STUDY OF UREA BASED SELECTIVE NON-CATALYTIC REDUCTION OF NO $_{\rm x}$ IN SMALL SCALE COMBUSTION APPLICATIONS

KHANDOKER ABUL HOSSAIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

February, 2004

To my beloved parents, who sacrificed a lot

ACKNOWLEDGEMENT

All praises are for Al-Mighty Allah, who has given me the opportunity to complete this work despite having so many problems.

I would like to thank my supervisors Dr. Nazri Mohd. Jaafar, Prof Farid Nasir Ani and Dr. Azeman Mustafa for their strong supervision, advice and supports throughout my work. They have given me a lot of time indeed.

The financial support of the Malaysian Government for this research work and relevant supports of UTM for completing the studies are greatly acknowledged.

I would also like to thank all the concerned technicians of the Faculty of Mechanical Engineering for their technical assistance and co-operative attitude.

Finally, I am very grateful to my wife and especially to my small kid Khandoker Labib Zawad, who sacrificed his father a lot for the greater interest of mankind.

All useful results of this research are attributed to the blessing of Allah, who is The All Knowing, The All Aware and The Merciful.

ABSTRACT

Selective Non-Catalytic Reduction (SNCR) of nitric oxide was studied experimentally by injecting different concentrations of aqueous urea solution in a pilot-scale diesel fired tunnel furnace at 3-4 % excess oxygen level and with low ppm of baseline NO_x ranged from 65 to 75 ppm within the investigated temperature range. The furnace simulated small-scale combustion systems such as low capacity boilers, hot water heaters, oil heaters, etc., where the operating temperatures are usually in the range of about 973 to 1323 K and NO_x emission level remains below 100 ppm. In order to investigate the influence of additive on reduction characteristics, different concentrations of commercial grade sodium carbonate (Na₂CO₃) were added to urea solution. The significant aspects of the studies are that it employed commercial grade urea as NOx reducing agent and commercial grade Na₂CO₃ as additive to urea solution to minimize the cost of the SNCR operation. NO_x reductions were studied with the variation of different parameters such as injection temperature, residence time, Normalized Stoichiometric Ratio (NSR) of the reagent, carrier gas pressure, etc. A significant amount of NO_x reduction was achieved which was not pronounced by the previous researchers with urea SNCR for this low ppm of NO_x. With 5% plain urea solution, at an NSR of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO_x reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO_x reduction shifted towards lower temperatures. The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 3 and optimum temperature of NO_x reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade urea and sodium carbonate are potential NO_x reducing agent and additive respectively.

ABSTRAK

Satu kajian mengenai Penurunan Bukan Bermangkin Terpilih (SNCR) terhadap nitrik oksida telah dijalankan secara ujikaji dengan menyembur larutan akues urea yang berbeza kepekatan di dalam sebuah terowang relau disel berskala kecil pada paras lebihan oksigen sebanyak 3-4% serta pada nilai emisi NOx yang rendah iaitu antara 67-75 ppm dalam julat suhu yang dikaji. Relau yang digunakan mewakili sebuah sistem pembakaran berskala kecil seperti dandang berkapasiti rendah, permanas air, pemanas minyak dan sebagainya, di mana suhu operasi relau pada kebiasaannya adalah di dalam lingkungan 973-1323 K manakala paras emisi NO_x adalah di bawah 100 ppm. Dalam mengkaji kesan penambahan larutan urea bagi mengurangkan emisi, pelbagai kepekatan natrium karbonat (Na₂CO₃) bergred komersial telah ditambah ke dalam larutan urea tersebut. Aspek-Aspek penting yang difokuskan dalam kajian ini adalah penggunaan Na2CO3, juga bergred komersial, sebagai bahan tambahan kepada larutan urea, untuk mengurangkan kos operasi SNCR. Kajian ke atas pengurangan NO_x dijalankan dengan mengubah beberapa parameter seperti suhu semburan, masa bermastautin, nilai Nisbah Stoikiometri Ternormal (NSR) bagi reagen, tekanan gas pembawa dan sebagainya. Pengurangan nilai NOx yang ketara telah diperoleh dalam kajian ini yang mana belum pernah dilaporkan oleh mana-mana penyelidik sebelum ini bagi bahan urea SNCR untuk kadar ppm NOx yang rendah. Pada nilai NSR bersamaan 4 dengan 5% larutan urea, sebanyak 54% pengurangan NO_x telah diperoleh pada suhu 1128 K, manakala bagi kes penambahan bahan penambah pula, pengurangan NO_x telah meningkat sehingga 69% pada suhu 1093 K. Selain dari pembaikan ini, bagi kes bahan penambah, julat suhu efektif dan suhu maksimum pengurangan NO_x telah berubah ke nilai yang lebih rendah. Dalam kedua-dua kes, didapati nilai ammonia yang tidak bertindakbalas yang telah diukur menunjukkan satu nilai yang rendah iaitu di bawah 16 ppm pada NSR 3 serta pada suhu pengurangan NO_x yang optimum. Akhir sekali, kajian yang telah dijalankan menunjukkan bahawa SNCR berasaskan urea boleh digunakan bagi kegunaan pembakaran berskala kecil, manakala bahan urea serta natrium karbonat yang bergred komersial juga berpotensi sebagai agen pengurangan NO_x serta agen penambah.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
1	INTRODUCTION			
	1.1	Detrimental Effects of NO _x	2	
		1.1.1 Impact of NO _x on the Environment	2	
		1.1.1.1 Photochemical Smog	2	
		1.1.1.2 Acid Deposition	3	
		1.1.1.3 Global Warming	4	
		1.1.1.4 Ozone Layer Depletion	5	
		1.1.2 Impact of NO _x on Health	6	
		1.1.3 Impact of NO _x on Materials	6	
	1.2	The Importance of the Present Studies	7	
	1.3	Objectives and Scope of the Present studies	10	
		1.3.1 Objectives	10	
		1.3.2 Scope of the Studies	10	
	1.4	Thesis Outline	11	
2	LITI	ERATURE REVIEW ON NOx FORMATION AND	12	
	CON	TROL		
,	2.1	General Information About Nitrogen Oxides	12	
	2.2	Sources of NO _x	13	
	2.3	Chemistry of NO _x Formation	17	
		2.3.1 The Zeldovich Mechanism	17	

		2.3.2	The Fenimore Mechanism	19
		2.3.3	Fuel NO _x Formation	21
		2.3.4	N ₂ O Mechanism	23
		2.3.5	The influence of Pressure on the Formation	25
			of NO	
		2.3.6	NO Formation in Practical Systems	25
			2.3.6.1 NO Formation in Non Premixed	26
			Combustion	
			2.3.6.2 NO Formation in Pre Mixed	26
			Combustion	
		2.3.7	NO ₂ Formation Mechanism	27
	2.4	Introd	luction to NO _x Control	28
	2.5	Pre-C	ombustion Techniques	29
		2.5.1	Fuel Reformulation	30
		2.5.2	Fuel Switching	30
		2.5.3	Dual Fueling	31
	2.6	Proce	ss Modification	31
		2.6.1	Low NOx Burner (LNB)	31
		2.6.2	Staged Combustion	32
		2.6.3	Flue Gas Recirculation (FGR)	37
		2.6.4	Reburning	37
		2.6.5	Water or Steam Injection	38
		2.6.6	Operational Modifications	39
	2.7	Post (Combustion Technologies	40
		2.7.1	Selective Catalytic Reduction (SCR)	41
		2.7.2	Selective Non-Catalytic Reduction (SNCR)	42
		2.7.3	Hybrid SCR/SNCR	44
		2.7.4	Advanced Reburning	45
3	LITE	ERATU:	RE REVIEW ON SNCR PROCESS	47
	3.	.1	Attractive Features of SNCR	47

3.2	Problem	as Related to SNCR	48
3.3	NO _x Re	duction Using Aqueous Urea Solution	49
	3.3.1	NO _x Reduction Performance with Urea	50
	3.3.2	Effect of Normalized Stoichiometric Ratio	54
	3.3.3	Ammonia Slip in Urea SNCR	56
	3.3.4	Nitrous Oxide and Carbon Monoxide	59
		Formation	
	3.3.5	Effect of Oxygen	60
	3.3.6	Effect of Additives	61
	3.3.7	Process Mechanism	64
3.4	Parame	eters Affect the urea Based SNCR in Full Scale	65
	Applica	ations	
	3.4.1	Flue Gas Temperature	68
	3.4.2	Atomization Quality	68
		3.4.2.1 Carrier Gas Pressure	69
		3.4.2.2 Reagent Flow Rate	70
		3.4.2.3 Atomizer Design	70
	3.4.3	Combustor Geometry, Flue Gas Velocity	71
		Flow Pattern and Injection Location	
3.5	NO _x R	eduction with Liquor Ammonia	72
	3.5.1	Kinetic Modeling	73
	3.5.2	Temperature Window	76
	3.5.3	Effect of Normalized Stoichiometric Ratio	78
	3.5.4	Effect of Residence Time	81
	3.5.5	Effect of Oxygen Content in Flue Gas	81
	3.5.6	Effect of Baseline Concentration of NO	82
	3.5.7	Influence of Water Content	83
	3.5.8	Effect of Additives	84
	3.5.9	Nitrous Oxide Emission	88
	3.5.10	Ammonia and Cyanide Emission	89
	3.5.11	Effect of Sulfur	91

