PERFORMANCE OF PIECEWISE GAMMA BASELINE HAZARD FUNCTION IN BAYESIAN SURVIVAL ANALYSIS

YIAK SIW CHIEN

A dissertation submitted in partial fulfillment of the requirements for the award of degree of Master of Science (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2015

To my beloved father, mother, fiancé, brother and sisters

ACKNOWLEDGEMENT

First and foremost, I would like to thank and praise God for His sufficient grace and mercy throughout this study. It is by His hand, blessing, love and wisdom which enable me to complete this study.

I would like to give a special tribute and profound gratitude to my supervisor, Madam Noraslinda binti Mohamed Ismail for her noble guidance, support and continuing assistance throughout the study. She has given many constructive suggestions and provided valuable feedback and review on this report. She has provided me relevant information and suggested useful references which are related to the scope of my study.

Finally yet importantly, I would like to thank my parents and my fiancé, Tang Howe Lin for their steadfast love, support and encouragement which eventually leads to the successful completion of the study.

Abstract

Bayesian analysis can compute estimator for a wide range of models, such as hierarchical models and missing data problems. It provides a theoretical framework for combining prior information with the data to produce posterior distribution. In the context of survival analysis, Cox proportional hazards model (PHM) is popular for its unique feature in measuring the effects of covariates on survival data without making any assumptions concerning the nature and shape of the underlying baseline hazard function. In this study, different models are used as prior distribution of baseline hazard function in conducting Bayesian analysis of censored survival data. The purpose of this study is to investigate the effect of hyperparameters of gamma process prior on parameter estimation in relation to hyper distribution used in piecewise gamma model. The study intends to assess the performance of piecewise gamma model in estimating parameters for non-informative and censored survival data. The Bayesian estimator of the parameter is computed by using Markov chain Monte Carlo (MCMC) method. Gibbs sampler is applied to simulate samples from Markov chains to estimate the quantities of interest without integrating the posterior distribution analytically. OpenBUGS statistical software is employed in this study to implement Bayesian analysis of survival data. The results obtained show that by increasing values fixed for hyperparameters of gamma process prior, it will decrease the parameter estimates. In addition, piecewise gamma model is found to be adequate in estimating parameters of Cox proportional hazards model for leukemia and hepatitis data as the Monte Carlo error is less than 5% of standard deviation of parameter. Hence, piecewise gamma model can be an alternative model for baseline hazard function.

Abstract

ABSTRAK

Analisis Bayesian dapat menganggar parameter untuk pelbagai model, seperti model hierarki dan masalah hilang data. Analisis Bayesian menyediakan rangka kerja teori yang menggabungkan informasi prior dengan data untuk menghasilkan taburan posterior. Dalam konteks analisis kemandirian, Model Cox proportional hazards (PHM) terkenal dengan ciri unik yang dapat mengukur kesan kovariat terhadap data mandirian tanpa membuat sebarang andaian mengenai sifat dan bentuk untuk fungsi bahaya asas. Dalam kajian ini, model yang berbeza digunakan sebagai taburan prior untuk fungsi bahaya asas dalam analisis Bayesian untuk penyensoran data mandirian. Tujuan kajian ini adalah untuk mengkaji kesan hiperparameters dalam gamma process prior terhadap penganggaran parameter berhubung dengan taburan hiper yang digunakan dalam model piecewise gamma. Kajian ini bertujuan untuk menilai prestasi model piecewise gamma dalam penganggaran parameter untuk data mandirian yang tidak berinformasi dan censored. Parameter Bayesian dianggar dengan menggunakan kaedah Markov Chain Monte Carlo (MCMC). Gibbs sampler digunakan untuk mensimulasikan sampel dari rantai Markov untuk mendapat penganggaran tanpa mengintegrasikan taburan posterior secara analitikal. OpenBUGS perisian statistik digunakan dalam kajian ini untuk melaksanakan analisis Bayesian terhadap data hepatitis. Hasil kajian menunjukkan bahawa dengan meningkatkan nilai yang ditetapkan untuk hiperparameter dalam model gamma process prior, nilai parameter akan berkurangan. Selain itu, model piecewise gamma didapati sesuai dalam penganggaran parameter untuk Model Cox proportional hazards bagi data leukemia dan hepatitis dimana ralat Monte Carlo adalah kurang 5\% daripada sisihan piawai untuk parameter. Oleh itu, model piecewise gamma boleh dijadikan sebagai satu model alternatif untuk fungsi bahaya asas.

