BLOCK MODE DECISION IN H.265 USING PIXEL TOPOLOGY

AMMAR SABEEH HMOUD AL-TAMIMI

UNIVERSITI TEKNOLOGI MALAYSIA

BLOCK MODE DECISION IN H.265 USING PIXEL TOPOLOGY

AMMAR SABEEH HMOUD AL-TAMIMI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Computer and Microelectronic system)"

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2015

Dedicated to my father prof dr sabeeh hmoud altamimi Beloved mother waiting for my success My wife, who shares my life difficult

ACKNOWLEDGEMENT

Special thanks to Assoc .Prof .Muhammad Mun'im bin Ahmad Zabidi, my Final Year Project supervisor who dedicatedly guided and motivated us during the course of this study. Thank you for your effort in improving our study.

I am also deeply indebted to The Ministry of Higher Education and Scientific Research of the Republic of Iraq to give the opportunity to complete my master's degree.

ABSTRACT

Video compression standards is one of the key contributions of the electrical and electronics engineering discipline. The latest video standard is the High Efficiency Video Coding (HEVC) or H.265 which has a very high computational complexity. This project proposes the pixel topology algorithm which reduces the computation time spent in block mode decision. It is based on the early detection of predictive unit without passing through the fourth depth that is detection way for H.265. This technique is applied in two phases. First, calculate the cost of each frame depending on the eight models of prediction unit. Second, the frame with minimal cost determines the suitable prediction unit which is used for partitioning the current frame. The project produces significant savings in encoding time and reduction of computation complexity in a robust version which maintains high image quality and suitable encoding rate for transfer over networks.

ABSTRAK

Standard pemampatan video adalah satu satu sumbangan besar disiplin kejuruteaan elektrik dan elektronik. Standard video terbaru ialah High Efficiency Video Coding (HEVC) atau H.265 yang mempunyai kekompleksan komputasi amat tinggi/ Project ini mencadangkan algoritma topologi piksel yang mengurangkan masa diperlukan untuk keputusan mod blok, Ia berdasarkan kepada pengesanan awal unit ramalan tanpa melalui kedalaman keempat iaitu cara pengesanan H.265. Teknik ini digunakan dalam dua fasa. Pertama, kiraan kos bagi setiap kerangka bergantung kepada lapan model unit ramalan. Kedua, kerangka dengan kos minima menentukan unit ramalan yang paling sesuai untuk membahagi kerangka semasa. Projek ini menghasilkan penjimatan masa tinggi yang banyak untuk pengekodan dan pengurangan pengiraan kompleks dalam versi teguh sambil mengekalkan kualiti imej yang tinggi serta kadar pengekodan yang sesuai untuk pemindahan melalui rangkaian.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiii

INTR	INTRODUCTION 1		
1.1	Introduction	1	
1.2	Problem Statement	3	
1.3	Research Objectives	3	
1.4	Prediction Modes	3	
1.5	Scope of the Research	6	
1.6	Significance of the study	6	

1

2	LITERATURE REVIEW		
	2.1	Introduction	8
	2.2	Achieving Compression	8

2.3	H.264		9
	2.3.1	Variable Block-Size Motion Compensation	
		with Small Block Sizes	11
	2.3.2	Weighted Prediction	11
	2.3.3	Small Block-Size Transform	11
2.4	H.265		12
2.5	Block	Matching	15
	2.5.1	Block Determination Approaches	17
	2.5.2	Simple Block Determination	17
	2.5.3	Hierarchical Block Determination	18
2.6	Motio	n Estimation	19
2.7	Search	n Method	19
	2.7.1	Windows Search	20
	2.7.2	Three Step Search – TSS	20
	2.7.3	Cross Search	22
	2.7.4	2D-Logarithmic Search	24
	2.7.5	Diamond Search Algorithm	26
	2.7.6	Three Step DS Algorithm	29
		2.7.6.1 Algorithm	30
2.8	Previo	ous Proposals to Improve the Work of H.265	30
2.9	Pixel '	Topology	32
	2.9.1	Topology Data Analysis	33
MET	HDOL	OGY RESEARCH	34
3.1	Introd	uction	34
3.2	H.265	Coding Method	35
3.3	The Ir	nportant Factors in Video Compression	36
	3.3.1	MSE	36
	3.3.2	PSNR	37
	3.3.3	Encoding Time	37
	3.3.4	Rate-distortion optimization (RDO)	37
	3.3.5	Bit Rate	38
3.4	The P	ixel Topology algorithm	38

