FIELD ASSESSMENT OF OLD JETTY IN MALAYSIA

TAN JOO EE

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2016

Specially dedicated to...

To all my teachers in life

Thank you.

ABSTRACT

Malaysia being a maritime country now faces the problem of lack of knowledge on how to assess the performance of old marine structure from available local practitioners. The existing guidelines adopted are still too complicated to be applied in engineering practice. There is an urgent need for a simple yet reliable method for assessing old structures. The project report presents detailed investigation findings on 68-year-old jetty facility which is still in service in northern part of Peninsular Malaysia to assess its structural condition. The objective of the report is to develop a practical assessment programme, to determine the long term relation between the rates of structure deterioration by measurements of material properties, and to determine the remaining service life of the jetty. A combination of direct tests and non-destructive tests such as concrete core compression test, rebound hammer test, carbonation tests, chloride ion ingression test and steel pile thickness measurement were performed. Direct testing on concrete cores has indicated the approximate remaining compressive strength of 33.5N/mm². The result from the rebound hammer tests found that the Main Jetty's equivalent compressive strength was 32 N/mm² which is below present marine structural standard of minimum 50 N/mm². The close approximation of the results shows that field tests using NDT can produce sufficiently adequate results for assessment of marine structures as long as the results of the NDT have been validated. Carbonation tests on the concrete cores shows that the 68-year-old jetty is not experiencing significant detrimental effects from carbonation. From observation of the core indicates that carbonation will remain within the concrete structure even after repair works unless concrete section affected by carbonation is completely removed. Chloride ion ingression is an observation of long term exposure effects to aggressive environment. The ingression of chloride is influenced by the location of the structure. It is found that the South Mooring Dolphin age 59 year old has shown high chloride content beyond the concrete cover and is therefore at higher risk of exposure to chloride induced corrosion. Steel thickness measurement is for assessing the critical steel pile member of the jetty facility where reduction of steel thickness is an indication of mass loss which is related to the capacity of the piles to carry load. As a conclusion, field assessment tests proposed in this report is simple yet produces reliable results for assessment of structures.

ABSTRAK

Malaysia sebuah negara maritim yang menhadapi masalah kekurangan pakar tempatan yang berpengetahuan bagi penilaian prestasi struktur marin tua. Garispanduan sediada adalah terlalu rumit untuk dilaksanakan dalam amalan kejuruteraan praktikal. Suatu kaedah penilaian yang mudah dan boleh diterimapakai adalah sangat diperlukan. Laporan ini telah mengemukakan suatu kajian terperinci ke atas struktur jeti berusia 68 tahun yang masih beroperasi di utara Semenanjung Malaysia bagi tujuan mengenal pasti keadaan strukturnya. Objektif laporan ini adalah untuk membangunkan suatu rancangan penilaian praktikal, menentukan kesan jangka panjang kadar kemerosotan struktur melalui pengukuran sifat bahan, dan menentukan baki hayat perkhidmatan jeti. Suatu kombinasi ujian termasuk ujian terus and ujian tanpa musnah seperti ujian mampatan konkrit, "rebound hammer test", ujian pengkarbonatan, ujian pengingresan klorida dan pengukuran ketebalan cerucuk keluli telah dilaksanakan. Ujian beban terus ke atas sampel konkrit menunjukkan bahawa kekuatan mampatan anggaran konkrit adalah 33.5N/mm². Hasil ujian "*rebound hammer tests*" didapati kekuatan manpatan setara Jeti Utama adalah 32 N/mm² dimana nilai ini adalah kurang daripada piawaian terkini iaitu kekuatan mampatan minima 50 N/mm². Keputusan yang hampir setara di antara keduaduanya menunjukkan kaedah ujian tanpa musnah boleh memberi keputusan yang boleh diterimapakai bagi mengenal pasti keadaan struktur marin sekiranaya kaedah tersebut telah disahkan terlebih dahulu. Ujian pengkarbonatan pada struktur berusia 68 tahun menunjukkan tiada kesan yang memudaratkan akibat pendedahan kepada karbon. Pemerhatian menunjukkan bahawa kesan pengkarbonatan akan kekal sekiranya kawasan yang terlibat tidak dibuang, walaupun kerja membaiki telah dibuat,. Ujian pengingresan klorida boleh menunjukkan kesan jangka panjang akibat terdedah kepada pesekiraan yang agresif. Kadar pengingresan klorida adalah dipengaruhi oleh lokasi struktur berkenaan. "South Mooring Dolphin" yang berusia 59 tahun menghadapi risiko pengaratan disebabkan oleh pengaruh klorida yang tinggi. Pengukuran ketebalan keluli adalah bertujuan bagi menkaji struktur kritikal seperti cerucuk keluli di mana pengurangan ketebalan keluli yang diukur menunjukkan pengurangan jisim pada cerucuk and seterusnya berkaitan dengan pengurangan kapasiti cerucuk untuk menanggung beban. Sebagai kesimpulan, ujian padang yang dikemukakan dalam laporan ini adalah mudah dan member keputusan yang boleh dipercayai bagi menilai keadaan struktur.

