
PERFORMANCE OF PIECEWISE GAMMA BASELINE HAZARD FUNCTION 

IN BAYESIAN SURVIVAL ANALYSIS 

 

 

 

YIAK SIW CHIEN 

 

 

 

A dissertation submitted in partial fulfillment of the  

requirements for the award of degree of  

Master of Science (Mathematics) 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

JANUARY 2015 

 

 



iii 
 

 

 

 

 

 

 

 

 

To my beloved father, mother, fiancé, brother and sisters 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENT 

 

 

 

 

 First and foremost, I would like to thank and praise God for His sufficient 

grace and mercy throughout this study. It is by His hand, blessing, love and wisdom 

which enable me to complete this study. 

 

 

 I would like to give a special tribute and profound gratitude to my supervisor, 

Madam Noraslinda binti Mohamed Ismail for her noble guidance, support and 

continuing assistance throughout the study. She has given many constructive 

suggestions and provided valuable feedback and review on this report.  She has 

provided me relevant information and suggested useful references which are related 

to the scope of my study.  

 

 

 Finally yet importantly, I would like to thank my parents and my fiancé, Tang 

Howe Lin for their steadfast love, support and encouragement which eventually leads 

to the successful completion of the study. 

 

  



v 
 

ABSTRACT 

 

 

 

 

 Bayesian analysis can compute estimator for a wide range of models, such as 

hierarchical models and missing data problems. It provides a theoretical framework 

for combining prior information with the data to produce posterior distribution. In the 

context of survival analysis, Cox proportional hazards model (PHM) is popular for 

its unique feature in measuring the effects of covariates on survival data without 

making any assumptions concerning the nature and shape of the underlying baseline 

hazard function. In this study, different models are used as prior distribution of 

baseline hazard function in conducting Bayesian analysis of censored survival data. 

The purpose of this study is to investigate the effect of hyperparameters of gamma 

process prior on parameter estimation in relation to hyper distribution used in 

piecewise gamma model. The study intends to assess the performance of piecewise 

gamma model in estimating parameters for non-informative and censored survival 

data. The Bayesian estimator of the parameter is computed by using Markov chain 

Monte Carlo (MCMC) method. Gibbs sampler is applied to simulate samples from 

Markov chains to estimate the quantities of interest without integrating the posterior 

distribution analytically. OpenBUGS statistical software is employed in this study to 

implement Bayesian analysis of survival data. The results obtained show that by 

increasing values fixed for hyperparameters of gamma process prior, it will decrease 

the parameter estimates. In addition, piecewise gamma model is found to be adequate 

in estimating parameters of Cox proportional hazards model for leukemia and 

hepatitis data as the Monte Carlo error is less than 5% of standard deviation of 

parameter. Hence, piecewise gamma model can be an alternative model for baseline 

hazard function.  
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ABSTRAK 

 

 

 

 

 Analisis Bayesian dapat menganggar parameter untuk pelbagai model, seperti 

model hierarki dan masalah hilang data. Analisis Bayesian menyediakan rangka kerja 

teori yang menggabungkan informasi prior dengan data untuk menghasilkan taburan 

posterior. Dalam konteks analisis kemandirian, Model Cox proportional hazards 

(PHM) terkenal dengan ciri unik yang dapat mengukur kesan kovariat terhadap data 

mandirian tanpa membuat sebarang andaian mengenai sifat dan bentuk untuk fungsi 

bahaya asas. Dalam kajian ini, model yang berbeza digunakan sebagai taburan prior 

untuk fungsi bahaya asas dalam analisis Bayesian untuk penyensoran data mandirian. 

Tujuan kajian ini adalah untuk mengkaji kesan hiperparameters dalam gamma 

process prior terhadap penganggaran parameter berhubung dengan taburan hiper 

yang digunakan dalam model piecewise gamma. Kajian ini bertujuan untuk menilai 

prestasi model piecewise gamma dalam penganggaran parameter untuk data 

mandirian yang tidak berinformasi dan censored. Parameter Bayesian dianggar 

dengan menggunakan kaedah Markov Chain Monte Carlo (MCMC). Gibbs sampler 

digunakan untuk mensimulasikan sampel dari rantai Markov untuk mendapat 

penganggaran tanpa mengintegrasikan taburan posterior secara analitikal. 