3

4	RES	ULTS AND ANALYSIS	42	
	4.1	Introduction	42	
	4.2	Standard Dataset	43	
	4.3	Experiment Conditions	46	
	4.4	Implementation and Results	47	
	4.5	Result Analysis	49	
		4.5.1 Encoding Time Parameter	50	
		4.5.2 PSNR Parameter	50	
		4.5.3 Bitrate Parameter	51	
	4.6	Benchmarking with Previous Studies	52	
		4.6.1 Encoding Time Parameter	53	
		4.6.2 PSNR Parameters	54	
		4.6.3 Bitrate Parameter	55	
5	CON	NCLUSION AND FUTURE WORK	56	
	5.1	Introduction	56	
	5.2	Conclusion		
	5.3	Future Work		
EFERE	NCES		58	

REFERENCES

ix

LIST OF TABLES

TABLE NO	TITLE	PAGE	
4.1	reference frame of each dataset	44	
4.2	last reconstruction frame of each dataset	47	
4.3	Result comparison	49	
4.4	Previous study	52	

LIST OF FIGURES

TITLE

PAGE

1.1	HEVC Coding Tree Unit	4
1.2	Prediction Unit partitioning modes	5
1.3	Ten standard video sequence using in this research	8
2.1	Scope of H.264 standard	11
2.2	HEVC video encoder block diagram (with decoder	
	elements in grey)	14
2.3	Modes for splitting a CB into PB	15
2.4	Block Matching Flowchart	16
2.5	Search initiation from the best match location in	
	the previous level	18
2.6	Example of TSS with step size $= 4$	21
2.7	Example of cross search with step size $= 4$	23
2.8	Example of 2D-logarithmic search with step size =	
	4	25
2.9	Variation of Diamond pattern	27
2.10	Corner edge and center point in Diamond search	28
2.11	Three steps Diamond search	29

3.1	Three depth partitioning in H.265	36
3.2	HEVC video encoder block diagram (with decoder	
	elements in grey)	39
3.3	Flowchart pixel topology	41
4.1	Chart 1 encoding time of different classification	50
4.2	Chart 2 PSNR of different classification	50
4.3	Cart analysis 3 bitrate different classification	51
4.4	chart 4 encoding time compare with H.265	
	previous study	53
4.5	chart 5 PSNR compare with H.265 previous study	54
4.6	chart 6 bite rate compare with H.265 previous	
	studies	55

LIST OF ABBREVIATIONS

HEVC	-	High-Efficiency Video Codec
IEC/ISO MPEG	-	International Electro technical Commission/ International
		Organization for Standardization
ITU-Ts VCEG	-	International Telegraph Union Telecommunication
AVC	-	Advanced Video Coding
MPEG-2	-	Moving Picture Experts Group
k	-	Kilo
CTU	-	Coding Tree Unit
CU	-	Coding Unit
PU	-	Prediction Units
RDO	-	rate distortion optimization
VCEG	-	Video coding experts group
MPEG	-	moving pictures experts group
ISO/IEC	-	International Organization for Standardization
		/International Electro Technical Commission
DSL	-	Digital subscriber line
LAN	-	Local area network
ISDN	-	Integrated Services for Digital Network
NAL	-	Network Abstraction Layer
VLC	-	Video LAN Client
L	-	Length
СТВ	-	coding tree block
CB	-	coding blocks
PBs	-	prediction blocks
ME	-	motion estimation
TSS	-	Three step search

LIST OF SYMBOLS

High-Efficiency Video Codec H.265 -Cross Х _ Plus +- Δ _ _ _ _ _ -

CHAPTER 1

INTRODUCTION

1.1 Introduction

High-Efficiency Video Codec (HEVC), which is also called H.265 is the latest nonproprietary compression standard for video. HEVC is going to become the video standard for upcoming years as it was included in final draft sanctioned in January 2013. Just as the earlier technologies of video compression in HEVC the viewer will experience the same or better quality of video than before while, the net cost of video storage and delivery will be reduced.