TABLE OF CONTENTS

CHAPTERTITLE
PAGE
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
LIST OF SYMBOLS xV
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Background of Study 3
1.3 Statement of Problem 6
1.4 Objectives of Study 7
1.5 Scope of Study 7
1.6 Significance of Study 8LITERATURE REVIEW9
2.1 Introduction 9
2.2 Development of Survival Analysis 9
2.2.1 Life Table 10
2.2.2 Kaplan-Meier Analysis 10
2.2.3 Cox Proportional hazards model 11
2.2.3.1 Further Research on Cox 12
Proportional Hazards Model
2.2.4 Development of Cox Regression Model 14
2.2.5 Additive Risk Model 15
2.3 Bayesian Analysis of Survival Data using Cox 17 Proportional Hazards Model
2.3.1 Markov Chain Monte Carlo Simulation 18
2.3.1.1 Gibbs Sampling 20
2.3.2 Previous Research on Prior Distribution 21
of Baseline Hazard Function from Bayesian ParadigmMETHODOLOGY25
3.1 Introduction 25
3.2 Cox Proportional Hazards Model 26
3.3 Bayesian Analysis 27
3.3.1 Bayes' Theorem 29
3.3.2 Prior Distribution 30
3.4 Survival Data from Bayesian Perspective 31
3.4.1 Joint Distribution of Parameters 32
3.4.2 Likelihood Function 32
3.4.3 Prior Distribution of Baseline Hazard 33 Function
3.4.3.1 Gamma Process Prior 33
3.4.3.2 Polygonal Baseline Hazard 34
Function
3.4.3.3 Piecewise Gamma Baseline 34
Hazard Function
3.4.4 Prior Distribution of Regression 35
Coefficient, β
3.5 Monte Carlo Method 35
3.5.1 Monte Carlo Integration 36
3.6 Markov Chain Monte Carlo (MCMC) Algorithm 37
3.6.1 The Gibbs Sampler 39
3.7 Software - OpenBUGS 40
3.8 MCMC Output Analysis and Results 42
3.8.1 Convergence of the Algorithm 42
3.8.1.1 Autocorrelation 43
3.8.1.2 Trace Plots 44
3.8.1.3 Brooks-Gelman-Rubin 44
Convergence Diagnostic
3.8.2 Burn-in 46
3.8.3 Thinning 47
3.8.4 Monte Carlo Standard Error 47
3.8.5 Summaries of the Posterior Distribution 48
3.8.5.1 Graphical Results 49
3.8.5.2 Numerical Results 49
3.8.6 Survival Probability 49
3.9 Estimation of Parameter for Survival Data using 50
Frequentist Method
3.10 Research Framework 51
4 RESULTS AND DISCUSSION 52
4.1 Introduction 52
4.2 Data 53
4.3 Analysis of Leukemia Data 55
4.3.1 Effect of Hyperparameters of Gamma 55Process Prior on Parameter Estimation
4.3.2 Performance of Piecewise Gamma Model 58
in Estimating the Parameter for LeukemiaData
4.4 Analysis of Hepatitis Data 60
4.4.1 Piecewise Gamma Model as Baseline 61
Hazard Function
4.4.2 Polygonal Hazard Function as Baseline 69Hazard Function
4.4.3 Frequentist Method using SPSS 75Statistical Software
4.4.4 Comparison of the Results for Hepatitis 77
Data
5 CONCLUSION AND RECOMMENDATIONS 80
5.1 Conclusion 80
5.2 Recommendations 82
REFERENCES 83