LIST OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATION AND SYMBOLS	xvii
1	INTRODUCTION	1
	1.0 Introduction	1
	1.1 Problem Background	2
	1.2 Research Problem	3
	1.3 Research Aim and Objectives	4
	1.4 Research Scope	5
	1.5 Significance of Research	6
2	LITERATURE REVIEW	7
	2.0 Introduction	7
	2.1 Electrochemical Theory of Corrosion	8
	2.2 Marine Environment	11

2.3 Chloride Ingression	12
2.4 Carbonation	13
2.5 Non-destructive Test Selection for Structural Steel	14
2.6 Non-destructive Test Selection for Embedded Steel	16
2.7 Concrete Core Compressive Strength Test	17
2.8 Rebound Hammer	17
2.9 Ultrasonic Pulse Velocity (UPV)	18
2.10 Deterioration of Concrete Structure	19
2.11 Deterioration of Steel Structures	21
2.12 The Importance of Field Assessment	25
2.13 Conclusion	25
RESEARCH METHODOLOGY	26
3.0 Introduction	26
3.1 Overview of Research Design	27
3.2 Preliminary Data Collection	29
3.2.1 Historical Data Review	31
3.2.2 Visual Inspection of the Site	33
3.2.2.1 Above Water Section	35
3.2.2.2 Under Water Section	41
3.3 Detailed Assessment Design	42
3.3.1 Detailed Visual Inspection of Predetermined	
Structural Members	43
3.3.2 Selection of Field Non-destructive Test	
(NDT)	46
3.3.2.1 Steel Thickness Measurement	46
3.3.2.2 Rebound Hammer	47
3.3.2.3 Carbonation Test	48
3.3.3 Selection of Laboratory Testing	49
3.3.3.1 Concrete Core Compressive Strength	
Test	50
3.3.3.2 Chloride Ion Ingression Test	50