The organizations in the technological industry (IEC/ISO MPEG) and telecommunications (ITU-Ts VCEG) have standardized HEVC as an open standard to leverage most efficient video compression techniques using market's latest processing platforms. As compared to the standards of AVC/H.264 and MPEG-2 the size of the video file or a bit stream can be decreased up to 50% and 75% respectively. As a result of this the cost of the transmission and video storage is reduced and high definition content is delivered for consumer consumption.

The techniques and algorithms used in HEVC are significantly more complex than those of H.264 and MPEG-2. There are more decisions to make when encoding a given video stream or file and as a result, more calculations need to be made in compressing video assets. This complexity, however, is an excellent fit for video processing solutions that seamlessly evolve from one compression generation to the next as they mitigate the risks that come with any large technological migration.

The HEVC video compression standard is based on a similar set of coding tools as the H.264/AVC, the major difference is that the pixels in H.264/AVC, the largest coding block called the macro block are 16×16 while in HEVC, the largest block supported by the standard is 64×64 pixels. Because of the larger coding blocks in HEVC, the standard can support higher resolutions up to 8192×4320 pixels-ultra high definition or the 8k [1].

The names of the three profiles in the initial version of HEVC were main, main 10 and main still picture. A profile is a definition of a set of tools necessary to encode videos in a certain mode to produce unique bits streams for that particular profile. HEVC is designed to encode videos at a very high efficiency rate; this means that the HEVC encoder optimizes the bits budgets required to encode each frame and the entire video sequence. HEVC in performance comparison with H.264/AVC, increases the compression of video about 50% of the value obtainable from H.264 along with better quality of visual [2].

As the designs and tool sets of HEVC are complex in all profiles so, the coding efficiency in terms of the encoding time is poor in the sense that real time encoding of video files using this standard poses a strong challenge at present. This delay in encoding observable in this standard is due, mostly, to complex coding tools and motion estimation algorithms built into the standard to enhance the quality of the encoded video. These motion estimation algorithms implemented in the standard will be studied with an aim to propose an improved faster algorithm that would yield higher efficiency in encoder timing at an acceptable psycho-visual quality.

1.2 Problem Statement

The key problems to be examined in this research are to reduce the encoder complexities by reducing the encoder run-time while maintaining the same video quality and compression ratio. The research problems are:

- 1. Is there a technique to quickly identify the predictive unit?
- 2. Is the proposed method able to reduce overall computation complexity?
- 3. Will the proposed algorithm produce videos at an acceptable PSNR and bitrate?

1.3 Research Objectives

This research seeks to improve encoder run-time by reducing complexities associated with diamond estimation algorithm. To achieve this goal, the following research objectives are pursued:

- To adopt a novel block partitioning scheme based on the theories of pixel topology
- 2. To use the Lagrange function to reduce computation complexity
- 3. To evaluate the enhancement method using standard data set.

1.4 Prediction Modes

HEVC is a block based compression standard that relies heavily on motion estimation as a tool to code video frames. In HEVC, 33% of encode time is allotted to motion estimation which reflects the complexities of the encode process due to motion estimation. The core of coding standards prior to HEVC was based on a unit called macro block. A macro block is a group of 16×16 pixels which provides the basics to do structure coding of a larger frame. This concept is translated into Coding Tree Unit (CTU) with HEVC standard, this structure is flexible compared to macroblock. A CTU could be of size 64×64 , 32×32 , or 16×16 pixels.

Each CTU is organized in a quad-tree form for further partitioning to smaller sizes called Coding Unit (CU). An example of partitioning a CTU into CUs is given in Figure 1.