4	EXP	ERIMI	ENTAL SET UP AND PROCEDURE	92
	4.1	Expe	rimental Set Up	92
		4.1.1	Burner	93
		4.1.2	Combustor	94
			4.1.2.1 Flame Zone	95
			4.1.2.2 Injection Zone	95
			4.1.2.3 Reaction Zone	97
			4.1.2.4 Design Criteria of the Combustor	99
			4.1.2.5 Determination of Diameter and length	ı 99
			of the Flame	
		4.1.3	Injection System	100
			4.1.3.1 The Design Criteria of the Injection	100
			System	
			4.1.3.2 General Procedure to Run the Injectio	n
			System	
			4.1.3.3 Injector	102
			4.1.3.4 Pressure Tank	105
			4.1.3.5 Why Air is Selected as Carrier Gas	106
			4.1.3.6 Measuring and Controlling Instrument	s
			in Injection Systems.	
	4.2	Baseli	ne Tests	108
		4.2.1	Determination of the Temperature Profile of	109
			the Reactor	
		4.2.2	Baseline NO _x Emitted from the Combustion	109
			System	
		4.2.3	Emissions of other Gases	110
	4.3	Genera	al Experimental Conditions	110
	4.4	Genera	al Experimental Procedure	111
	4.5	Data N	leasurement	113
		4.5.1	Flue gas Analysis by Kane May Gas Analyzer	113
		4.5.2	Temperature Measurement by Thermocouple	114
			with Recorder	
		4.5.3	Ammonia Slip Measurement	115

	4.6	Rep	roducibility	116
	4.7	Mat	erials and Their Properties	116
5	RES	SULTS	AND DISCUSSION	128
	5.1	Injed	ction of 5% Aqueous Urea Solution	129
		5.1.1	Effect of Injection Temperature	129
		5.1.2	2 Effect of Normalized Stoichiometric Ratio	131
		5.1.3	Effect of Residence Time	132
	5.2	Injec	ction of 10% Aqueous Urea Solution	133
		5.2.1	Effect of Injection Temperature and NSR	134
	5.3	Injec	tion of 25% Aqueous Urea Solution	135
		5.3.1	Effect of NSR and Injection Temperature	135
	5.4	Effec	ct of Dilution of Urea	136
	5.5	Effec	et of Carrier Gas Pressure	138
		5.5.1	Effect on NO _x Reduction	138
		5.5.2	Effect of Carrier Gas Pressure on NO _x	140
			Reduction vs. Residence Time Profiles	
		5.5.3	Effect of Temperature on NO _x Reduction vs.	140
			Pressure Profile	
	5.6	Amm	onia Slip	142
		5.6.1	Effect of Injection Temperature on Ammonia Slip	142
		5.6.2	Effect of Normalized Stoichiometric Ratio on Ammonia Slip	143
	5.7	Injecti	ion of Ammonia Liquor	144
		5.7.1	Effect of Injection Temperature	144
		5.7.2	Effect of Normalized Stoichiometric Ratio	146
		5.7.3	Effect of Residence Time	147
		5.7.4	Comparison Between NO _x Reduction from	148
			Ammonia and Urea Injection Based on Injection	
			Temperature	
		5.7.5	Comparison Between NO _x Reduction from	1/10

		Ammonia and Urea Injection Based on NSR	
	5.7.6	Comparison Between Urea and Ammonia	150
		Based on the Their Residence Time Profiles.	
5.8	Experi	ment with 10% Na ₂ CO ₃ of Urea in 5% Aqueous	151
	Urea S	olution	
	5.8.1	Effect of Injection Temperature	151
	5.8.2	Effect of NSR on NO _x Reduction	152
	5.8.3	Effect of Residence Time	153
	5.8.4	Comparison Between Additive and Plain Urea	154
		in Terms of Reduction vs. Injection Temperatur	e
	5.8.5	Profile Comparison Between Additive and Plain urea in	n 155
	3.6.3	Terms of Reduction vs. Residence Time Profile	
5.9	Evneri	iment with 5% Na ₂ CO ₃ of Urea in 5% Aqueous	156
3.9	_	Solution.	
	5.9.1	Effect of Injection Temperature	156
	5.9.2	Effect of NSR on NO _x Reduction	157
	5.9.3	Effect of Residence Time	157
	5.9.4	Comparison Between Additive and Plain Urea	158
	3.3.4	in Terms of Reduction vs. Injection Temperatu	
		Profile	
	505	Comparison of Reaction Profiles Obtained	160
	5.9.5	and Without Additives	100
5 10	Ermon	iment with 1% Na ₂ CO ₃ of Urea in 5% Aqueous	161
5.10	-	Solution	101
			161
		Effect of Injection Temperature	162
		Effect of Residence Time	163
	5.10.3	Comparison Between Additive and Plain Urea	
		in Terms of Reduction vs. Injection Temperatu	16
	7.10.	Profile	164
	5.10.4	Comparison of Reaction Profiles Obtained	164
		Using Additive and Without Additive	1.50
5.11	Effect	t of Concentration of Additives	165

		5.11.1 Effect of Concentration of Additives on NO	_x 165
		Reduction and Temperature Window	
		5.11.2 Effect of Concentration of Additives on	167
		Reaction Profile with Residence Time	
	5.12	Effect of Additive on Ammonia Slip	168
6	CON	CLSIONS AND FUTURE WORK	198
	6.1	Conclusions	198
	6.2	Recommendations for Future Work	200
REFEREN	ICES		202
Appendices	s A-H		215-230

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Oxides of nitrogen	14
2.2	Numerous sources of NO _x	15
2.3	NO _x emission regulation for industrial sources	16
2.4	NO _x control technologies and potential emission reductions	34
2.5	SCR DeNO _x catalyst types	41
2.6	Capacity and number of electricity generating units projected	d 44
	to be retrofitted with SCR and SNCR by 2003 with associate	ed
	NO _x reduction achieved	
3.1	Summary of the urea SNCR in different full-scale application	ns 51
3.2	General performance of ammonia SNCR reported in literatur	re 77

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Global NO _x emissions	16
2.2	Reaction path diagram illustrating the reaction steps	22
	in Fenimore NO formation	
2.3	Overview of different NO _x reduction technologies	29
2.4	Schematic diagram of a staged air low NO _x burner	35
2.5	Schematic diagram of a staged fuel low NOx burner	35
2.6	Comparison of conventional burner and burner with	36
	staging operation	
3.1	Reaction Path diagram describing the major steps in gas	66
	phase NO removal by reaction with urea	
4.1	Layout of the experimental set up	117
4.2	Practical test to determine the spray length	118
4.3	Typical photograph of the flame in open air to determine the	ne 119
	flame length	
4.4	Schematic diagram of the injection system	120
4.5	Installation of dual phase injector on the combustion	121
	chamber	
4.6	A typical temperature profile of the reactor	122
4.7	Emission characteristics of NO with injection temperatur	e 123
	in the combustion system	
4.8	Emission characteristics of CO with injection temperature	124
	in the combustion system	
4.9	Emission characteristics of CO ₂ with injection temperature	e in
	the combustion system	
4.10	Emission characteristics of SO ₂ with injection temperature	in 124
	the combustion system	

4.11	Mean emission probe for gas sampling	125
4.12	Relationship between single point and multiple point	126
	emission data	
4.13	Reproducibility of the pilot scale SNCR system at an NSR	127
	of 3 in three different tests performed at an interval of 3 day	/S
4.14	Reproducibility of the pilot scale SNCR system at an NSR	127
	of 4 in three different tests performed at an interval of 7 day	/S
5.1	Effect of injection temperature and NSR on NO _x reduction	170
5.2	Effect of injection temperature and NSR on final NO _x	170
	concentration	
5.3	Effect of NSR on NO _x reduction for 5% urea solution	171
5.4	Effect of residence time on NO _x reduction at NSR of 4	171
5.5	Effect of residence time on NO _x reduction at NSR of 4	172
5.6	Effect of injection temperature and NSR on NOx reduction	172
	for 10% urea solution	
5.7	Effect of injection temperature and NSR on final NO _x	173
	concentration for 10% urea solution	
5.8	Effect of injection temperature and NSR on NO _x reduction	173
	for 25% urea solution	
5.9	Effect of dilution of urea solution (NSR = 3 and O_2 = 3-4%)	174
5.10	Effect of pressure on NOx reduction for 5% urea solution	174
	at 1128 K and NSR of 3	
5.11	Effect of pressure on final NO _x concentration for 5% urea	175
	solution at 1128 K and NSR of 3	
5.12	Effect of pressure on NO _x reduction vs. residence time	175
	profiles of 5% urea solution at 1128 K and NSR of 3	
5.13	Effect of pressure on NO _x concentration vs. residence	176
	time profile (NSR =3, Temp = 1128 K)	
5.14	Effect of temperature on reduction vs. pressure profile	176
	for 5% urea solution at NSR of 3	
5.15	Effect of temperature on NO _x concentration vs. pressure	177
	profile for 5% urea solution at NSR of 3	
5.16	Ammonia slip vs. injection temperature profile at the	177
	exhaust with 5% urea solution at NSR of 3	