OpenBUGS perisian statistik digunakan dalam kajian ini untuk melaksanakan 

analisis Bayesian terhadap data hepatitis. Hasil kajian menunjukkan bahawa dengan 

meningkatkan nilai yang ditetapkan untuk hiperparameter dalam model gamma 

process prior, nilai parameter akan berkurangan. Selain itu, model piecewise gamma 

didapati sesuai dalam penganggaran parameter untuk Model Cox proportional 

hazards bagi data leukemia dan hepatitis dimana ralat Monte Carlo adalah kurang 5% 

daripada sisihan piawai untuk parameter. Oleh itu, model piecewise gamma boleh 

dijadikan sebagai satu model alternatif untuk fungsi bahaya asas. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Survival analysis is a set of methods used to analyze survival data. Survival 

data refers to the length of time until the occurrence of a specified event. The 

survival data is also called as survival time. The time to event can be measured in 

days, weeks or even years. In medical research, the event of interest is usually 

referred to as death, disease incurrence or relapse from remission. The event of 

interest is typically called as failure. Generally, in survival analysis, only one event is 

of designated interest. Statistical problems which consider more than one event of 

interest are usually analyzed under competing risk or recurrent events problem.   

 

 

Survival analysis focuses on the duration of time from a subject enters a study 

until the occurrence of the event. The survival time is a response variable which is 

non-negative. The goal of survival analysis is to model the distribution of the 

survival time, compare the survival probability for two or more groups of data and to 

study the relationship between the survival time and the independent covariates.  
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A special feature of the survival data that makes it distinct from other data is 

the censorship of the data. The observation is called censored when the information 

of the survival time is incomplete. There are three types of censored data, which are 

right-censored data, left-censored data and interval censored data. The data is said to 

be right-censored when only lower bound of the survival time of the censored data is 

known. Right-censoring occurs when the event of interest has not occurred before the 

study is terminated. Right-censoring can arise from withdrawal of the subject from 

the study because of competing risk or the subject is lost to follow up before the 

termination of the study. Maddala (1983) and Kalbfleisch and Prentice (1980) 

discussed several types of censoring situations. Censored survival data cannot be 

omitted during the data analysis as it represents the missing data. Ordinary linear 

regression cannot deal with the non-negativity and censoring of the survival data 

effectively. However, survival analysis can handle this kind of data by taking the 

censoring into account and incorporate information from both censored and 

uncensored observations to estimate the parameters. 

 

 

In survival analysis, survival and hazard functions are used to describe the 

distribution of the survival data. The survival function gives the probability of not 

experiencing the failure or event up to time t. The hazard function, on the other hand, 

measures the potential of getting the failure or event per unit of time conditioned that 

the individual has survived up to time t. There are a number of models which are 

appropriate to describe the relationship between the survival time and the covariates. 

The models include parametric, non-parametric and semiparametric.  

 

 

The common parametric models used in fitting the survival data are 

exponential, Weibull, lognormal and Gompertz distributions. By using parametric 

model, the survival data is assumed to follow the specified probability distributions. 

A non-parametric model is widely used to graph the survival probabilities when 

Kaplan Meier method (Kaplan and Meier, 1958) was introduced. Log-rank test is 

used to compare the Kaplan Meier curves for each group of data. A well-known 

semiparametric model used for survival analysis is Cox proportional hazards 

regression model (Cox, 1972).  

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_introsurv_sect008.htm#kalb_j_80
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Survival analysis is mostly applied to biological data. For example, survival 

model was used by Lee and Mallick (2004) for DNA microarray data. However, 

survival analysis has been extended to other fields nowadays. Survival analysis is 

widely applied in engineering field, which is used to analyze data such as lifetime of 

engines and reliability of the function of a system. In addition, survival analysis is 

also broadly used for sociological data such as duration of recidivism and economic 

data such as unemployment data. Fox (2002) applied survival model for the analysis 

of survival data that measures the time for a prisoner to be arrested after being 

released from prison. Beamonte and Bermúdez (2003) and Ganjali and Baghfalaki 

(2012) carried out survival analysis for unemployment duration data. In this study, 

right-censored medical data which is hepatitis data is analyzed by using 

semiparametric Cox proportional hazards model.  