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	Summaries of parameter estimation for Cox model with constant c and varying r	57
4.2	Summaries of parameter estimation for Cox model with constant r and varying c	57
4.3	Summaries of parameter estimation for Cox model with varying r and c	58
4.4	Summaries of parameter estimation for leukemia data by using Bayesian and frequentist methods	60
4.5	Output results of leukemia data by using SPSS	60
4.6	Numerical results of parameter for hepatitis data using piecewise gamma model	65
4.7	Survival probability for control group using piecewise gamma model	66
4.8	Survival probability for treatment group using piecewise gamma model	67
4.9	Numerical results of parameter for hepatitis data using polygonal baseline hazard function	71
4.10	Survival probability for control group using polygonal baseline hazard function	73
4.11	Survival probability for treatment group using polygonal baseline hazard function	74
4.12	Output results of hepatitis data using frequentist method (SPSS)	76
4.13	Summaries of parameter estimation for hepatitis data by using Bayesian and frequentist methods	79

LIST OF FIGURES

FIGURE NO.

TITLE
PAGE
3.1 Procedure in running a model in OpenBUGS 41
3.2 Research framework 51
$4.1 \quad$ Autocorrelation plots of simulated samples by using 62 piecewise gamma baseline hazard
4.2 Trace plots 63
4.3 History plots showing simulated samples of the 63 parameter (after burn-in period) by using piecewise gamma baseline hazard
$4.4 \quad$ Brooks-Gelman-Rubin convergence diagnostic graph using piecewise gamma baseline hazard
$4.5 \quad$ Density plots of parameter by using piecewise gamma65 baseline hazard
4.6 Survival curves for treatment and control groups under piecewise gamma hazard function
4.7 Monte Carlo estimation of baseline hazard under $\quad 68$ piecewise gamma function

4.8	Autocorrelation plots of samples using polygonal	70
	baseline hazard	

4.9	History plots showing simulated samples of the	70
parameter (after burn-in period) using polygonal		
	baseline hazard	

4.10 Brooks-Gelman-Rubin convergence diagnostic graph 71 using polygonal baseline hazard
4.11 Density plots of parameter by using polygonal 72 baseline hazard$4.12 \quad$ Survival curves for treatment and control groups under 75polygonal baseline hazard function
4.13 Monte Carlo estimation of baseline hazard function 75 under polygonal hazard function
4.14 Survival curve at mean of covariates using frequentist 76 method
4.15 Hazard function at mean of covariates using 77 frequentist method
4.16 Survival curves for treatment and control groups using 77 frequentist method
4.17 Survival curves for treatment and control groups using 79
different methods

LIST OF ABBREVIATIONS

BGR	-	Brooks-Gelman-Rubin
BUGS	-	Bayesian inference Using Gibbs Sampling
DIC	-	Deviance Information Criterion
DSR	-	Diabetic Retinopathy Study
MCMC	-	Markov Chain Monte Carlo
MRC	-	Medical Research Council
PHM	-	Proportional Hazards Model

LIST OF SYMBOLS

$\beta \quad$ - \quad parameter (beta)

CHAPTER 1

INTRODUCTION

1.1 Introduction

Survival analysis is a set of methods used to analyze survival data. Survival data refers to the length of time until the occurrence of a specified event. The survival data is also called as survival time. The time to event can be measured in days, weeks or even years. In medical research, the event of interest is usually referred to as death, disease incurrence or relapse from remission. The event of interest is typically called as failure. Generally, in survival analysis, only one event is of designated interest. Statistical problems which consider more than one event of interest are usually analyzed under competing risk or recurrent events problem.

Survival analysis focuses on the duration of time from a subject enters a study until the occurrence of the event. The survival time is a response variable which is non-negative. The goal of survival analysis is to model the distribution of the survival time, compare the survival probability for two or more groups of data and to study the relationship between the survival time and the independent covariates.

A special feature of the survival data that makes it distinct from other data is the censorship of the data. The observation is called censored when the information of the survival time is incomplete. There are three types of censored data, which are right-censored data, left-censored data and interval censored data. The data is said to be right-censored when only lower bound of the survival time of the censored data is known. Right-censoring occurs when the event of interest has not occurred before the study is terminated. Right-censoring can arise from withdrawal of the subject from the study because of competing risk or the subject is lost to follow up before the termination of the study. Maddala (1983) and Kalbfleisch and Prentice (1980) discussed several types of censoring situations. Censored survival data cannot be omitted during the data analysis as it represents the missing data. Ordinary linear regression cannot deal with the non-negativity and censoring of the survival data effectively. However, survival analysis can handle this kind of data by taking the censoring into account and incorporate information from both censored and uncensored observations to estimate the parameters.