5.17	Effect of NSR on ammonia slip for 5% urea solution	178
	at 1128 K.	
5.18	Effect of injection temperature on NO _x reduction for	179
	5% ammonia liquor at NSR of 4	
5.19	Effect of NSR on NO _x reduction for 5% ammonia liquor	179
	at 1093 K	
5.20	Reaction profile of NO _x concentration for 5% ammonia	180
	liquor at 1093 K and NSR of 4	
5.21	Reaction profile of NO _x reduction for 5% ammonia liquor	180
	at 1093 K and NSR of 4	
5.22	Comparison of reduction characteristics of urea and	181
	ammonia liquor at NSR of 3	
5.23	Comparison of reduction characteristics of urea and	181
	ammonia liquor with respect to base line value at NSR of 3.	
5.24	Comparison of reduction vs. NSR profile between	182
	aqueous urea and ammonia liquor at 1093 K	
5.25	Comparison between aqueous urea and ammonia liquor	182
	in terms of NO _x reduction vs. residence time profiles at	
	1093 K and NSR of 4	
5.26	Comparison between aqueous urea and ammonia liquor	183
	in terms of reaction profiles at 1093 K and NSR of 4	
5.27	Reduction vs. injection temperature profile for 10%	184
	Na ₂ CO ₃ of urea in 5% urea solution at NSR of 4	
5.28	Reduction vs. NSR profile for 10% Na ₂ CO ₃ of urea in	184
	5% urea solution at 1128 K	
5.29	Effect of temperature on NO _x reduction vs. residence	185
	time profiles for 10% Na ₂ CO ₃ of urea in 5% urea solution	
	at NSR of 4	
5.30	Effect of temperature on reaction profiles for 10%	185
	Na ₂ CO ₃ of urea in 5% urea solution at NSR of 4	
5.31	Comparison of reduction vs. injection temperature profiles	186
	between plain urea and 10% additive cases	
5.32	Comparison of NO _x reduction vs. residence time profiles between 5% additive and without additive cases at	186

	1093 K and NSR of 4	
5.33	Reduction vs. injection temperature profile for 5%	187
	Na ₂ CO ₃ of urea in 5% urea solution at NSR of 4	
5.34	Reduction vs. NSR profile for 5% Na ₂ CO ₃ of urea in	187
	5% urea solution at 1128 K	
5.35	Effect of temperature on NO _x reduction vs. residence	188
	time profiles for 5 % Na ₂ CO ₃ of urea in 5% urea solution	
	at NSR of 4	
5.36	Effect of temperature on NO _x concentration vs. residence	188
	time profiles for 5 % Na ₂ CO ₃ of urea in 5% urea solution	
	at NSR of 4	
5.37	Comparison of reduction vs. injection temperature	189
	profiles between plain urea and 5 % additive cases	
5.38	Comparison of NO _x concentration vs. injection temp	189
	profiles between plain urea and 5% additive cases	
5.39	Comparison of NO _x reduction vs. residence time	190
	profiles between 5 % additive and without additive cases	
	at 1093 K and NSR of 4	
5.40	Comparison of NO _x reaction profiles between 5 %	190
	additive and without additive cases at 1093 K and NSR of 4	
5.41	Reduction vs. injection temperature profile for 1% Na ₂ CO ₃	191
	of urea in 5% urea solution at NSR of 4	
5.42	Effect of temperature on NO _x reduction vs. residence time	191
	profiles for 1 % Na ₂ CO ₃ of urea in 5% urea solution at	
	NSR of 4	
5.43	Effect of temperature on reaction profiles for 1 % Na ₂ CO ₃	192
	of urea in 5% urea solution at NSR of 4	
5.44	Comparison of reduction vs. injection temp profiles	192
	between plain urea and 1 % additive cases	
5.45	Comparison of NO _x concentration vs. injection temp	193
	profiles between plain urea and 1% additive cases	
5.46	Comparison of NO _x reduction vs. residence time profiles	193
	between 1 % additive and without additive cases at	
	1093 K and NSR of 4	

5.47	Comparison of reaction profiles between 1 % additive	194
	and without additive cases at 1093 K and NSR of 4	
5.48	Comparison among different concentration of additives	195
	(at NSR of 4 and 5% urea solution)	
5.49	Comparison among different concentration of additives	195
	to 5% urea solution with respect to the base line	
	NO_x (NSR=4)	
5.50	Comparison among different concentration of additives	196
	to 5% urea solution in terms of reaction profiles (At 1093 $\rm K$	
	and NSR=4)	
5.51	Comparison among different concentration of additives	196
	to 5% urea solution in terms of NO _x reduction vs. residence	
	time profiles (At 1093 K and NSR=4)	
5.52	Effect of additives on ammonia slip at an NSR of 3	197
	(Na ₂ CO ₃ is used as additive to 5% urea solution)	

LIST OF SYMBOLS

C - Degree Celsius

F - Degree Fahrenheit

ASME - American Society of Mechanical Engineers

CN - Cyanide

CO - Carbon monoxide

CO₂ - Carbon oxide

d - Diameter

FGR - Flue Gas Recirculation

gm - Gram

GPH - Gallon per Hour

 H_2 - Hydrogen

 H_2O_2 - Hydrogen peroxide

H₂SO₄ Sulfuric acid

HCN - Hydrogen cyanide

hr - Hour

K - Kelvin

kJ - Kilo Joule

Kmol - Kilo mole

kW - Kilowatt

LNB - Low NO_x Burner

 m^3 Cubic meter

ml - Milliliter

mm - Millimeter

MW - Megawatt

 N_2O - Nitrous oxide

Na₂CO₃ Sodium carbonate

NH₃ - Ammonia

NO - Nitric oxide

NO₂ - Nitrogen dioxide

 NO_x - Nitrogen oxides

NSR - Normalized Stoichiometric Ratio

 O_2 - Oxygen O_3 - Ozone

OFA - Over Fire Air

ppm - Parts Per Million

SCR - Selective Catalytic Reduction

SNCR - Selective Non-Catalytic Reduction

SO₂ - Sulfur dioxide

T - Temperature

VOC - Volatile Organic Compound

vol - Volumewt - Weight

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Typical calculation for the volumetric flow rate of	215
	the flue gas at experimental operating conditions	
В	Typical calculation of flow rate of the flue gas	218
C	Typical calculation of residence time of the flue gas	219
D-1	Typical calculation of the amount of urea flow	221
D-2	Typical calculation of the amount of ammonia flow	222
E-1	Typical calculation of volumetric flow rate of flue	223
	gas using MS-Excel	
E-2	Typical calculation of residence time using	224
	MS-Excel	
E-3	Typical calculation of the reagent flow rate using	225
	MS-Excel	
E-4	Flow meter calibration for 5% urea solution	226
F	Composition of diesel fuel and different reagents	227
	used	
G	Flow diagram of general experimental procedure	229
H	Schematic diagram of lance type injector mounted	230
	in a hoiler	

CHAPTER 1

INTRODUCTION

Over the past 150 years, the emissions of nitrogen oxides have been increasing steadily through out the globe. Their growing presence in the atmosphere has tremendous impact on earth's ecology and affects human health. The origin of these emissions is mostly anthropogenic and mainly attributed to the combustion of fossil fuels and biomass. Continuing industrial revolution and growing numbers of traffics increase the use of fossil fuels and as a result, these oxides are becoming increasing. Rapid increases in global air travel are also a concern with great potential for increased emission of nitrogen oxides directly to the troposphere. All oxides of nitrogen are commonly referred as NO_x but most common are NO, NO₂ and N₂O Among the nitrogen oxides, emission of nitric oxide (NO) is the most significant. Over 90% of the NO_x from the combustion sources is in the form of NO and eventually it forms NO₂ reacting with atmospheric oxygen and only for this reason most of the NO_x reduction efforts are related to the abatement of NO produced during combustion. Concerns for protecting the environment from pollutants emissions have set some stringent regulations to limit the nitrogen oxides emissions in many countries.

This chapter initially provides a brief overview of the environmental and health concerns of NO_x. This is followed by the importance of the present studies. Finally, the objectives and scopes of the present work and the thesis layout are described at the end of the chapter.

1.1 Detrimental Effects of NO_x

Concerns related to NO_x emissions are becoming increasing because of their tremendous adverse effect on health and environment. NO_x are directly involved in producing photochemical pollutants and acid rain. Besides, N₂O is regarded as green house gas, which causes global warming.

1.1.1 Impact of NO_x on the Environment

1.1.1.1 Photochemical Smog

Photochemical smog is a condition, which develops when the primary pollutants such as oxides of nitrogen and volatile organic compounds (VOC) interact under the influence of sunlight at a temperature greater than 291 K (Grennfelt *et al.*, 1984). Development of photochemical smog is typically connected with the particular climatic conditions and most likely to occur in the cities of high population density. Cities like Los Angles, New York, Vancouver, Sydney and London frequently experience the episodes of photochemical smog. Photochemical smog consists of hundreds of different hazardous chemicals. It reduces the visibility due to its glowing brown colour (Elsom, 1992). The major constituents of photochemical smog are NO_x, volatile organic compounds, ozone and peroxyacetyl nitrates (PAN). Nitrogen oxides might be formed by one of the following reactions:

$$O_3 + NO = NO_2 + O_2$$
 (1.1)

$$NO + RO_2 = NO_2 + other products$$
 (1.2)

R is the hydrocarbon radical that is produced from volatile organic compounds. Sunlight can break down the nitrogen dioxide (NO₂) to form nitrogen oxide (NO).

$$NO_2 + Sunlight = NO + O$$
 (1.3)

The atomic oxygen of the above equation reacts with atmospheric oxygen and eventually forms ozone (O_3) .

$$O + O_2 = O_3$$
 (1.4)

NO₂ also reacts with the hydrocarbon radicals in a series of reaction and forms PAN.