3

3.4 Detailed Data Collection	51
3.4.1 Photo Documentation of Structure Condition	51
3.4.2 Collection of In-situ data	52
3.4.2.1 Steel Thickness Measurement	53
3.4.2.2 Rebound Hammer Test	53
3.4.2.3 Carbonation Test	54
3.4.3 Collection of Laboratory Tests Samples	55
3.4.3.1 Extraction of concrete core samples	55
3.4.3.2 Collection of Powder Samples for	
Chemical Analysis	56
3.5 Data Analysis	57
3.5.1 Data Screening	57
3.6 Conclusion	58
DATA ANALYSIS AND DEVELOPMENT OF	59
ASSESSMENT SCHEME	
4.0 Introduction	59
	57
4.1 Observation from Visual Inspection of the Site	60
4.1 Observation from Visual Inspection of the Site	
4.1 Observation from Visual Inspection of the Site4.2 Observation from Detailed Visual Inspection of	60
4.1 Observation from Visual Inspection of the Site4.2 Observation from Detailed Visual Inspection ofPredetermined Structural Members	60 64
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 	60 64 64
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 	60 64 64
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper 	60 64 64
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing 	60 64 64 71
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 	60 64 64 71
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - 	60 64 64 71
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - Beams (Upper Deck Beams, Waler 	60 64 64 71 75
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 	 60 64 64 71 75 81
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.3 Observation of Main Jetty - Slabs (Soffit) 	 60 64 64 71 75 81
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams, Waler Beams, Waler Beams, Waler Beams, Waler Beams, Waler Beams, Upper Deck Beams, Waler Beams, Waler, Be	60 64 64 71 75 81 86
 4.1 Observation from Visual Inspection of the Site 4.2 Observation from Detailed Visual Inspection of Predetermined Structural Members 4.2.1 Observation of Main Jetty – Piles 4.2.1.1 Observation of Historical Pile Record 4.2.2 Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.2.1 Historical Observation of Main Jetty - Beams (Upper Deck Beams, Waler Beams and Bracing Beams) 4.2.3 Observation of Main Jetty - Slabs (Soffit) 4.2.3.1 Historical Observation of Main Jetty - Slabs (Soffit) 	60 64 64 71 75 81 86

4.2.5 Observation of South Mooring Dolphin	
(Dolphin I)	92
4.2.5.1 Historical Observation of Mooring	
Dolphins i	94
4.3 Field Tests Results	95
4.3.1 Field Inspection 1: Steel Thickness	
Measurement	96
4.3.1.1 North Mooring Dolphin (Dolphin J	J) 96
4.3.1.2 South Mooring Dolphin (Dolphin I	I) 104
4.3.2 Field Inspection 2: Rebound Hammer Tes	st 111
4.3.2.1 Data Screening (Outliers Detection	n) 112
4.3.2.2 Analysis of Graphs	113
4.3.3 Field Inspection 3: Carbonation Test on	
Freshly Extracted Concrete Core Samples	s 114
4.3.3.1 Concrete Core 1	114
4.3.3.2 Concrete Core 2	117
4.3.3.3 Concrete Core 3	121
4.4 Laboratory Tests Results	125
4.4.1 Laboratory Investigation 1: Concrete	
Compressive Strength Test	125
4.4.2 Laboratory Investigation 2: Chloride Ion	
Content Analysis	127
4.5 Remaining Life Projection of the Jetty Facilities	130
4.6 Proposed Field Assessment Programme	131
4.7 Conclusion	132
DISCUSSION	133
5.0 Introduction	133
5.1 Findings of Visual Inspection	134

5.1 Findings of Visual Inspection	134
5.2 Rebound Hammer and Concrete Compressive	
Strength Test	134
5.3 Condition of the Jetty Members	135

5

	5.4 Findings of Laboratory Chloride Ion Ingression Test	135
	5.5 Findings of Carbonation Test	136
	5.6 Findings of Steel Thickness Measurement	137
6	CONCLUSION AND RECOMMENDATION	138
	6.0 Conclusion	138
	6.1Recommendation	139
REFERENCI	ES	141

х

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Concrete Pile Deterioration Symptoms	19
3.1	Findings of Under Water Pile Section (Year 2007)	42
4.1	Information on North Mooring Dolphin (Dolphin J)	60
4.2	Information on South Mooring Dolphin (Dolphin I)	61
4.2	Information on Reinforced Concrete Main Jetty with	
4.3	Flare Head	62
4 4	Information on Disused Reinforced Concrete Dolphin	
4.4	(Dolphin A)	63
4.5	Steel Thickness Measurement for Dolphin J	97
4.6	Steel Thickness Measurement for Dolphin I	104
4 7	Rebound Hammer Test on Concrete Structures (without	111
4.7	removal of outliner)	111
4.0	Rebound Hammer Test on Concrete Structures (outliner	110
4.8	data removed)	112
4.9	Concrete Core Compressive Strength Test Results	126
	Chemical Analysis of the Sea Water at Northern	
4.10	Peninsular Malaysia (Test conducted on 13th November	127
	2015)	
4.11	Percentage of Chloride by Weight in Concrete (%)	128