In survival analysis, survival and hazard functions are used to describe the distribution of the survival data. The survival function gives the probability of not experiencing the failure or event up to time t. The hazard function, on the other hand, measures the potential of getting the failure or event per unit of time conditioned that the individual has survived up to time t. There are a number of models which are appropriate to describe the relationship between the survival time and the covariates. The models include parametric, non-parametric and semiparametric.

The common parametric models used in fitting the survival data are exponential, Weibull, lognormal and Gompertz distributions. By using parametric model, the survival data is assumed to follow the specified probability distributions. A non-parametric model is widely used to graph the survival probabilities when Kaplan Meier method (Kaplan and Meier, 1958) was introduced. Log-rank test is used to compare the Kaplan Meier curves for each group of data. A well-known semiparametric model used for survival analysis is Cox proportional hazards regression model (Cox, 1972).

Survival analysis is mostly applied to biological data. For example, survival model was used by Lee and Mallick (2004) for DNA microarray data. However, survival analysis has been extended to other fields nowadays. Survival analysis is widely applied in engineering field, which is used to analyze data such as lifetime of engines and reliability of the function of a system. In addition, survival analysis is also broadly used for sociological data such as duration of recidivism and economic data such as unemployment data. Fox (2002) applied survival model for the analysis of survival data that measures the time for a prisoner to be arrested after being released from prison. Beamonte and Bermúdez (2003) and Ganjali and Baghfalaki (2012) carried out survival analysis for unemployment duration data. In this study, right-censored medical data which is hepatitis data is analyzed by using semiparametric Cox proportional hazards model.

1.2 Background of Study

Chronic active hepatitis is referred to as inflammation of liver for at least six months (Anthony et al., 1978) which is caused by specific hepatitis viruses, autoimmune mechanism, alcohol and drugs. Autoimmune hepatitis is an organspecific autoimmune disease characterized by a break of humoral and cellular immunotolerance that mainly affects the liver (Manns and Taubert, 2014). This disease is commonly observed in women from all age groups and races. It is also called as lupoid hepatitis. The early death that is caused by this disease is due to hepatocellular failure (Mackay and Wood, 1962). Those who survive at the beginning stage of the disease might suffer macronodular cirrhosis and die from its complications (Read et al., 1963).

Autoimmune hepatitis was one of the first liver diseases for which effective treatment had been developed. The benefit of the treatment is proven by randomized controlled trials. Corticosteroid therapy is shown to increase the survival time of the
autoimmune hepatitis patients during the early-active phase of chronic hepatitis (Cook et al., 1971; Wright et al., 1977). Although corticosteroid therapy can reduce the mortality of the patients at the early stage of the disease, the dose of steroids should be restricted and be withdrawn when the liver function tests return to normal. This study is conducted to evaluate the effect of prednisolone (steroid) treatment on the survival time of hepatitis patients who are randomly distributed into treatment and control groups. The survival probability of treatment and control groups are then compared to examine the effect of prednisolone therapy.

To estimate hazard rate and survival probability for survival data, numerous studies has been carried out to fit the survival data. There are numerous models which are available in literature. The famous model used to define hazard function is Cox proportional hazards model proposed by Cox (1972). Cox proportional hazards model is a multiplicative hazard function, which is a product of unspecified baseline hazard function with an exponential function of explanatory variables. Cox proportional hazards model is popular and widely used for its unique characteristic in estimating the unknown regression coefficients. The estimation of the parameters for Cox model can be done by using partial likelihood function, which eliminates the baseline hazard function and accounts for censored survival times.