All the components of photochemical smog have harmful impact on environment and human health. NO and NO₂ are harmful if inhaled in high concentration. NO₂ can reduce the photosynthesis and CO₂ fumigation and thus suppresses the plant growth (Hill and Bennett, 1970). Volatile organic compounds (VOC) causes eye irritation, respiratory irritation and decreases visibility due to it's blue-brown-haze. Ozone has numerous detrimental effects on human health such as it causes bronchial constriction, coughing, wheezing, respiratory irritation and eye irritation. It has also bad impact on environment as it retards plant growth, damages plastics and breaks down rubber. Peroxyacetyl nitrates (PAN) cause eye irritation, respiratory irritation and damages proteins. Like other constituent of photochemical smog it is also toxic to plants.

1.1.1.2 Acid Deposition

Acidic deposition, or "acid rain," describes any form of precipitation, including rain, snow, and fog, with a pH of 5.5 or below. Two common air pollutants are responsible for acid rain: sulfur dioxide (SO₂) and nitrogen oxides (NO_x). When

nitrogen oxides dissolve in water and decompose with water they form nitric acid (HNO₃) and nitrous acid (HNO₂). Acid rain causes damages to plantation and vegetation. It increases the acidity of lake water and severely affects the aquatic species. Acidification can also affect vertebrate species other than fish. For example, studies show acidic deposition can affect the diet, foraging, distribution, and reproduction of bird species that depend on the aquatic environment (Longcore *et al.*, 1993). Acidic deposition affects terrestrial wildlife species by damaging habitat or contaminating food sources (Schreiber and Newman 1988).

1.1.1.3 Global Warming

Global warming is a consequence of green house effect, however, green house effect is due to the effect of some trace gases in the atmosphere such as nitrous oxide, carbon dioxide, ground level ozone and methane. They absorb the longer wavelength of heat energy or reflect it back to earth surface and thus provide resistance to heat energy to be radiated to the space. As a consequence the globe is getting heated gradually. If such trend is allowed to continue then forests, agriculture, water resources, natural ecosystem and human as well as animal health will be severely affected. Besides, sea level is predicted to rise, which will submerge plenty of low lands.

N₂O contributed about 6% of the green house effect in 1980s. Between 1880 and 1980, the concentration of N₂O was changed from 285 to 300 ppb, which was theoretically responsible for 0.02 K temperature change (Houghton *et al.*, 1990). Although NO and N₂O are not directly related to the green house effect, they contribute indirectly in producing the ground level ozone.

1.1.1.4 Ozone Layer Depletion

Stratospheric ozone is found in a broad band, usually extending from about 15 to 35 kilometers above the earth. Although it makes up to one-millionth of the volume of the atmosphere, Ozone plays very important role to absorb the UV-B and UV-C rays from the sun, so it is essential to the existence of most life on earth (Hengeveld, 1995). Ultraviolet radiation is extremely harmful to living tissue and UV-B and UV-C rays are particularly damaging. Ozone absorbs almost all of the UV-C and prevents more than 70% of the UV-B radiation from entering into the earth's surface. (Hengeveld, 2000). The ozone layer is continuously depleting by some direct or indirect effects of some substances such as chlorine (Cl), bromine (Br), nitrogen oxides (NO_x), and hydrogen oxide radicals (HO_x). Among these only direct as well as indirect activity of NO_x has been attributed to contribute to almost half of the stratospheric ozone layer depletion (Sloss et al, 1992).

The Aircrafts are the major sources of nitrogen oxides' emissions to the stratosphere. For instance, nitrogen oxide emissions (NO_x) from aircraft account for around 3% of anthropogenic NO_x emissions, however 25-30% of total NO_x in the upper troposphere is due to aircraft emissions (Lamarque *et al.*, 1996). Ultraviolet ray splits relatively unstable O₃ molecules into O₂ and atomic O. Most of the time, the O atom created by ozone break up and recombines with one of the plentiful O₂ molecules to form O₃ again. This ozone-creation process is constantly at work and producing more ozone. But N₂O reacts with that free O atom to form NO. Ozone then oxidizes the NO to form NO₂ that further reduces by the O atom and eventually forms more NO. So, plenty of ozone atoms are destroyed by this chain reaction. If N₂O is made double it could result in a 12% increase in total stratospheric ozone (Sloss *et al.*, 1992).

1.1.2 Impact of NO_x on Health

The oxides of nitrogen have severe adverse effect on human as well as animal health. Both NO and NO₂ contribute to heart and lung problems. Exposure of low levels of NO₂ can affect the function of kidneys, liver, spleen, red blood cells and cells of the immune system (Sloss *et al.*, 1992). Besides, NO and NO₂ may encourage the spread of cancer. Most common disease related to NO₂ exposure is respiratory illness. An intensive survey conducted in some areas in USA showed that an increase in respiratory illness occurred after six months for an average concentration of NO₂ from 0.109 to 0.062 ppm. The same survey reported that the infant acute bronchitis cases also increased for NO₂ concentrations in the range from 0.063 to 0.083 ppm over a six- month period (Shy *et al.*, 1970).

NO_x have severe bad impact on animal health as well. It was observed to be fatal to most exposed mammals at a concentration higher than 100 ppm (US EPA, 1993). Short-term non-lethal exposure of NO₂ can change the pulmonary function in the lungs of monkey (Henry *et al.*, 1965). Exposure of 15 to 50 ppm for two hours caused damage to lungs, heart, liver, kidneys and pulmonary changes of monkeys (US EPA, 1993). A 12-minute exposure of mice to 2500 ppm of NO was observed to be lethal (Flury and Zernick, 1931).

1.1.3 Impact of NO_x on Materials

The effects of air pollution are also extended to man made items such as fabrics, metals and cultural properties. Loss of color has been observed in cotton as well as rayon fabrics due to the effect of only 0.6 to 2 ppm of NO_x generated from natural gas heated domestic dryers (McLendon and Richardson, 1965). Cotton and nylon textile fibers can deteriorate from exposure to elevated ambient NO_x

concentrations (Morris et al, 1964). Increased metal failures might occur due to the elevated particulate nitrate and NO_x concentrations (Hermance *et al.*, 1970). Nitrogen oxides can also accelerate corrosion to nickel, aluminum and pewter.

1.2 The Importance of the Present Studies

Today, control of NO_x emission is becoming increasingly important because of their tremendous adverse effect on health and environment as mentioned in Section 1.1. The industrial revolution is the central cause for the increase of NO_x in the atmosphere. All types of combustion sources are contributing the NO_x. Boilers, furnaces and industrial burners are the major combustion sources. The continuous rising trend of NO_x is becoming increasingly alarming for the human health and environment. Due to the growing concerns of the NO_x some stringent regulations have been applied to limit the NO_x emission and as a result, emission from the developed world is remained relatively constant over the last few years. So application of NO_x abatement technologies is very important for developing countries. A great numbers of researches are required to develop suitable NO_x abatement technologies in perspective of these areas.

In order to reduce NO_x, both primary and secondary measures are employed. (Sarofim and Flagan, 1976; Rosenberg *et al.*, 1980). Primary measures modify the combustion conditions by employing different techniques, such as fuel rich combustion, lowering the primary air temperature, multistage combustion, flame cooling, flue gas recirculation etc. However, such measures tend to produce undesirable levels of nitrous oxide and carbon monoxide and their NO_x reduction efficiency is not so remarkable. There is no known primary method that can reduce both NO_x and carbon monoxide to an acceptable level without serious economic drawbacks.

As a consequence of continuous extensive investigations, some economically attractive as well as efficient methods in aspect of NO_x reduction have come in to face and among these most common and widely accepted methods are Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR). Both are involved in combustion gas treatment before it comes out to atmosphere (Lyon, 1975; Bowman, 1992).

Despite the fact that SCR has higher NO_x reduction efficiency, it has several disadvantages as well, which include high capital investment cost, higher operating cost than most other options, limited catalyst life, catalyst poisoning, large space requirement to install and required higher upstream pressure to enable the exhaust gas flow through the catalyst (Caton *et al.*, 1995). In contrast, SNCR has minimized all the problems of SCR. Moreover, it can be used in dirty and fouling services (Particulates and/or high sulfur) and it is easier to retrofit. For this, nowadays a number of SNCR installations have been adopted in coal, oil and gas fired power station boilers, industrial boilers, refineries and waste incinerators (Rentz et al, 1996). As it requires little capital cost and easy to retrofit, it is best suited to the developing countries. Recently, SNCR has been adopted in different industries in South Korea, China, Taiwan and the Czech Republic (Redojevic, 1998).

So many researches based on urea SNCR are already conducted by different researchers, which demonstrates that NO_x reduction performance and effective temperature window vary depending on the geometry of combustion chamber, geometry and performance of the atomizer and types of fuels used. (Mansour *et al.*, 1987; Abele *et al.*, 1991; Nylader *et al.* 1989) Most of the researches were related to the coal and gas burning exhaust and especially with high initial ppm of NO_x. As far as diesel exhaust is concerned, no document has been documented using urea SNCR yet. As most of the small-scale combustion facilities still use the diesel fuel, so to fill up the large gap, research is strongly required in this area.

As for low value of base line NO_x , Teixeira *et al.* (1991) observed that below 125 ppm of base line NO_x the performance of NO_x reduction was very insignificant. In their studies, they used a pilot scale combustor and natural gas as fuel. So, further studies are required with low initial value of NO_x employing different types of fuels' exhaust to get the distinct idea about the performance of urea SNCR as for low ppm of base line NO_x .