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Jetty Facilities – Scope of Study	6
2.1	Schematic illustration of the corrosion of reinforcement	8
2.1	steel in concrete – as an electrochemical process	
2.2	Basic Four Elements (ACME) for Corrosion to Take	9
2.2	Place	9
2.3	Examples of Area Percentages	22
2.4	Examples of Area Percentages	23
2.5	Examples of Area Percentages	24
2 1	Overview of research design for a practical assessment	
3.1	programme for marine structure	28
3.2	Reference Grid and Member Nomenclature	29
3.3	Plan of Jetty Facility	30
3.4	Plan of the Jetty at berthing face.	31
3.5	Plan of Old Jetty in Northern Peninsular Malaysia with	
	Approximate Year Built (2007)	32
3.6	Disused Breasting Dolphins "A" & "H"	33
3.7	Seaward View (Towards West) of the Jetty	34
3.8	Jetty Approach Bridge (Towards North)	35
3.9	Jetty Approach Bridge – Above Deck	36
3.10	Northern Half of the Jetty Berthing Face (Year 2014)	37
3.11	Southern Half of the Jetty Berthing Face (Year 2014)	37
3.12	North Mooring Dolphin	38
3.13	South Mooring Dolphin	39

3.14	Jetty Approach Bridge Under Deck Inspection	
	(Towards South)	40
3.15	Jetty Approach Bridge Under Deck Inspection	
	(Towards East) (2007)	40
3.16	Jetty Approach Bridge Under Deck Inspection – Soffit	43
3.17	Jetty Head Under Deck Inspection – Soffit	44
3.18	North Mooring Dolphin – Soffit	44
3.19	South Mooring Dolphin Side View	45
3.20	South Mooring Dolphin – Soffit	45
3.21	Steel Piles Thickness Measurement (2007)	47
3.22	Rebound Hammer	48
3.23	Apparatus for carbonation test	48
3.24	Rebound Hammer Test Conducted on Upper Beam	
	DB13	54
3.25	Measurement of carbonation depth on Concrete Core 3	54
3.26	Extracted Concrete Core 1	56
3.27	Power Samples Collected for Chemical Analysis	56
4.1	North Mooring Dolphin (Dolphin J)	60
4.2	South Mooring Dolphin (Dolphin I)	61
4.3	Reinforced Concrete Main Jetty with Flare Head	62
4.4	Disused Reinforced Concrete Dolphin (Dolphin A)	63
4.5	Jetty Standardized Grid	64
4.6	Observation of Pile A2	65
4.7	Observation of Pile B2	65
4.8	Observation of Pile C2	66
4.9	Observation of Pile C3	66
4.10	Observation of Pile C5	67
4.11	Observation of Pile C8	67
4.12	Observation of Pile C9	68
4.13	Observation of Pile C10	68
4.14	Observation of Pile E2	69
4.15	Observation of Pile E3	69
4.16	Observation of Pile E5	70