Cox proportional hazards model can be used to fit the survival data by using both frequentist and Bayesian methods. Since frequentist method does not work well for small sample size and censored survival data, Cox proportional hazards model is usually analyzed by using Bayesian approach. In conducting Bayesian analysis, posterior distribution of the parameters is obtained by incorporating the likelihood of the observed data and the prior distribution of the parameters. The posterior distribution is the probability distribution of the unknown parameters conditioned on the observed data. The likelihood function is the joint distribution of the observed samples while prior distribution of the parameters expresses the belief of a researcher before any data is collected. An adequate and flexible prior distribution of the baseline hazard function which does not heavily influence the computation of posterior distribution is often the concern of the researchers. Kalbfleisch (1978)
proposed gamma process prior with fixed values of r (a guess at the failure rate per unit time) and c (degree of confidence at the guess) as the baseline hazard function in estimating the parameters for leukemia data.

Later, numerous studies had been carried out to propose prior of the baseline hazard function for Cox proportional hazards model in recent years. Ayman and Anis (2011) proposed polygonal function as the prior of the baseline hazard function. They applied the model in the analysis of leukemia data and proved that the polygonal baseline hazard function is a better model compared to gamma process prior based on Deviance Information Criterion (DIC) values. Ismail et al. (2012) modified the original gamma process prior of Kalbfleisch by assuming r and c to have uniform and gamma distributions respectively. Once again, the modified gamma baseline hazard function appears to be more appropriate than original gamma process prior as the DIC value of original gamma process prior is higher than modified gamma baseline hazard. Although several studies have shown that new proposed baseline hazard functions are better models than original gamma process prior, there is no research done in examining the limitation of gamma process prior that causes the DIC value of the original gamma process prior to be higher than the other new baseline hazard functions.

Ismail et al. (2013) analyzed leukemia data and Diabetic Retinopathy Study (DSR) eye data by using additive and multiplicative gamma polygonal as the prior of the baseline hazard functions. The additive and multiplicative gamma polygonal hazard functions have been proven to be suitable and appropriate in analyzing paired survival data. However, gamma process prior is not applicable for the analysis of DSR eye data. A new multiplicative piecewise gamma baseline hazard function was proposed by Ismail et al. (2014). The parameter estimation for leukemia data by using multiplicative piecewise gamma baseline function shows similar results as the results by using other baseline hazard functions. Since most of the literature was made based on leukemia data, hepatitis data is used in this study to analyze the performance of piecewise gamma baseline hazard function in estimating the parameters for Cox model.

1.3 Statement of Problem

In the context of survival data analysis, Cox proportional hazards model is one of the most popular model used to measure the effects of covariates on hazard rates. In order to estimate the regression coefficients of the covariates from Bayesian perspective, the baseline hazard function of Cox model has to be specified before Bayesian analysis is conducted. A common model used as the prior distribution of the baseline hazard function is gamma process prior, which was proposed by Kalbfleisch (1978). Kalbfleisch (1978) suggested the baseline hazard function to follow gamma distribution with constant values of shape and scale parameters. He set r (a guess at the failure rate per unit time) and c (degree of confidence at the guess) as 0.1 and 0.001 respectively for the analysis of leukemia data. The question of why those particular values are chosen as the values of r and c arises. It is important to know whether other values of r and c will influence the estimation of the parameters. Hence, this study aims to investigate the effect of varying values of r and c for gamma process prior on the parameter estimation.

In 2014, Ismail et al. proposed a multiplicative piecewise gamma model as the prior of the baseline hazard function for Cox model. Ismail et al. (2014) also suggested the baseline hazard function of Cox model to be gamma distribution but the shape parameter is set to have a polygonal function instead of constant values. In their paper, piecewise gamma model is applied on leukemia data, which is noninformative and right-censored. The study intends to assess the performance of piecewise gamma model in estimating another set of data with similar characteristics as leukemia data.

1.4 Objectives of Study

Based on the above issues and needs, the objectives of this study are:

1. To investigate the effect of varying values of scale and shape parameters of gamma process prior in relation to the hyper distribution in piecewise gamma baseline hazard function.
2. To assess the performance of piecewise gamma model in estimating the parameters for censored leukemia and hepatitis data based on the percentage of Monte Carlo error with the standard deviation of the parameter.

1.5 Scope of Study

This study focuses on the survival analysis of censored medical data. Two sets of survival data are applied in this study. A total of 42 leukemia data is taken from Freireich et al. (1963) while 44 observations for hepatitis data are taken from Cook et al. (1971). Both of the survival data are right-censored and non-informative.