 

 

 

 

1.2 Background of Study 

 

 

Chronic active hepatitis is referred to as inflammation of liver for at least six 

months (Anthony et al., 1978) which is caused by specific hepatitis viruses, 

autoimmune mechanism, alcohol and drugs. Autoimmune hepatitis is an organ-

specific autoimmune disease characterized by a break of humoral and cellular 

immunotolerance that mainly affects the liver (Manns and Taubert, 2014). This 

disease is commonly observed in women from all age groups and races. It is also 

called as lupoid hepatitis. The early death that is caused by this disease is due to 

hepatocellular failure (Mackay and Wood, 1962). Those who survive at the 

beginning stage of the disease might suffer macronodular cirrhosis and die from its 

complications (Read et al., 1963).  

 

 

Autoimmune hepatitis was one of the first liver diseases for which effective 

treatment had been developed. The benefit of the treatment is proven by randomized 

controlled trials. Corticosteroid therapy is shown to increase the survival time of the 
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autoimmune hepatitis patients during the early-active phase of chronic hepatitis 

(Cook et al., 1971; Wright et al., 1977). Although corticosteroid therapy can reduce 

the mortality of the patients at the early stage of the disease, the dose of steroids 

should be restricted and be withdrawn when the liver function tests return to normal. 

This study is conducted to evaluate the effect of prednisolone (steroid) treatment on 

the survival time of hepatitis patients who are randomly distributed into treatment 

and control groups. The survival probability of treatment and control groups are then 

compared to examine the effect of prednisolone therapy.  

 

 

To estimate hazard rate and survival probability for survival data, numerous 

studies has been carried out to fit the survival data. There are numerous models 

which are available in literature. The famous model used to define hazard function is 

Cox proportional hazards model proposed by Cox (1972). Cox proportional hazards 

model is a multiplicative hazard function, which is a product of unspecified baseline 

hazard function with an exponential function of explanatory variables. Cox 

proportional hazards model is popular and widely used for its unique characteristic in 

estimating the unknown regression coefficients. The estimation of the parameters for 

Cox model can be done by using partial likelihood function, which eliminates the 

baseline hazard function and accounts for censored survival times.  

 

 

Cox proportional hazards model can be used to fit the survival data by using 

both frequentist and Bayesian methods. Since frequentist method does not work well 

for small sample size and censored survival data, Cox proportional hazards model is 

usually analyzed by using Bayesian approach. In conducting Bayesian analysis, 

posterior distribution of the parameters is obtained by incorporating the likelihood of 

the observed data and the prior distribution of the parameters. The posterior 

distribution is the probability distribution of the unknown parameters conditioned on 

the observed data. The likelihood function is the joint distribution of the observed 

samples while prior distribution of the parameters expresses the belief of a researcher 

before any data is collected. An adequate and flexible prior distribution of the 

baseline hazard function which does not heavily influence the computation of 

posterior distribution is often the concern of the researchers. Kalbfleisch (1978) 
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proposed gamma process prior with fixed values of r (a guess at the failure rate per 

unit time) and c (degree of confidence at the guess) as the baseline hazard function in 

estimating the parameters for leukemia data.  

 

 

Later, numerous studies had been carried out to propose prior of the baseline 

hazard function for Cox proportional hazards model in recent years. Ayman and Anis 

(2011) proposed polygonal function as the prior of the baseline hazard function. 

They applied the model in the analysis of leukemia data and proved that the 

polygonal baseline hazard function is a better model compared to gamma process 

prior based on Deviance Information Criterion (DIC) values. Ismail et al. (2012) 

modified the original gamma process prior of Kalbfleisch by assuming r and c to 

have uniform and gamma distributions respectively. Once again, the modified 

gamma baseline hazard function appears to be more appropriate than original gamma 

process prior as the DIC value of original gamma process prior is higher than 

modified gamma baseline hazard. Although several studies have shown that new 

proposed baseline hazard functions are better models than original gamma process 

prior, there is no research done in examining the limitation of gamma process prior 

that causes the DIC value of the original gamma process prior to be higher than the 

other new baseline hazard functions. 

 

 

Ismail et al. (2013) analyzed leukemia data and Diabetic Retinopathy Study 

(DSR) eye data by using additive and multiplicative gamma polygonal as the prior of 

the baseline hazard functions. The additive and multiplicative gamma polygonal 

hazard functions have been proven to be suitable and appropriate in analyzing paired 

survival data. However, gamma process prior is not applicable for the analysis of 

DSR eye data. A new multiplicative piecewise gamma baseline hazard function was 

proposed by Ismail et al. (2014). The parameter estimation for leukemia data by 

using multiplicative piecewise gamma baseline function shows similar results as the 

results by using other baseline hazard functions. Since most of the literature was 

made based on leukemia data, hepatitis data is used in this study to analyze the 

performance of piecewise gamma baseline hazard function in estimating the 

parameters for Cox model.  
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1.3 Statement of Problem 