4.17	Observation of Pile E9	70
4.18	Observation of Pile F2	71
4.19	Historical Observation of Pile 02 (1992)	72
4.20	Historical Observation of Pile (Unspecified Location-	
	1992)	72
4.21	Historical Observation of Pile (Unspecified Location -	
	1992)	73
4.22	Historical Observation of Pile C7 (1992)	73
4.23	Historical Observation of Pile C9 (1992)	74
4.24	Observation of Beam AB1	75
4.25	Observation of Bracing Beam AB3	75
4.26	Observation of Bracing Beam AB5	76
4.27	Observation of Bracing Beam AB6	76
4.28	Observation of Beam CB20	77
4.29	Observation of Beam DB5	77
4.30	Observation of Beam DB8	78
4.31	Observation of Beam DB12	78
4.32	Observation of Beam AB5	79
4.33	Observation of Beam CB11	79
4.34	Observation of Beam CB17	80
4.35	Observation of Bracing Beam DB9	80
4.36	Observation of Waler Beam DB2	81
4.37	Historical Observation of Upper Deck Beam AB8	
	(1992)	82
4.38	Historical Observation of Upper Deck Beam CB8	
	(1992)	82
4.39	Historical Observation of Upper Deck Beam CB17	
	(1992)	83
4.40	Historical Observation of Upper Deck Beam CB18	
	(1992)	83
4.41	Historical Observation of Under Deck (Unspecified-	
	1992)	84
4.42	Historical Observation of Under Deck (Unspecified-	84

1992)

	1992)	
4.43	Historical Observation of Upper Deck Beam DB4	
	(1992)	85
4.44	Historical Observation of Upper Deck Beam	
	(Unspecified - 1992)	85
4.45	Observation of Slab (Soffit) S23	86
4.46	Observation of Slab (Soffit) S22	86
4.47	Observation of Slab (Soffit) S11	87
4.48	Historical Observation of Slab (Soffit) S4	88
4.49	Historical Observation of Slab (Soffit) S7	88
4.50	Historical Observation of Slab (Soffit) S13	89
4.51	Observation of North Mooring Dolphin (Dolphin J)	90
4.52	Observation of North Mooring Dolphin (Dolphin J) -	
	External Sides	90
4.53	Observation of North Mooring Dolphin (Dolphin J) -	
	Pile Cap Soffit	91
4.54	Observation of South Mooring Dolphin (Dolphin I)	92
4.55	Observation of South Mooring Dolphin (Dolphin I) -	
	External Sides	92
4.56	Observation of South Mooring Dolphin (Dolphin I) -	
	External Sides	93
4.57	Observation of South Mooring Dolphin (Dolphin I) –	
	Pile Cap Soffit	93
4.58	Observation of South Mooring Dolphin (Dolphin I) –	
	Steel Pile (2007)	94
4.59	Observation of North Mooring Dolphin (Dolphin J) –	
	Steel Pile (2007)	95
4.60	Steel Pile Orientation of Dolphin I and Dolphin J	96
4.61	North Mooring Dolphin (Dolphin J) Pile 1	99
4.62	North Mooring Dolphin (Dolphin J) Pile 2	100
4.63	North Mooring Dolphin (Dolphin J) Pile 3	100
4.64	North Mooring Dolphin (Dolphin J) Pile 4	101
4.65	North Mooring Dolphin (Dolphin J) Pile 5	102

4.66	North Mooring Dolphin (Dolphin J) Pile 6	102
4.67	North Mooring Dolphin (Dolphin J) Pile 7	103
4.68	North Mooring Dolphin (Dolphin J) Pile 8	103
4.69	South Mooring Dolphin (Dolphin I) Pile 1	106
4.70	South Mooring Dolphin (Dolphin I) Pile 2	106
4.71	South Mooring Dolphin (Dolphin I) Pile 3	107
4.72	South Mooring Dolphin (Dolphin I) Pile 4	108
4.73	South Mooring Dolphin (Dolphin I) Pile 5	108
4.74	South Mooring Dolphin (Dolphin I) Pile 6	109
4.75	South Mooring Dolphin (Dolphin I) Pile 7	109
4.76	South Mooring Dolphin (Dolphin I) Pile 8	110
4.77	Rebound Hammer Test Results	113
4.78	Location of Core 1 Dolphin A (disused Dolphin which	
	is below FFP Level)	115
4.79	Close up on Core 1 Dolphin A	115
4.80	Close up on Core 1 Dolphin A	116
4.81	Location of Core 2 Middle of Jetty Head	117
4.82	Close up on Core 2 Middle of Jetty Head	118
4.83	Close up on Core 2 Middle of Jetty Head	118
4.84	Close up on Core 2 Middle of Jetty Head	119
4.85	Close up on Core 2 Middle of Jetty Head	120
4.86	Location of Core 3 North of Jetty Head	121
4.87	Close up on Core 3 North of Jetty Head	122
4.88	Close up on Core 3 North of Jetty Head	123
4.89	Percentage of Chloride by Weight in Concrete (%)	
	versus Penetration Depth	129
4.90	Proposed Field Assessment Programme for Existing	
	Structure	131

