that a better solution could have been made by implementing BbNN using a

3

faster embedded processor. This project explores an alternative solution to the slow
training speed of FPGA BbNN implementation by implementing BbNN structure
using embedded Graphic Processor Unit (GPU). It is because same processing can
be directly mapped to a neuron block of BbNN. Besides that, the matured Nvidia
Cuda programming language that was initially developed for gaming purposes will not
become the bottleneck for the BbNN implementation. This can be proven from the
positive feedback of smooth gaming experience from gamers all around the world.

1.3 Objectives

The objective of this project is to propose a mapping technique that maps
BbNN into GPU based system using Nvidia CUDA programming language. The
functionality of the proposed implementation will be verified through simple XOR
logic calculation. Meanwhile the design trade-off of the proposed BbNN mapping
technique will be analyzed as compared to previous CPU and FPGA implementations
based on Tomita classification problem.

1.4 Scope

The BbNN code to be used for GPU mapping in this project would be the
one developed by Nambiar et al. [2]. The Genetic algorithm used will be remained
unchanged. This means that DemeGA will be used as the Genetic algorithm for
BbNN training throughout this project. Besides, the size of BbNN will also follows
what Nambiar et al. has in their previous implementation, which is one row and ten
columns. The number of maximum BbNN populations generation would be 5000
as this was the number chosen by Nambiar et al. in their previous implementation.
Meanwhile, the cross-over and mutation rate will be using a default value of 0.35 and
0.006 respectively.

1.5 Methodology

Nvidia GeForce 840M GPU, which utilizing Nvidia’s latest Maxwell
architecture is used for the proposed BbNN mapping technique. All development work

4

is done under Ubuntu Linux environment using Nvidia Cuda programming language.

The methodology of this project starts with a detailed analysis and study about
the architecture of BbNN implementation on Nvidia GPU. This is to sought out the way
for BbNN mapping implementation. In order to do so, readings on previous BbNN
implementation structure was carried out. This structure was then compared to the
internal architecture of Nvidia GPU.

After a thorough study about the architecture, a mapping technique formed and
implemented on Nvidia GPU using Nvidia Cuda programing language. The parameter
used for BbNN implementation using GPU should be the same as previous FPGA
implementation [2] in order for fair performance comparison analysis.

This project then proceeds with functionality verification using Tomita training
database [2]. At the end of this project, the performance analysis of the proposed GPU
BbNN implementation is carried out using same Tomita classification problem and
compared against CPU and FPGA BbNN implementations.

Figure 1.3: Project Methodology.

5

1.6 Report Organization

Figure 1.4 shows the report organization. This report is organized into
six chapters. The rest of the report is organized as follows. In Chapter 2, this
report first go through all available BbNN architectures as well as its mathematical
structure, Genetic Algorithm that used for BbNN training, how BbNN used in solving
classification problems, related works and the motivation for this project. Chapter 3
covers the proposed BbNN implementation where the details of the design process and
requirements will be discussed. In Chapter 4, this report discuss on the implementation
of BbNN. Besides, details on the verification of the proposed BbNN implementation
were discussed in this chapter. Chapter 5 includes analyses on the design trade-off of
the proposed BbNN implementation. Meanwhile chapter 6 concludes the report and
point out the direction of future work.

Figure 1.4: Report Organization.

REFERENCES

1. S. W. Moon, S. G. K. Block-based neural networks. IEEE Transactions on

Neural Networks, 2001: 307–17.

2. Nambiar, V. P. Hardware Implementation of Evolvable Block-based
Neural Networks Utilizing a Cost Efficient Sigmoid-like Activation function.
Neurocomputing, 2014: 228–241.

3. Nambiar, B. S. K.-H. M., V. P. and Marsono, M. N. HW/SW co-design of
reconfigurable hardware-based genetic algorithm in FPGAs applicable to a
variety of problems. Computing: 95(9), 863–896.

4. Samarah, H. A. T. S.-K. N., A. Automated coverage directed test generation
using a cell-based genetic algorithm. Eleventh Annual IEEE International,
2006: 19–26.

5. Kothandaraman, S. Implementation of Block-based Neural Networks on

Reconfigurable Computing Platforms. M.sc. thesis. University of Tennessee.
2004.

6. Merchant, S. G. and Peterson, G. D. Evolvable Block-based Neural Network
Design for Applications in Dynamic Environments. 2010.

7. Jewajinda, Y. An Adaptive Hardware Classifier in FPGA Based-on a Cellular
Compact Genetic Algorithm and Block-based Neural Network. 2008. 658–
663.

8. Brown, M. Nvidia Unveils Maxwell: A Supremely Power-efficient GPU
Architecture. URL http://www.pcworld.com/article/2097974/

a-supremely-power-efficient-gpu-architecture.html.

9. Tesla. What Is Gpu Accelerated Computing. URL http://www.nvidia.

com/object/what-is-gpu-computing.html.

10. Wikipedia. CUDA. URL http://en.wikipedia.org/wiki/CUDA.

11. Stackoverflow. In CUDA, why cudaMemcpy2D and
cudaMallocPitch consume a lot of time. URL http:

//stackoverflow.com/questions/24280220/

http://www.pcworld.com/article/2097974/a-supremely-power-efficient-gpu-architecture.html
http://www.pcworld.com/article/2097974/a-supremely-power-efficient-gpu-architecture.html
http://www.nvidia.com/object/ what-is-gpu-computing.html
http://www.nvidia.com/object/ what-is-gpu-computing.html
http://en.wikipedia.org/wiki/CUDA
http://stackoverflow.com/questions/24280220/why-cudamemcpy2d-cudamallocpitch- consume-a-lot-time
http://stackoverflow.com/questions/24280220/why-cudamemcpy2d-cudamallocpitch- consume-a-lot-time

43

why-cudamemcpy2d-cudamallocpitch-consume-a-lot-time.