 

 

In the context of survival data analysis, Cox proportional hazards model is 

one of the most popular model used to measure the effects of covariates on hazard 

rates. In order to estimate the regression coefficients of the covariates from Bayesian 

perspective, the baseline hazard function of Cox model has to be specified before 

Bayesian analysis is conducted. A common model used as the prior distribution of 

the baseline hazard function is gamma process prior, which was proposed by 

Kalbfleisch (1978). Kalbfleisch (1978) suggested the baseline hazard function to 

follow gamma distribution with constant values of shape and scale parameters. He 

set r (a guess at the failure rate per unit time) and c (degree of confidence at the 

guess) as 0.1 and 0.001 respectively for the analysis of leukemia data. The question 

of why those particular values are chosen as the values of r and c arises. It is 

important to know whether other values of r and c will influence the estimation of 

the parameters. Hence, this study aims to investigate the effect of varying values of r 

and c for gamma process prior on the parameter estimation.  

 

 

In 2014, Ismail et al. proposed a multiplicative piecewise gamma model as 

the prior of the baseline hazard function for Cox model. Ismail et al. (2014) also 

suggested the baseline hazard function of Cox model to be gamma distribution but 

the shape parameter is set to have a polygonal function instead of constant values. In 

their paper, piecewise gamma model is applied on leukemia data, which is non-

informative and right-censored. The study intends to assess the performance of 

piecewise gamma model in estimating another set of data with similar characteristics 

as leukemia data. 
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1.4 Objectives of Study 

 

 

Based on the above issues and needs, the objectives of this study are: 

 

 

1. To investigate the effect of varying values of scale and shape parameters of 

gamma process prior in relation to the hyper distribution in piecewise gamma 

baseline hazard function. 

 

 

2. To assess the performance of piecewise gamma model in estimating the 

parameters for censored leukemia and hepatitis data based on the percentage 

of Monte Carlo error with the standard deviation of the parameter. 

 

 

 

 

1.5 Scope of Study 

 

 

This study focuses on the survival analysis of censored medical data. Two 

sets of survival data are applied in this study. A total of 42 leukemia data is taken 

from Freireich et al. (1963) while 44 observations for hepatitis data are taken from 

Cook et al. (1971). Both of the survival data are right-censored and non-informative.  

 

  

In this study, semiparametric multiplicative hazard function, which is Cox 

proportional hazards model is used to model the survival data as the effect of 

treatment on survival time is the subject of interest. Bayesian analysis is the main 

approach used in this study. Markov chain Monte Carlo (MCMC) methods are used 

to simulate samples from the posterior distribution of the parameter. Gibbs sampler 

algorithm is used to construct Markov chains which will converge to posterior 

distribution regardless of the initial points. The estimation of parameter is carried out 
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by using the simulated samples from converged Markov chains. The study 

emphasizes on the estimation of parameters using different types of models as the 

prior distribution of the baseline hazard function for Cox model. The performance of 

prior distributions of baseline hazard function is inspected and assessed.   

 

 

 

 

1.6 Significance of Study 

 

 

The statistical techniques used in survival analysis is not only restricted to the 

biomedical field. It has extended to other areas of knowledge such as economic and 

social sciences. Frequentist method is one of the common and easy ways to 

implement the survival analysis. However, frequentist method can only be applied to 

analyze simple models. Bayesian analysis is well known and widely used in survival 

analysis as it can deal with complicated and even hierarchical models. Hence, 

Bayesian approach is preferable over frequentist method in survival analysis. Cox 

proportional hazards model is one of the famous model used to describe the 

relationship between the covariates and the survival time. In implementing Bayesian 

analysis, a good prior for baseline hazard function which is flexible and applicable to 

all kinds of survival data is very much needed if prior information is not available. A 

good and flexible prior has a great potential in the applications of any types of 

censored survival data without bringing any effect on the estimation of the 

parameters. In other words, the applicability of a good and flexible prior for baseline 

hazard function is not limited to one set of data only. It can estimate the parameters 

accurately for any types of survival data. With a good prior distribution for baseline 

hazard function, the survival probability and the hazard function for survival data can 

be obtained easily. Thus, this study aims to obtain an appropriate and flexible model 

for the prior of the baseline hazard function which is applicable to any types of non-

informative censored survival data in estimating the parameters.  
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