LIST OF ABBREVIATION AND SYMBOLS

%	Percentage
ACI	American Concrete Institute
ASCE	American Society of Civil Engineers
BS	British Standards
CO_2	Carbon dioxide
CI	Chloride ion
Fe	iron
Fe ²⁺	Ferrous ion
FFP	Fit-For-Purpose
H_2O	Water
NDT	Non-destructive Tests
MSL	Mean Sea Level
O_2	Oxygen
OH	Hydroxyl ion
pН	Potential of Hydrogen
ppm	Parts per million
UPV	Ultrasonic Pulse Velocity

CHAPTER 1

INTRODUCTION

1.0 Introduction

With advancement of technology and an ever-increasing demand for oil globally has created a situation where the planning and construction of new berthing accommodation for the oil companies to load and discharge cargoes are lacking behind the demand for new facilities. As one of the means of managing this situation, oil companies are looking into means of prolonging and upgrading their facilities to meet the current demand. In Malaysia for instance, the oil companies are paying more attention to ascertain that their facilities e.g. terminal jetties in operation are at Fit-For-Purpose (FFP) level. Concern for the safe operation of the terminal jetty is encouraging them to focus on conducting assessment, investigation and maintenance programmes on structures serving beyond their design life span. Some of the common properties of structure which we will look into include concrete compressive strength, concrete durability and mass loss in steel structures. Any indication of deterioration can be assessed by measurements of common structure properties.

Marine jetties have to adequately maintained its functionality at the same time be safe for use. They are exposed to hostile marine environment and also at times unusual loading conditions often associated with marine structures (ASCE, 2001). Deterioration of structures over a long term period will eventually cause the structure to degrade and lose its structure performance. It is reported by (Potty et al., 2013) that 80% of Malaysia's offshore platforms are beyond its design life of 25 years. It is recommended that these type of structures needs to be assessed for ultimate capacity to determine whether it can remain further in service. The possibility to conduct direct tests to determine ultimate capacity on in service existing structure does not come by easy. Therefore a combination of Nondestructive Tests (NDT) and concrete core compressive strength test are recommended for assessment of in service structures. The results from these tests can aid decision on whether to repair, restore, and strengthen or replacement of certain structural components to meet the Terminal's operational requirements.

1.1 Problem Background

In the most ideal case for assessment of old structures, documentation of design basis, historical structural integrity assessment data and latest qualitative and quantitative data on the structure is required for deterministic assessment of the current structure condition. However, it is common that the data available is either missing or incomplete. Therefore most assessment of old aged structures are based on past experience or superficial remedy to symptoms found on the structure at the time of the field investigation. The remedial actions taken under such circumstance may yield unsatisfactory outcomes and at times aggravate the condition of the old structure.

The aggressive environment which marine structure is subjected to is well recorded. The moist marine environment induces chloride and carbon to penetrate the concrete cover of reinforced concrete structure, and once the ingress of these chemical exceeds the cover of the concrete the reinforcement steel will be susceptible to corrosion once the passive layer of the reinforcement is disturbed. As for steel structures in marine environment is susceptible to extensive mass loss if its protective coatings are not well maintain. Excessive mass loss due to corrosion in steel structure would cause the structure to lose its functionality. Reliable information to assessed old structures is necessary for reliable deterministic assessment of current structure condition. The remaining service life of the structure can be estimated with greater certainty.