In this study, semiparametric multiplicative hazard function, which is Cox proportional hazards model is used to model the survival data as the effect of treatment on survival time is the subject of interest. Bayesian analysis is the main approach used in this study. Markov chain Monte Carlo (MCMC) methods are used to simulate samples from the posterior distribution of the parameter. Gibbs sampler algorithm is used to construct Markov chains which will converge to posterior distribution regardless of the initial points. The estimation of parameter is carried out
by using the simulated samples from converged Markov chains. The study emphasizes on the estimation of parameters using different types of models as the prior distribution of the baseline hazard function for Cox model. The performance of prior distributions of baseline hazard function is inspected and assessed.

1.6 Significance of Study

The statistical techniques used in survival analysis is not only restricted to the biomedical field. It has extended to other areas of knowledge such as economic and social sciences. Frequentist method is one of the common and easy ways to implement the survival analysis. However, frequentist method can only be applied to analyze simple models. Bayesian analysis is well known and widely used in survival analysis as it can deal with complicated and even hierarchical models. Hence, Bayesian approach is preferable over frequentist method in survival analysis. Cox proportional hazards model is one of the famous model used to describe the relationship between the covariates and the survival time. In implementing Bayesian analysis, a good prior for baseline hazard function which is flexible and applicable to all kinds of survival data is very much needed if prior information is not available. A good and flexible prior has a great potential in the applications of any types of censored survival data without bringing any effect on the estimation of the parameters. In other words, the applicability of a good and flexible prior for baseline hazard function is not limited to one set of data only. It can estimate the parameters accurately for any types of survival data. With a good prior distribution for baseline hazard function, the survival probability and the hazard function for survival data can be obtained easily. Thus, this study aims to obtain an appropriate and flexible model for the prior of the baseline hazard function which is applicable to any types of noninformative censored survival data in estimating the parameters.

REFERENCES

Aalen, O. (1980). A Model for Nonparametric Regression Analysis of Counting Processes. In Mathematical statistics and probability theory (pp. 1-25). New York: Springer - Verlag.

Andersen, P. K., \& Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. The annals of statistics, 1100-1120.

Anthony, P. P., Ishak, K. G., Nayak, N. C., Poulson, H. E., Scheuer, P. T. and Sobin, L. H. (1978). Morphology of cirrhosis: recommendations on definition, nomenclature and classification by a working group sponsored by the World Health Organization. Journal of Clinical Pathology, 31(5), 395-414.

Ata, N., \& Sözer, M. T. (2007). Cox regression models with nonproportional hazards applied to lung cancer survival data. Hacettepe Journal of Mathematics and Statistics, 36(2), 157-167.

Ayman, A. M., and Anis, B. G. (2011). Using WINBUGS to Cox Model with Changing from the Baseline Hazard Function. Journal Applied Mathematical Sciences, 5(45), 2217 - 2240.

Beamonte, E., \& Bermúdez, J. D. (2003). A bayesian semiparametric analysis for additive Hazard models with censored observations. Test, 12(2), 347-363.

Bender, R., Augustin, T., \& Blettner, M. (2003). Generating Survival Times to Simulate Cox Proportional Hazards Models.

Berkson, J., \& Gage, R. P. (1950, May). Calculation of survival rates for cancer. In Proceedings of the staff meetings. Mayo Clinic (Vol. 25, No. 11, pp. 270-286).

Bhattacharya, S. (2008). Gibbs sampling based Bayesian analysis of mixtures with unknown number of components. Sankhyā: The Indian Journal of Statistics, Series B (2008-), 133-155.

Box, G. E., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control, revised ed. Holden-Day

Breslow, N. E. (1972). Contribution to the discussion of the paper by DR Cox. Journal of the Royal Statistical Society, Series B, 34(2), 216-217.

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455.

Brooks, S. P., and Roberts, G. O. (1998). Assessing convergence of Markov chain Monte Carlo algorithms. Statistics and Computing, 8(4), 319-335.

Casella, G., \& George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174.

Clayton, D.G. (1991). A Monte-Carlo method for Bayesian-inference in frailty models. Biometrics, 467-485.