In all the previous studies, where urea SNCR was concerned, were conducted using laboratory grade urea. So far, no document is available using the commercial grade urea. Laboratory grade is much more expensive than commercial grade. So, in order to make the urea SNCR cheaper and acceptable to all levels it is essential to conduct some researches to investigate the performance of commercial grade urea in reducing NO_x.

It is already demonstrated in a number of researches that additives in urea solution have some significant roles in improving the NO_x reduction performance as well as shifting or widening the effective temperature window of reduction. A lot of studies were conducted in order to find some suitable additives for urea SNCR application, which demonstrated that certain organic and inorganic compounds could be used as additives. The organic compounds are commonly methane, various combinations of hydrocarbons, ethylene glycol, furfural, series of sodium acrylamide co-polymers and alkaline oxide co-polymers, while inorganic compounds are hydrogen, carbon monoxide, hydrogen peroxide, calcium phosphate, sodium nitrate etc. (Daniel *et al.*, 1996; Lyon and Hardy, 1986; Burton, 1989). In a recent study, Zamansky *et al.* (1999) demonstrated the sodium carbonate (Na₂CO₃) to be a very effective inorganic additive. However, they used laboratory grade Na₂CO₃, so, in order to reduce the operating cost of the SNCR process more, further researches are essential to investigate the reduction performance of the commercial grade Na₂CO₃.

In these perspectives, the present studies are aimed to investigate the NO_x reduction characteristics of commercial grade urea in reducing NO_x from a diesel burning exhaust that is containing low ppm of base line NO_x and also to study the effect of commercial grade additive such as Na_2CO_3 on the urea based SNCR process.

1.3 Objectives and Scopes of the Present Studies

1.3.1 Objectives

- 1) To study the NO_x reduction behavior of urea based SNCR in diesel burning exhaust gas containing low ppm of initial NO_x .
- To study the effect of inorganic additives on the urea based SNCR in terms of NO_x reduction performance.

1.3.2 Scope of the Studies

- 1) Design and fabrication of a pilot-scale combustion chamber for a small capacity industrial diesel burner in order to study the urea based SNCR.
- 2) Design and fabrication of an injection system for the aforesaid combustion chamber, which is capable of producing a wide range of droplet sizes varying the injection pressure and flow rate of the NO_x reducing agent.

- 3) Experimental studies so as to know the effect of commercial grade urea instead of laboratory one on the NO_x reduction characteristics with varying injection temperatures, atomizing pressures, concentrations of reagent, reagent injection rate and residence time.
- 4) Study the performance of the urea SNCR in the diesel burning exhaust and comparing the results obtained by previous researchers for the different fuels exhaust.
- 5) Study the performance of the urea SNCR in the diesel exhaust containing low value of initial NO_x.
- 6) Experimental studies to understand the effect of commercial grade inorganic additives such as Na₂CO₃ on the NO_x reduction performance of urea SNCR with varying concentrations of Na₂CO₃ in aqueous urea solution, temperatures of injection and residence time.
- 7) Determination of the level of ammonia slip formed as a byproduct during the SNCR application.

1.4 Thesis Outline

The thesis is completed in subsequent five chapters, which are organized as follows.

Chapter two gives a literature review, which includes the information about different NO_x formation mechanisms and different pre-combustion and post combustion technologies of NO_x control, while chapter three provides a review of present status of Selective Non-Catalytic Reduction of NO_x using urea and ammonia as NO_x reducing agents, effect of different operating parameters on NO_x reduction

efficiency and temperature window of SNCR and review of the effect of additives on NO_x reduction characteristics of SNCR process. Chapter four describes the details of the experimental set up and test procedures adopted. Results of the present studies are plotted in chapter five. This chapter also includes elaborate discussion of all the results comparing with the work of previous researchers. Finally, in chapter six, the conclusions of the findings of present studies are provided along with the proposal for future work necessary to be investigated in this particular area of research.

should be studied. This could be carried out by developing a kinetic modeling employing CHEMKIN or SENKIN chemical kinetic code.

Reagent-flue gas mixing has a significant effect on the NO_x reduction performance. In the present studies no such investigation was carried out. In the future some studies could be conducted in this potential area of SNCR application.

The present studies were concerned with low ppm of baseline NO_x, however the performance of commercial grade urea should also be studied in the effluent containing high ppm of baseline NO_x.

N₂O emission is a harmful byproduct of SNCR operation, which is usually more while urea is injected as reducing agent. In present studies it could not be studied due to the limitation of the gas analyzer, however in future it is strongly recommended that such test could be carried out in the present investigated conditions.

REFERENCES

- Abele, A. R., Kawn, Y. and Mansour, M. N. (1991). Performance of Urea NO_x Reduction Systems on Utility Boilers. *Joint EPA/ EPRI Symposium on Stationary Combustion NO_x Control*. Springfield, VA: NTIS, 6A, 1-19.
- Abele, A. (1993). Technology Advancements for NO_x Control. A&WMA Workshop on NO_x Control for stationary Sources. Ventura, California.
- Albanese, V. (1996). Evaluation of Hybrid SNCR/SCR for NO_x Abatement on a Utility Boiler. International Technical Conference on Coal Utilization and Fuel Systems. 21, 75-86.
- Albanese, V., Kellogg, G. and Eisenmann, D. R. (1994). The Clean Air Advisor. NALCO/FUEL TECH, Naperville, IL. 3(2): 1-6.
- Arand, J.K., Muzio, L. J. and Teixeira, D. P. (1982). Urea Reduction of NOx in Fuel Rich Combustion Effluents. (U.S. 4,325,924).
- Arand, J. K., Muzio, L. J., and Sotter, J. G., (1980). Urea Reduction of NO_x in Combustion Effluents. (U.S. 4,208,386).
- Azuhata, S., Akimoto, H. and Hishinuma, Y. (1982). Effect of H₂O₂ on Homogeneous Gas Phase NO reduction with NH₃. AIChE Journal. (28): 7-11.
- Azuhata, S., Kaji, R., Akimoto, H. and Hishinurma, Y. (1981). A study of the NH₃-NO-O₂-H₂O₂ Reaction. Eighteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 845-852.
- Banna, S. M. and Branch. M. C. (1981). Mixing and Reaction of NH₃ with NO in Combustion Products. *Combustion and Flame*. (42): 173-181.
- Beck, N. J. (1995). Optimized Performance and Emissions for Dual Fuel Gas/Diesel Engines. *Diesel Engine Emissions Reduction Workshop*. La Jolla, California.
- Benz, P., Arnold, A., Bengtsson, K., Marti, T., Schaeren, R., Schlegel, A., Frouzakis C.E. and Boulouchos, K. (1997). Combustion Management for Lowest NOx Emissions in Lean Premixed Combustors. Zuerich, Switzerland: Paul Scherrer Institute, 670.
- Berman, M. R., Fleming, J. W., Harvey, A. B. and Lin, M. C. (1982). Temperature Dependence of CH Radical Reactions with O₂, NO, CO and CO₂, Nineteenth

- Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 73-79.
- Boo, M. C., Eoe, S. H., Jang, W. C., Jo, Y. D., Yang, D. C., Park, J. B., Paul G. Carmingnani, PE, Sun W. H. (2001). First Installation of Selective Non-Catalytic NO_x Reduction Process on Utility Boilers in Korea. *U.S.EPA/DOE/EPRI Mega Symposium 2001 MEGA Symposium, Chicago, IL*.
- Bounicore, Anthony J. and Wayne, T. D. (1992). Air Pollution Engineering Manual. New York: Van Nostrand Reinhold.
- Bowers, W.E. (1988). Reduction of Nitrogen-Based Pollutants Through the Use of Urea Solutions Containing Oxygenated Hydrocarbon Solvents. (U.S 4,719,092).
- Bowman, C. T.(1992). Control of Combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulation. *Proceedings of the Twenty-Fourth Symposium* (International) on Combustion. Combustion Institute, Pittsburgh. 859-878.
- Bromly, J. H., Branes, F. J., Johnson, R. C. R. and Lottle, L. H. (1984). Nitrogen Oxide Emissions from Unfueled Space Heaters. J. Inst. Energy. (57) 411-415.
- Brouwer, J., Heap, M.P., Perishing, D.W. and Smith P.J. (1996). A Model for Prediction of Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea and Cyanuric Acid with Mixing Limitations in the presence of CO. *The Proceedings of Sixth international Symposium on Combustion*. Naples, Italy.
- Burton, A. B. (1989). Process for Reducing the Concentration of Pollutants in an Effluent. (U.S. Patent 4,842,834).
- Calvert, J. G., Heywood, J. B., Sawyer, R. F. and J. H (1993). Achieving Acceptable Air Quality: Some Reactions on Controlling Vehicle Emissions. Science. (261).
- Caton, J. A. and Seibers, D. L. (1989). Reduction of Nitrogen Oxides in Engine Exhaust Gases by the Addition of Cyanuric Acid. *Journal of Eng. for Gas Tturbines and Power*. (111): 393-398.
- Caton, J. A. and Seibers, D. L., (1991). Effects of Hydrogen Addition on the Removal of Nitric Oxide in Exhaust Gases by Cyanuric Acid. *Twenty-Third Symposium* (International) on Combustion. Pittsburgh: The Combustion Institute, 225-230.
- Caton, J. A., Narney, J. K. and Laster, W. R. (1994). Paper No 15, Central States Section/ The Combustion Institute Technical Meeting, Madison, WI.
- Caton, J. A., Narney, J. K., Cariappa, H. C. and Laster, W. R. (1995). The Selective Non-Catalytic Reduction of Nitric Oxide Using Ammonia at up to 15% Oxygen. *The Canadian Journal of Chemical Engineering*. 73. 345-350.