1.1 HEVC Coding Tree Unit

The tree is traversed in depth first order and the corresponding nodes of the tree are visible on the CTU structure in Figure 1.1.

Each CU could be predicted using three prediction modes: 1) Intra-predicted CU; 2) Inter-predicted CU; 3) and Skipped CU. Intra-prediction uses pixel information available in the current picture as prediction reference, and a prediction direction is extracted. Inter-prediction uses pixel information available in the past or future frames as prediction reference, and for that purpose motion vectors are extracted as the offset between the matching CUs. A skipped CU is similar to an inter-predicted CU, however there is no motion information; hence skipped CUs ignore motion information already available from previous or future frames.

In contrast to eight possible directional prediction of intra blocks in AVC, HEVC supports 34 intra prediction modes with 33 distinct directions, and knowing that intra prediction block sizes could range from 4×4 to 32×32 , the combinations of size of the block and prediction direction defined for HEVC bit streams are 132.

A leaf CU in the Coding Tree Units CTU can be farther split into regions of homogeneous prediction called Prediction Units (PU). One CU can be divided upto four PUs. The modes possible in PU depend on the prediction mode. For intraprediction there is can be two possible modes, whereas inter-prediction can be done using one of eight possible modes. Figure 1.2 presents all possible PU modes available in HEVC whereas in the block the numbers of pixels are determined by N, N is pixel.

Figure 1.2 Prediction Unit partitioning modes

To code a particular CU, the encoder must perform a rate distortion optimization (RDO) decisions to determine which of the intra or inter-prediction blocks offers the least coding cost; that would be the chosen mode to code the CU.

Due to this multitude of evaluations that the encoder has to make to optimize the bits budgets, this lead to complexities of the encoding process and for this reason, real time encoding becomes quite challenging. Because mode decision in block video coding takes many decisions, for this reasons it consumption so match time 33% of encoder time, one becomes necessary to reduce the decision loop to one based on simple computation of pixel line topology. This give the required block mode base on the features of the target block.

1.5 Scope of the Research

The data used in this study classified into five classes from A to E depending on dimensions of the image where they give varying dimension and different resolution as shown in Figure 1.3

1.6 Significance of the Study

This study would develop and introduce a novel fast motion vector search algorithms into the HEVC literature; also the concepts of mode decisions based on pixels topology shall also be introduced.

Class A 2650 x 1600 –people on street

Class B 1920 x 1080 – park scene

Class C 832 x 480 BQ mall

Class D 416 x 240 -blowing

Class E 1280 x 720 -- city

Class B 1920 x 1080 - kimono1

Class C 832 x 480 – party scene

Class D 416 x 240 –Basketball Pass

Class D 416 x 240 -race horses

Class E 1280 x 720 -mobile calendar

Figure 1.3 Ten standard video sequence using in this research

REFERENCES

- Henot, J. P., Ropert, M., Le Tanou, J., Kypreos, J., and Guionnet, T. 2013, June. High Efficiency Video Coding (HEVC): Replacing or Complementing Existing Compression Standards?. In Broadband Multimedia Systems and Broadcasting (BMSB), 2013 *IEEE International Symposium on* (pp. 1-6). IEEE.
- Ohm, J., Sullivan, G. J., Schwarz, H., Tan, T. K., and Wiegand, T. 2012. Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding (HEVC). Circuits and Systems for Video Technology, *IEEE Transactions* on, 22(12), 1669-1684.
- Cheung, C. H., and Po, L. M. 2002. A Novel Cross-Diamond Search Algorithm for Fast Block Motion Estimation. Circuits and Systems for Video Technology, *IEEE Transactions* on, 12(12), 1168-1177.
- Draft, I. T. U. T. 2003. Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H. 264| ISO/IEC 14496-10 AVC). Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
- 5. Benjamin Bross, Woo-Jin Han, Jens-Rainer Ohm, Gary J. Sullivan, Ye-Kui Wang, and Thomas Wiegand, "High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS and Last Call)," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JCTVC- L1003_v34, pp.1-310, Jan. 2013.
- DE COMPUTAÇÃO, E. N. G. E. N. H. A. R. I. A. 2014. Performance and Coding Efficiency Evaluation of HEVC Parallelization Strategies (Doctoral dissertation, Universidade Federal Do Rio Grande Do Sul).