Clayton, D.G. (1994). Bayesian analysis of frailty models. Technical report, Medical Research Council Biostatistics Unit, Cambridge.

Cook, G. C., Mulligan, R., \& Sherlock, S. (1971). Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. QJM, 40(2), 159-185.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91(434), 883-904.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society. Series B 34, 187-220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62(2), 269-276.

Cox, D. R. and Oakes, D. A. (1984). Analysis of Survival Data. Chapman \& Hall, London.

Cutler, S. J., \& Ederer, F. (1958). Maximum utilization of the life table method in analyzing survival. Journal of chronic diseases, 8(6), 699-712.

Damien, P., \& Walker, S. (1999). A full Bayesian analysis of circular data using the von Mises distribution. Canadian Journal of Statistics, 27(2), 291-298.

Diaconis, P., Khare, K., \& Saloff-Coste, L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statistical Science, 23(2), 151-178.

Diaconis, P., Khare, K., \&Saloff-Coste, L. (2010). Gibbs sampling, conjugate priors and coupling. Sankhya A, 72(1), 136-169.

Eckhardt, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Science, 15, 131-136.

Fisher, L. D., \& Lin, D. Y. (1999). Time-dependent covariates in the Cox proportional-hazards regression model. Annual review of public health, 20(1), 145-157.

Fox, J. (2002). Cox proportional-hazards regression for survival data.

Freireich, E. J., Gehan, E., FREI, E., Schroeder, L. R., Wolman, I. J., Anbari, R., LEE, S. et al. (1963). The effect of 6-mercaptopurine on the duration of steroidinduced remissions in acute leukemia: A model for evaluation of other potentially useful therapy. Blood, 21(6), 699-716.

Gamerman, D. (1991). Dynamic Bayesian models for survival data. Applied Statistics, 63-79.

Ganjali, M., \& Baghfalaki, T. (2012). Bayesian analysis of unemployment duration data in presence of right and interval censoring. JRSS, 21(1), 17-32.

Gehan, E. A. (1969). Estimating survival functions from the life table. Journal of chronic diseases, 21(9), 629-644.

Gelfand, A. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.

Gelfand, A., Hills, S., Racine-Poon, A. and Smith, A. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85(412), 972-985.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457-472.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6), 721-741.

Gilks, W. and Roberts, G. (1996). Strategies for improving MCMC. In Markov chain Monte Carlo in practice (pp. 89-114). US: Springer.

Graves, T. L. (2007). Design ideas for Markov chain Monte Carlo software. Journal of Computational and Graphical Statistics, 16(1).

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711-732.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.

Higdon, D. M. (1998). Auxiliary variable methods for Markov chain Monte Carlo with applications. Journal of the American Statistical Association, 93(442), 585-595.

Ibrahim, J. G., Chen, M. H., \& Sinha, D. (2005). Bayesian survival analysis. John Wiley \& Sons, Ltd.

Ishwaran, H., \& James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453).

Ismail, N. M., Khalid, Z. M., and Ahmad, N. (2012). Estimating Proportional Hazards Model Using Frequentist and Bayesian Approaches. Journal of Fundamental \& Applied Sciences. 8(2), 73-82.

Ismail, N. M., Khalid, Z. M., \& Ahmad, N. (2013). Frailty Additive and Multiplicative Gamma Polygonal in Survival Data Analysis. International Journal of Applied Mathematics and Statistic, 44(14), 128-139.

Ismail, N. M., Khalid, Z. M., and Ahmad, N. (2013). Survival Data Analysis using Additive and Multiplicative Gamma Polygonal Hazards Function. Journal Matematika. 29(1b): 117 - 127.

Ismail, N. M., Khalid, Z. M., \& Ahmad, N. (2014). Multiplicative Piecewise Gamma in Survival Data Analysis. Jurnal Teknologi, 70(1).

Kalbfleisch, J. D. (1978). Non-parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society. Series B (Methodological), 214-221.

Kalbfleisch, J. D. and Prentice, R. L. (1973). Marginal likelihoods based on Cox's regression and life model. Biometrika, 60(2), 267-278.