- Chen, S. L., Cole, J. A., Heap, M. P., Kramlich, J. C., Mc Carthy, J. M. and Pershing, D.W. (1988), Advanced NO_x Reduction Processes Using –NH and –CN Compounds in Conjunction with Staged Addition. *The Proceedings of Twenty-Second Symposium (International) on Combustion*, The Combustion Institute, Pittsburgh. 1135-1145.
- CIA (2003). Report on Measures Taken by Each City. Asian Network of Major Cities 21 Joint Project. Clean Air Asia.
- Ciarlante, V. P.E. and Zoccola, M. A. (1997). Application of Urea SNCR on a Tangentially Fired 84 Mwe Pulverized Coal Boiler. First Annual DOE Conference on Selective Catalytic and Non-Catalytic Reduction for NO_x Control. Pittsburgh, PA.
- Comparato, J. R., Buchs, R. A. and Arnold, D. S. (1991). NO_x Reduction at Argus Plant Using NO_x OUT Process. *The Proceedings of the Joint EPA/EPRI Symposium on Stationary Combustion* NO_x Control. NTIS, Springfield, VA. Section 5B. 37-54.
- Cooper, C. David and Alley F.C (1986). Air Pollution Control: A Design Approach. Waveland Press.
- Correa, S. M. (1992). A Review of NO_x Formation Under Gas-Turbine Combustion Conditions. *Comb. Science and Technology*. (87): 329-362.
- Daniel, D.V., Linda, L. M., and Cheristiansen, P. B. (1996). Process for Pollution Control. (U.S. Patent 5,536,482).
- De Boer, P. C. T. (1984). Two Simple Models for the Non-Catalytic Reduction of NO with NH₃. American Flame Research Committee. Paper No. 1.6
- De Soete, G. G. Overall Reaction Rates of NO and N2 formation from Fuel Nitrogen, Fifteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1093-1102.
- Dean, A. J, Hanson, R. K. and Bowman, C. T. (1990). High Temperature Shock Tube Study of Reactions of CH and C-Atoms with N₂. Twenty-Third Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 259-265.
- Dean, A. M., Hardy, J. E. and Lyon, R. K. (1982). Kinetics and Mechanism of NH₃ Oxidation, 19th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 97-105.
- Devita, V. A. (1990). Boiler and Injector for Reducing the Concentration of Pollutants in an Effluent. (U. S. 4,915,036).
- Diehl, L A. (1979). Reduction of Aircraft Gas Turbine Pollutant Emissions- a Status Report. 71st Annual Meeting. Air Pollution Control Association. 78-26.4.
- Diginon, J. and Hameed, S. J. (1989). Air Pollution Control Assoc. 39. 180-189.

- Dill, J. W. and Sowa, W. (1992). Paper No. Western States Section/The Combustion Institute Fall Technical Meeting, Berkeley. CA.
- DOE (2003). A Guide to Air Pollutant Index in Malaysia. Department of Environment.

 Ministry of Science Technology and Environment.
- Duo, W., Dam-Jahansen, K. and Stergaard, K. (1990). Widening the Temperature Range of the Thermal DeNO_x Process. An experimental Investigation. *Twenty-Third Symposium (International) on Combustion*. Pittsburgh: The Combustion Institute, 297-303.
- Eddings, E., Cremer, M., Hardman, R., Cox, J., Martz, T., Muzio, L., Quartucy, G. and Stallings, J. (1998). U. S. DOE SCR and SNCR for NO_x Control Conference.
- Edgar, B. L. (1997). Dimethyl Ether and Other Oxygenated Fuels for Low Emission Diesel Engine Combustion. University California Berkeley: Ph. D. Thesis.
- Electric Power Research Institute (1994), ECS Update, Summer. Number 33.
- Elsom, D. M. (1992) A Global Problem. Atmospheric Pollution. Second Edition. Blackwell Publication.
- Epperly, W. R. and Broderick, R. G. (1988). Control of Nitrogen Oxides Emission from Stationary Sources. 50th Annual Meeting of the American Power Conference. IL, USA. 911-915.
- Fenimore, C. P. (1980). Destruction of NO by NH3 in Lean burnt Gases. Combustion and Flame. (37): 245-250.
- Flower, W. L., Hanson, R. K. and Kruger, C. H., (1974). Kinetics of the Reaction of Nitric Oxide with Hydrogen. *Fifteenth Symposium (International) on Combustion*. Pittsburgh: The Combustion Institute, 823-832.
- Flury, F. and Zernick, F. (1931). Schadliche Gas. Berlin, Springer.
- Folsom B. A, Sommer, T. M, Latham C. E, Moyeda D. K, Gauaellet G.D, Janik G. S, Whelen M. P. (1997). Demonstration of Advanced Gas Reburning for NO_x Emission Control. *Joint Power Generation Conference*, 1-7.
- Folsom, B. A, Payne, R., Moyeda, D., Zamansky, V., Golden, J. (1995). Advanced Reburning with New Enhancements. *EPRI/EPA Joint Symposium on Stationary Combustion NO_x Control.* Kansas City, MO.
- Frey, H. C. (1996). Engineering Economic evaluation of NO_x Control Systems for Coal Fired Power Plants. Fuel and Energy Abstracts. 37(2):39.
- Glarborg, P., Miller, J. A., and Kee, R. J. (1986). Combustion and Flame, (65): 177-202. Glassman, I. (1996). Combustion. Academic Press. ISBN 0-12-285852-2.

- Hampartsoumian, E. and Gibbs, B. M. (1982). The Influence of NH₃ Addition on the NO Emissions from a Coal Fired Fluidized Bed Combustor. *Nineteenth Symposium* (International) on Combustion. Pittsburgh: The Combustion Institute, 1253-1262.
- Han, X., Wei, X., Schnell, U. and Hein, K. R.G. (2003). Detailed Modeling of Hybrid Reburn /SNCR Processes for NO_x Reduction in Coal Fired Furnaces. *Combustion and Flame*.132(3): 374-386.
- Hayhurst, A. N., and Vince, I. M. (1980). Prog. Energy Combust. Sci. (6): 35-51.
- Hazard, H. R. (1974). Conversion of Fuel Nitrogen to NO_x in a Compact Combustor. J. Eng. Power Trans. ASME. (A96): 185-188.
- Heberling, P. V. (1976). Prompt NO Measurements at high Pressures, Sixteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 159-168.
- Henry M. C., Ehrlich, R., Blair, W. H. Effect of Nitrogen Dioxide on Resistance of Squirrel Monkeys to Klebsiella Pneumoniae Infection. *Arch. Environ. Health.* (18): 580.
- Hermance, H. W., Russell, C. A., Bauer, E. J., Egan. T. F., Wadlow, H. V. (1970). Relation of Air Borne Nitrate to Telephone Equipment Damage. *Environment Sci. Techn.*
- Higgins, S. T. and Douglas, R. E (1990). Injection of Ammonia and Ammonia-Based Compounds for the Control of Nitrous Oxides at Homer City. 7th International Pittsburgh Coal Conference. Pittsburgh. 827-836.
- Hill, A. C., Bennett, J. H.(1970) Inhibition of Apparent Photosynthesis by Nitrogen Oxides. *Atmos. Environ*.
- Hjalmarsson, A. K. (1990). NOx Control Technologies for Coal Combustion. IEA Coal Research Report. IEACR/24.
- Ho, L. Chen, S. L., Seeker, W. R. and Maly, P. M. (1993). Methods for Controlling N_2O Emissions and for the Reduction of NO_x and SO_x Emissions in Combustion Systems While Controlling N_2O Emissions. (U.S. 5,270,025).
- Houghton, J. T., Jenkins, G. T., and Ephramus, J. J. (1990). *Climate Change*. The IPCC Scientific Assessment. Cambridge University Press, Cambridge.
- Houser, T. J., Mccarvile, M.E., Zhou-Ying, G. (1988). Fuel. (67): 642-650.
- Hulgaard, T. and Dam-Johansen, K. (1993). AIChE. 39(8): 1342-1354.
- Hurst, B. E. (1983). The Non-Catalytic De Nitrification Process for Glass Melting Furnace. Glass Technology. (24): 97-101.