- Ohm, J., Sullivan, G. J., Schwarz, H., Tan, T. K., and Wiegand, T. 2012. Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency Video Coding (HEVC). Circuits and Systems for Video Technology, IEEE Transactions on, 22(12), 1669-1684.
- Junghye Min, Tammy Lee, Woo-Jin Han, and Jeong Hoon Park, Block Partitioning Structure in the HEVC Standard, *IEEE Transactions on Circuits and Systems for Video Technology*, vol.22, issue.12, pp.1697-1706, Dec. 2012.
- Lee, T. K., Chan, Y. L., and Siu, W. C. 2013. Motion Estimation In Low-Delay Hierarchical P-Frame Coding Using Motion Vector Composition. *Journal of Visual Communication and Image Representation*, 24(8), 1243-1251.
- Kimihiko Kazui, Junpei Koyama, and Akira Nakagawa, "Industry Needs of Very Low Delay Coding," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-F147, pp.1, Jul. 2011.
- Chan, M. H., Yu, Y. B., and Constantinides, A. G. 1990. Variable Size Block Matching Motion Compensation with Applications to Video Coding. *IEE Proceedings I (Communications, Spee*
- Rhee, I., Martin, G. R., Muthukrishnan, S., and Packwood, R. A. 2000. Quadtree-Structured Variable-Size Block-Matching Motion Estimation with Minimal Error. *Circuits and Systems for Video Technology, IEEE Transactions on*, 10(1), 42-50.
- Zhang, K., Bober, M., and Kittler, J. 1997. Image Sequence Coding Using Multiple-Level Segmentation and Affine Motion Estimation. *Selected Areas in Communications, IEEE Journal on*, 15(9), 1704-1713.
- Zhou, Z., Sun, M. T., and Hsu, Y. F. 2004, May. Fast Variable Block-Size Motion Estimation Algorithm Based on Merge and Slit Procedures for H. 264/MPEG-4 AVC. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III-725). IEEE.
- 15. Reddy, B. Fast Block Matching Motion Estimation Algorithms for Video Compression (Doctoral dissertation). 2013.

- 16. Hsu, W. J., and Hang, H. M. 2013, October. Fast coding unit decision algorithm for HEVC. In *Signal and Information Processing Association Annual Summit and Conference (APSIPA)*, 2013 Asia-Pacific (pp. 1-5). IEEE.
- Zhong, G. Y., He, X. H., Qing, L. B., and Li, Y. 2013. Fast Inter-Mode Decision Algorithm for High-Efficiency Video Coding Based on Similarity of Coding Unit Segmentation and Partition Mode Between Two Temporally Adjacent Frames. *Journal of Electronic Imaging*, 22(2), 023025-023025.
- Lee, A., Jun, D., Kim, J., Choi, J. S., and Kim, J. An Efficient Inter Prediction Mode Decision Method for Fast Motion Estimation in High Efficiency Video Coding. *ETRI Journal*.
- Chen, Z. Y., Fang, J. T., Liao, T. L., and Chang, P. C. 2014. Efficient Pu Mode Decision and Motion Estimation for H. 264/AVC to HEVC Transcoder. Signal.
- He, J., He, X., Li, X., and Qing, L. 2014. Fast Inter-Mode Decision Algorithm for High-Efficiency Video Coding Based on Textural Features. *Journal of Communications*, 9(5).
- Park, C. S., Hong, G. S., and Kim, B. G. 2014. Novel Intermode Prediction Algorithm for High Efficiency Video Coding Encoder. Advances in Multimedia.
- Belghith, F., Kibeya, H., Loukil, H., Ayed, M. A. B., & Masmoudi, N. 2014. A New Fast Motion Estimation Algorithm using Fast Mode Decision for High-Efficiency Video Coding Standard. *Journal of Real-Time Image Processing*, 1-17.