Kalbfleisch, J. D., \& Prentice, R. L. (1980). The statistical analysis of failure time data. Wiley series in probability and mathematical statistics.

Kaplan, E. L., and Meier, P. (1958). Non-parametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457 481.

Kim, Y., \& Lee, J. (2003). Bayesian analysis of proportional hazard models. Annals of statistics, 493-511.

Klein, J. P., \& Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. Springer.

Kleinbaum, D. G., \& Klein, M. (2005). Survival Analysis: A Self Learning Approach. New York: Springer-Verlag.

Kolassa, J. E. (1999). Convergence and accuracy of Gibbs sampling for conditional distributions in generalized linear models. The Annals of Statistics, 27(1), 129142.

Kumar, D., \& Klefsjö, B. (1994). Proportional hazards model: a review. Reliability Engineering \& System Safety, 44(2), 177-188.

Lee, K. E., \& Mallick, B. K. (2004). Bayesian methods for variable selection in survival models with application to DNA microarray data. Sankhyā: The Indian Journal of Statistics, 756-778.

Lim, H. J., \& Zhang, X. (2011). Additive and multiplicative hazards modeling for recurrent event data analysis. BMC medical research methodology, 11(1), 101.

Lin, D. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika, 81(1), 61-71.

Lin, D., Oakes, D., and Ying, Z. (1998). Additive hazards regression with current status data. Biometrika, 85(2), 289-298.

Lunn, D., Spiegelhalter, D., Thomas, A., \& Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in medicine, 28(25), 30493067.

Mackay, I. R., and Wood, I. J. (1962). Lupoid hepatitis: a comparison of 22 cases with other types of chronic liver disease. Quarterly Journal of Medicine, 31(4), 485-507.

Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics (No. 3). Cambridge university press.

Manns, M. P. and Taubert, R. (2014). Treatment of autoimmune hepatitis. Clinical Liver Disease, 3(1), 15-17.

Metropolis, N., \& Ulam, S. (1949). The Monte Carlo method. Journal of the American statistical association, 44(247), 335-341.

Metropolis, N., Rosenbluth, A,,Rosenbluth, M., Teller, A. and Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of chemical Physics, 21(6), 1087-1092.

Mostafa, A. A. (2012). Fitting the Hazard Ratio for Cluster Survival Data with Frailty Effect Via WinBUGS. eye, 1, 1.

Neal, R. M. (2003). Slice sampling. Annals of statistics, 705-741.

Oakes, D. (1972). Comment on D. R. Cox (1972) paper. J. R. Statist. Soc. B, 34, 208.

Pettitt, A. N., \& Daud, I. B. (1990). Investigating time dependence in Cox's proportional hazards model. Applied Statistics, 313-329.

Propp, J. G., \& Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random structures and Algorithms, 9(1-2), 223-252.

Read, A. E., Sherlock, S., and Harrison, C. V. (1963). Juvenile cirrhosis part of a systemic disease-the effect of corticosteroid therapy. Gut, 4, 378-393.

Rich, J. T., Neely, J. G., Paniello, R. C., Voelker, C. C., Nussenbaum, B., \& Wang, E. W. (2010). A practical guide to understanding Kaplan-Meier curves. Otolaryngology-Head and Neck Surgery, 143(3), 331-336.

Roberts, G. O. (1996). Markov chain concepts related to sampling algorithms. In Markov Chain Monte Carlo in Practice (pp. 45-57). UK: Springer.

Sinha, D., and Dey, D. K. (1997). Semi parametric Bayesian Analysis of Survival Data. Journal of the American Statistical Association, 92(439), 1195-1212.

Tanner, M. and Wong, W. (1987). The calculation of the posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398), 528-540.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 1701-1762.

Toft, S., et al. (2007). The Astrophysical Journal, 671, 285.

Weng, Y. P., \& Wong, K. F. (2007). Baseline Survival Function Estimators under Proportional Hazards Assumption. Institute of Statistics, national University of Kaohsiung.

Wright, E. C. Seeff, L. B., Berk, P. D., Jones, E. A., and Plotz, P. H. (1977). Treatment of chronic active hepatitis. An analysis of three controlled trials. Gastroenterology, 73(6), 1422-1430.