- Hurst, B. E. (1985). Thermal DeNO_x Technology Update. *Joint Symposium on Stationary NO_x Control*. Boston, MA. 1-20.
- Irfan, N. (1996). Selective Non-catalytic reduction of NO_x . University of Leeds: Ph.D Thesis.
- Ishak Aminuddin (2001). Urban Air Quality Management: Motor Vehicle Emission Control in Malaysia. Clean Air Regional Workshop. Malaysia
- Iverach, D., Basden, K. S., Kirvo, N. Y. (1973). Formation of Nitric-Oxide in Fuel-Lean and Fuel-Rich Flames. Fourteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 767-775.
- Jodal, M., Nielsen, C., Hulgaard, T. and Dam-Johansen, K. (1989). A Comparative Study of Ammonia and Urea as Reductants in Selective Non-Catalytic Reduction of Nitric Oxide. ACHEMASIA, Beijing.
- Jodal, M., Nielsen, C., Hulgaard, T. and Dam-Johansen, K. (1990). Pilot-Scale Experiments with Ammonia and Urea as Reductants in Selective Non-Catalytic Reduction of Nitric Oxide. 23rd Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 237-243.
- Johnson, H. S. and Smith, M. Y. (1978). Emissions of Nitrogen Dioxide from a Large Gas Turbine Power Station. Comb. Sci. Tech. (19): 67-70.
- Johnsson, J. A., Glarborg, P. and Dam-Johansen, K. (1992). Thermal Dissociation of Nitrous Oxide at Medium Temperatures. *Twenty-Fourth Symposium (International) on Combustion*. Pittsburgh: The Combustion Institute, 917-923.
- Jones, D. G., Muzio, L. J., Stocker, E., Nuesch, P.C., Nagrea, S., Ofenbau, K.K, Lautenschlager, G., Wachter, E. and Rose, G. (1989). Two stage DeNO_x Process Test Data for 300 TPD MSW Incineration Plant. *The Proceedings of the 82nd APCA Meeting and Exhibition*. Anaheim, CA. No. 8, 21-27.
- Kataoka, S. (1992). Coal Burning Plant and Emission Control Technologies. Technical Note. World Bank, China Country Development, Washington, D.C.
- Keith, M. B. and Stephen, F. J. (1989). NO_x Control Technology for Boiler Fired with Natural Gas or Oil. *Tappi Journal*. 123-130.
- Kimball-Linne, M. A. and Hanson, R. K. (1986). Combustion and Flame. (64): 337-351.
- Kirchstetter, T. W., Singer, B. C., Harley, R. A., Kendall, G. R. and Chan. W. (1996). Impact of Oxygenated Gasoline on California Light-Duty Vehicle Emissions. *Environ. Sci. Technol.* (30): 661-670.

- Kishore, N and de Boer, P. C. T. (1984). Flow Reactor Studies of the Thermal DeNOx Process. Paper No. 1.7. American Flame Research Committee.
- Kristensen, P. G., Glarborg, P., Dam-Johansen, K. Karll, B. and Gemmer, R. V. (1992). Reburning Rich-Lean Kinetics. *International Gas Research Conference*. 2437-2446.
- Lefebvre, A. H. (1983). Gas Turbine Combustion. Hemisphere, Washington, D. C.
- Leonard, G. L. and Correa, S. M. (1990). NO_x Formation in Lean Premixed High Pressure Methane Flames. *ASME/PD*. (30): 69-74.
- Levy, A. (1982). Unsolved Problems in SO_x, NO_x, Soot Control in Combustion. Nineteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1223-1242.
- Lindackers, D., Burmeister, M. and Roth, P. (1990). Pertubation Studies of High Temperature C and CH Reactions with N₂ and NO, Twenty-Third Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 251-257.
- Lodder, P. and Lefers, J. B. (1985). Effect of Natural Gas, C₂H₆ and CO on the Homogenous Gas Phase Reduction of NO_x by NH₃. The Chemical Engineering Journal. (30): 161-167.
- Longcore, J.R., Boyd, H., Brooks, R.T., Haramis G.M., McNicol D.K., Newman, J.R. Smith K.A., and Stearns, F. (1993) Acidic Depositions: Effects on Wildlife and Habitats. *Wildlife Society Tech*. Rev. 93-1: 42.
- Lucas, D. and Brown, N. J. (1982) Characterization of the Selective Reduction of NO by NH₃, Combustion and Flame. (47): 219-234.
- Lucas, D. and Brown, N. J. (1982). Characterization of the Selective Reduction of NO by NH₃. Combustion Flame. (47): 219-234.
- Lucas, D. and Brown, N. J. (1983). The Influence of Thiphene on the Selective Reduction of NO by NH₃. Combustion and Fame. (49): 283-288.
- Lyon, R. K. (1975). Method for the Reduction of the Concentration of NO in Combustion Effluents Using Ammonia. (U.S Patent 3900554).
- Lyon, R. K. (1979). Thermal DeNO_x: How It Works. *Hydrocarbon Processing*, (58): 109-112.
- Lyon, R. K. (1987). Thermal DeNOx; Controlling NO_x Emission by Non-Catalytic Process. *Environmental Science and Technology*. (21): 231-236.
- Lyon, R. K. and Benn, D. (1978). Kinetics of the NO-NH₃-O₂ Reaction. Seventeenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 601-610.

- Lyon, R. K. and Hardy, J. E. (1986). Discovery and Development of the Thermal DeNO_x Process, *Industrial and Engineering Chemistry Fundamentals*. 25. 19-24.
- Lyon, R. K.and Longwell, J. P. (1976). Selective Non-Catalytic Reduction of NO_x by NH₃. NO_x Control Technology Seminar, San Francisco, California. 237-256.
- Mussatti, D. C. (2002). *The EPA Air Pollution Control Cost Manual*: Technical Report No. 452/B-02-001.
- Malone, P. E. P. M. and Sun, W. H. (2000). Cardinal Unit 1, Large Scale Selective Non-Catalytic Reduction Demonstration Project. 2000 Conference on Selective Catalytic-Selective Non Catalytic Reduction for NO_x Control. Pittsburgh, PA.
- Mansour, M. N., Nahas, S. N., Quartucy, G. C., Nylander, J. H., Kerry, H. A., Radak, L.J., Eskinazi, D., and Behrens, T.S., (1987). Full Scale Evaluation of Urea Injection for NO Removal. *The Proceedings of the Joint EPA/EPRI Symposium on Stationary Combustion NO_x Control*. New Orleans, Louisiana. No. 43. 1-23.
- Mclendon, V., Richaardson, F. (1965). Oxides of Nitrogen as a Factor in Color Changes of Used and laundered Cotton Articles. *Amer. Dyest. Rep.* (54): 305.
- Melick, T. A. and Payne, R. (1997). Advances in NOx Control through burner Modifications in Practical Combustion Systems. Western States Section. The Combustion Institute. WSS/CI 97 Figure 147.
- Mereb, J, Wendt, J.O.L. (1990). Reburning Mechanisms in a Pulverized Coal Combustor. Twenty-Third Symposium (International) on Combustion: The Combustion Institute, 1273-1289.
- Michaud, M. G. Westmoreland, P. R. and Feitelberg, A. S. (1992): Chemical Mechanism of NO_x Formation for Gas Turbine Conditions. *Twenty-Fourth Symposium* (International) on Combustion. Pittsburgh: The Combustion Institute, 879-887.
- Miller, J. A. and Bowman, C. T. (1989). Mechanism and Modeling of Nitrogen Chemistry in Combustion. *Progress in energy and Combustion Science*. (15): 287-338.
- Miller, J. A., Branch, M. C. and Kee, R. J. (1981). A Chemical Kinetic Model for Reduction of Nitric Oxide by Ammonia. *Combustion and Flame*. (44): 81-98.
- Mittlebach, G. and Voge, H. (1986). Application of SNCR Process to Cyclone Firing. Special Meeting on NO_x Emission Reduction of the VGB (German Power Industry Association). Krefeld, Germany, 1-17.
- Miyauchi, T., Mori, Y., and Imamura, A. A. (1976). A Study of Nitric Oxide Formation in Fuel-Rich Hydrocarbon Flames: Role of Cyanic Species, H, OH, and O. Sixteenth

- Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1073-1082.
- Morris, M. A., Young, M. A., Molig, T. (1964). The Effect of Air Pollutants on Cotton. Text. Res. (34): 563.
- Muris, S., Hemberger, R. and Wolfrum, P. J. (1994). An experimental and Modelling Study of Selective Non-Catalytic Reduction of NO by Ammonia in Presence of Hydrocarbon. 25th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute.
- Muzio, L. J., Maloney, K. L and Arand, J. K. (1978). Reaction of NH₃ with NO in a Coal Derived Combustion Products. 17th Symposium (International) on Combustion, Pittsburgh: Combustion Institute, 89-96.
- Muzio, L. J., Martz, T. D., Montogomery, T. A., Quartucy, G. C., Cole, J. A. and Kramlich, J. C. (1990). N₂O Formation in Selective Non-Catalytic NO_x Reduction Process. Fall International Symposium of the American Flame Research Committee. San Francisco.
- Muzio, L.J., Arand, J. K. and Teixeira, D. P. (1976). Gas Phase Decomposition of Nitric Oxide in Combustion Products, 16th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 199-208.
- Negrea, S., Jones, D. G., Rose, G., Smith, R. A. and Shiomoto, G. H. (1990). Urea Injection NOx Removal on a 325 MW Brown Coal fired Electric Utility Boiler in West Germany. Oell-KRC and Fossil Energy Research Corporation, Private Communication.
- Nylander, J. H., Mansour, M.N. and Douglas, R.B. (1989). Demonstration of an Automated Urea Injection System at Encina Unit 2. The Proceedings of the Joint EPA/EPRI Symposium on Stationary Combustion NO_x Control. San Francisco. No. 9, 35-56.
- OECD (Organization for Economic Co-operation and Development). (1983). Control Technology for Nitrogen Oxide Emissions from Stationary Sources. Paris.
- Oliva, M., Alzueta, M.U., Millera, A. and Bilbao, R. (2000). Theoretical Study of the Influence of Mixing in the SNCR Process. Comparison with Pilot Scale Data. *Chemical Engineering Science*.55(22): 5321-5332.
- Ostberg, M., Dam-johansen, K. and Johnsson, J. E. (1997). Influence of Mixing on the SNCR process. *Chemical Engineering Science*. 52(15): 2511-2525.