12. Sanders, . K. E., J. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional.

13. Nvidia. NVIDIA. CUDA Toolkit 5.0 Performance Report. URL
http://on-demand.gputechconf.com/gtc-express/2013/

presentations/cuda--5.0-math-libraries-performance.

pdf.

14. Buck, F. K. . H.-P., I. GPUBench: Evaluating GPU performance for numerical
and scientific applications. In Proceedings of the 2004 ACM Workshop on

General-Purpose Computing on Graphics Processors.

15. amazon. Intel Core i7-990X Extreme Edition Processor 3.46 GHz 6
Core LGA 1366 - BX80613I7990X. URL http://www.amazon.

com/Intel-i7-990X-Extreme-Edition-Processor/dp/

B004NRQDQQ.

16. tom’sHARDWARE. Core i7 GFLOPS Benchmark.
URL http://www.tomshardware.com/forum/

262886-28-core-gflops-benchmark.

17. Jewajinda, Y. An adaptive hardware classifier in FPGA based-on a cellular
compact genetic algorithm and block-based neural network. International

Symposium on Communications and Information Technologies (ISCIT 2008),
2008: 658–663.

18. Jewajinda, Y. and Chongstitvatana, P. FPGA-based online-learning using
parallel genetic algorithm and neural network for ECG signal classification.
International Conference on Electrical Engineering/Electronics Computer

Telecommunications and Information Technology (ECTICON), 2010: 1050–
1054.

19. Jewajinda, Y. and Chongstitvatana, P. A parallel genetic algorithm for adaptive
hardware and its application to ECG signal classification. Neural Computing

and Applications, 2012: 1069–1626.

20. V. P. Nambiar, M. M., M. Khalil-Hani. Evolvable Block-Based Neural
Networks for Real-Time Classification of Heart Arrhythmia From ECG
Signals. IEEE EMBS Conference on Biomedical Engineering and Sciences

(IECBES), 2012: 866–871.

21. V. P. Nambiar, C. S. M. M., M. Khalil-Hani. Evolvable blockbased neural
networks for classification of driver drowsiness based on heart rate variability.

http://stackoverflow.com/questions/24280220/why-cudamemcpy2d-cudamallocpitch- consume-a-lot-time
http://stackoverflow.com/questions/24280220/why-cudamemcpy2d-cudamallocpitch- consume-a-lot-time
http://on-demand.gputechconf.com/gtc-express/2013/presentations/cuda--5.0-math-libraries-performance.pdf
http://on-demand.gputechconf.com/gtc-express/2013/presentations/cuda--5.0-math-libraries-performance.pdf
http://on-demand.gputechconf.com/gtc-express/2013/presentations/cuda--5.0-math-libraries-performance.pdf
http://www.amazon.com/Intel-i7-990X-Extreme-Edition-Processor/dp/B004NRQDQQ
http://www.amazon.com/Intel-i7-990X-Extreme-Edition-Processor/dp/B004NRQDQQ
http://www.amazon.com/Intel-i7-990X-Extreme-Edition-Processor/dp/B004NRQDQQ
http://www.tomshardware.com/forum/262886-28-core-gflops-benchmark
http://www.tomshardware.com/forum/262886-28-core-gflops-benchmark

44

IEEE International Conference on Circuits and Systems (ICCAS), 2012: 156–
161.

22. M. Khalil-Hani, N. S.-H. V. P. N., C.W. Sia. FPGA-based Embedded System
for the detection of Driver Drowsiness using ECG signals. Proceedings of

the 2012 International Conference on Electrical Engineering and Computer

Science (ICEECS 2012), 2012.

23. W. Jiang, G. P., S. Kong. ECG signal classification using blockbased
neural networks. IEEE International Joint Conference on Neural Networks

(IJCNN05), 2005: 326–331.

24. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1989.

25. M. Nickray, A. A.-k., M. Dehyadgari. Power and delay optimization for
network on chip. Proceedings of the 2005 European Conference on Circuit

Theory and Design, IEEE, 2005.

26. K. De Jong, W. S. Using genetic algorithms to solve np-complete problems.
Proceedings of the third international conference on genetic algorithms, 1989:
132.

27. W. Jiang, S. K. A Least-Squares Learning for Block-based Neural Networks,
Advances in Neural Networks. A Supplement (DCDIS), 2007: 242–247.

28. S. Haridass, D. H. Fault Tolerant Block Based Neural Networks. System

Theory (SSST), 2010: 357–361.

29. Q. A. Tran, J. H., F. Jiang. A Real-Time NetFlow-based Intrusion Detection
System with Improved BBNN and High-Frequency Field Programmable Gate
Arrays. IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications (Trust-Com), 2012: 201–208.

30. A. R. Brodtkorb, M. L. S., T. R. Hagen. Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel

and Distributed Computing, 2013: 4–13.

	OngChinTongMFKE2015ABS
	OngChinTongMFKE2015TOC
	OngChinTongMFKE2015CHAP1
	OngChinTongMFKE2015REF