- Perry, R. A., and Miller, J. A. (1996). An Exploratory Investigation of the Use of Alkali Metals in Nitrous Oxide Control, *Int. J. Chem. Kinetics*. (28): 217-225.
- Pershing, D. W., Cichanowicz, J. E., England, G. C., Heap, M.P. and Martin, G. B. (1978). The Influence of Fuel Composition and Flame Temperature on the Formation of Thermal and Fuel NOx in Residual Oil Flames. Seventeenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 715-725.
- Redojevic, M. (1998). Reduction of Nitrogen Oxides in Flue Gases. Environmental Pollution 102. 685-689.
- Rentz, O., Schleef, H. J., Dorn, R., Sasse, H. and Karl, U. (1996). Emission Control at Stationary Sources in the Federal Republic of Germany, Sulphur Oxide and Nitrogen Oxide Emission Control. French-German Institute for Environmental Research, University of Karlsruhe (TH), Karlsruhe. Vol 1.
- Robin, M. A. I., Price, H. J. and Squires, R.T. (1991). Tailoring Ammonia Based SNCR for Installation on Power Plants Boilers. *Joint EPA/EPRI Symposium on Stationary Combustion NO_x Control.* Springfield, VA: NTIS, Sec. 5A, 99-118.
- Rosenberg, H. S., Curran, L. M., Slack, A. V., Ando, J. and Oxley, J. H. (1980). Post Combustion Methods for Control of NO_x Emissions. *Progress in Energy and Combustion Science*. 6. 287-302.
- Rota, R., Antos, D., Zanoelo, E. F., Morbidelli, M. (2002). Experimental and Modeling Analysis of the NO_xOUT Process. *Chemical Engineering Science*. (57): 27-38.
- Saliman, S. and Hanson, R. K. (1980). Kinetic Study of NO Removal from Combustion Gases by NH_i Containing Compound. *Combustion Science and Technology.* (23): 225-230.
- Sarofim, A. S. and Flagan, R. C. (1976). NOx Control of Stationary Combustion Sources. *Progress in Energy and Combustion Science*. 2.1-25.
- Schreiber, H. (1991). Combustion NOx Controls for Combustion Turbines. Symposium on Stationary Combustion NOx Control. 5B, 1-8.
- Schreiber, R. K., and Newman J. R. (1988). Acid Precipitation Effects on Forest Habitats: Implications for Wildlife. *Conservation Biology* 2:249-259.
- Semerjian, H. and Vranos, A. (1976). NO_x Formation in Premixed Turbulent Flames, Sixteenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 169-179.

- Shy C. M., Creason, J. P., Pearlman M. E., McChain, K. E., Benson, F. B., Young, M. M. (1970). Effects of Community Exposure to Nitrogen Dioxide. Incidence of Acute Respiratory Illness. J.A.P.C.A. (20): 582.
- Silver, J. A. (1983). The Effect of Sulfur on Thermal DeNO_x Process. Ombustion and Flame. (53): 17-21.
- Sloss, L. L., hajalmarsson, A. K., Soud, H. N., Campbell, L. M., Stone, D. K., Shareef, G. S., Emmel, T., Maibodi, M., Livengood, C. D., Markussen, J. (1992). Nitrogen Oxides Control Technology Fact Book. Leslie S. Sloss (eds), USA: Noyes data Corporation.
- Smoot, L. D., Hill, S. C. and Xu, H. (1998). NO_x Control Through Reburning. *Prog Energy Combust Sci.* 24:385.
- Sowa, W. A, Dill, J. W., Pohl, J. H., and Yang, S. C. (1992). Thermal DeNO_x: Process Definition and Enhancement, Spring Meeting of the Western States Section of the Combustion Institute, Corvallis, Oregon, 1-26.
- Stephen, R. T. (1996). An Introduction to combustion: Concepts and Applications. McGraw-Hill International Edition, New York.
- Streichsbier, M. (1998). Non-Catalytic NO_x Removal from Gas Turbine Exhaust with Cyanuric Acid in a Recirculating Reactor. University of California, Berkeley: Ph. D. Thesis.
- Suhlmann. J. and Rotzoll, G. (1992). Chem. Ing. Tech. 64(6): 580-581.
- Sun, W.H., Hofaman, J.E. and Pachaly, R. (1990). Post Combustion NO_x Reduction with Urea: Theory and Practice. *The Proceedings of the Seventh Annual International Pittsburgh Coal Conference*. Pittsburgh. September 10-14.
- Takahashi, S., Yamashita, I. and Korematsu, K., 1990) JSME Int. Journal. 33(2): 377-383.
- Teixeira, D. P. and Muzio, L. J. (1991). Widening the Urea Temperature Window. The Proceedings of the Joint EPA/EPRI Symposium on Stationary Combustion NO_x Control. NTIS, Springfield, VA. Section 6A. 23-41.
- Teixeira, D. P. and Muzio, L. J. (1992). N₂O Emission from SNCR Processes. First International Conference on Combustion Technologies for Clean Environment. Vica Mourta, Portugal. 9-14.
- The SFA Quarterly Report. (1994), SFA Pacific, Inc., Mountain View, California,

- Touchton, G. L. (1985). Influence of Gas Turbine Design and Operating Parameters on Effectiveness of NO_x Suppression by Injected Steam or Water. Transaction of the ASME, *Journal of Engineering for Gas Turbines and Power*. (107): 706-713.
- Traynor, G. W., Girman, J. R, Apte, M. G., Dillworth, J. F. and White, P. D. (1985). Indoor Pollution Due to Emissions from Unvented Gas-Fired Space Heaters. J. Pollution control Assn. (35): 231-237.
- Turns, S. R. and Myhr. F. H. (1991). Oxides of Nitrogen Emissions from Turbulent Jet Flames: Part 1 Fuel Effects and Flame Radiation. *Combustion and Flame*. (87): 319-335.
- Turns, S. R. and Myhr. F. H., Bandaru, R. V. and Maund, E. R. (1993). Oxides of Nitrogen Emissions from Turbulent Jet Flames: Part 2- Fuel Dilution and partial Premixing Effects. Combustion and Flame. (93): 255-269.
- U. S, EPA (1991). Source Book: Nitrogen Oxides Control Technology Data. Report No: EPA-600/2-91-029. Government Printing Office, Washing D.C.
- U.S, EPA. (1992). Evaluation and Costing of NO_x Controls for Existing Utility Boilers in the NESCAUM Region. Washington, D. C.
- U.S, EPA. (1993). Air Quality Criteria for Oxides of Nitrogen. Report No. EPA/600/8-91/049aF.
- U.S, EPA (1999). Serious and Severe Ozone Nonattainment Areas: information on Emissions control Measures Adopted or Planned and Other Available Control Measures. Office of air Quality Planning and Standards. US EPA. RTP. NC2711.
- Waibel, R. T. (1993). Ultra Low NO_x Burners for Industrial Process Heaters. Second International Conference on Combustion Technologies for a Clean Environment. Lisbon.
- Waibel, R. T., Price, D. N., Tish, P. S. and Halprin, M. L. (1990). Advanced Burner Technology for Stringent NOx Regulations. *American Petroleum Institute Mid Year refining Meeting*. Orlando.
- Warnatz, J., Mas, U. and Dibble, R. W. (1996). Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. London: Springer-Verlag. ISBN 3-540-60730-7.
- Wendt, J. O. L., Linak, W. P., Groff, P. W. and Srivastava, R. K. (2001). Hybrid SNCR-SCR Technologies for NO_x Control: Modeling and Experiment. AIChE Journal. 47(11): 2603-2617.

- Wendt, J. O. L., Morcomb, J. T. and Corley, T. L. (1978). Influence of Fuel Sulfur on Fuel Nitrogen Oxidation Mechanisms. Seventeenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 671-677.
- Wendt, J. O. L., Sternling, C. V. and Matovich, M. A. (1973). Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection. *Fourteenth Symposium* (International) on Combustion. Pittsburgh: The Combustion Institute, 897-904.
- Wenli, D., Dam-Johansen, K. and Ostrergaard, K. (1989). The Influence of Additives on Selective Non-Catalytic Reduction of Nitric Oxide with Ammonia. *ACHEMASIA*. Beijing.
- Wicke, B. G., Gardy, K. A. and Ratcliffe, J. W. (1989). Cyanuric Acid + Nitric Oxide Reaction at 700° C and the Effects of Oxygen, *Combustion and Flame*. (78): 249 255.
- Williams. A. (1990). Combustion of Liquid Fuel Sprays, Butterworth and Co. London.
- Wittler, W., Rotzoll, G. and Schugerl, K. (1988). Combustion and Flame. (74): 171-178.
- Zabielski, M. F and Seery D. J. (1985). International Journal of Chemical Kinetics. (17): 1191-1199.
- Zamansky, V. M, Ho, L., Maly, P.M., Seeker, W. R. (1996). Reburning Promoted by Nitrogen and Sodium-Containing Compounds. *Twenty-Sixth Symposium* (International) on Combustio. Pittsburgh, PA: The Combustion Institute, 2075-2083
- Zamansky, V. M., Lissianski, V. V., Maly, P. M., Ho, L., Rusli, D. and Gardiner, W. C. Jr. (1999). Reactions of Sodium Species in the Promoted SNCR Process. Combustion and Flame. (117): 821-831.