1.2 Research Problem

There are many assessment records of old marine structures around the world e.g. North America, Northern Europe and Persian Gulf to list a few. However, too few assessment records of marine structures in ASEAN countries such as Malaysia, a maritime country with bustling growth of seaport with average growth rate of +8.64% base from a 5-year data from 2007 to 2011 (Soon and Lam, 2013). Over time, marine facilities will gradually age and will need to be maintained and rehabilitated. It is clear that practitioner in Malaysia face the problem of a lack of knowledge in assessing performance of old marine facilities.

Since assessment of structures has to be specifically designed to take into account many parameters such as the climate, marine water composition, and material, locally developed guidelines should be used for the assessment of structure. Currently, the existing local guidelines developed are too complicated to be applied in actual engineering practice. There is a need to develop a comprehensive guideline in assessment of structures locally. It is important because any recommendations based on foreign assessment records on remedial works may not work to mitigate the rate of deterioration for local structures.

There is a demand in the industry to have a simple to execute yet reliable assessment programme which is deterministic and able to assess old marine structure that is still in service. Through the assessment programme the Fit-For-Service Level of the structure can be ascertained and the remaining service life can be predicted. If the structure is found to be sound and good condition, then there will be no further action required other than continual monitoring of the structure. If the structure is found to be in distressed, remedial works may be recommended should the works be economically viable or to downgrade the use of the structure for lighter use. In extreme cases, a structure may have to be demolished and rebuilt. Due to the economical importance of maritime activity to the country there is a necessity to formulate a reliable method to assess existing locally for in service structure and to determine the remaining service life at Fit-For-Service Level.

1.3 Research Aim and Objectives

The main goal of this research is to come up with a practical assessment programme for old marine structure assessment taking into account local environment and availability of assessment methods locally. The following are the objectives to achieve in my research:- 1) To develop a practical assessment programme for the assessment of the old marine jetty subjected to aggressive marine environment using non-destructive tests (NDT) and historical data

2) To determine the long term relation between the rate of structure deterioration by measurements of strength, durability properties and mass loss.

3) To determine the remaining service life of the jetty facility using information from non-destructive tests (NDT) methods and direct tests method.

1.4 Research Scope

The scope of study will be focused on marine structure assessment of existing jetty member up to 68-year-old at the time of assessment in 2014 with the use of NDT testing and information from historical data. The members studied in detail are North Mooring Dolphin (Dolphin J), South Mooring Dolphin (Dolphin I), Reinforced Concrete Main Jetty with flare head and Disused Reinforced Concrete Dolphin (Dolphin A). All of the members are located by the seaside and exposed to the same environment.

Historical data on the jetty facility reveal that the reinforced concrete main jetty has been in service for 68 years since 1947and the disused Dolphin A has been exposed to the marine environment since 1947. From past records on the jetty inspection, the date when Dolphin A ceased to be at FFP condition is not known. It is only certain that, it is recorded that at year 1992, Dolphin A has already ceased its service as part of the jetty main component. The Dolphin J and I have been in service for 57 years since 1958. These members will be assessed its structure condition using selected NDT methods and laboratory tests.

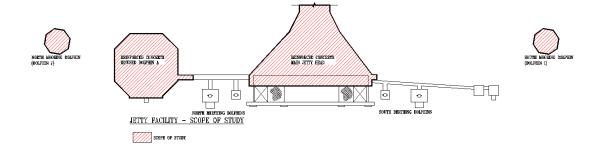


Figure 1.1 Jetty Facilities – Scope of Study

1.5 Significance of Research

There is an ever increasing demand on oil and gas companies to expand their loading and discharging capabilities with an increase in tanker size and frequency of tankers received. There is little allowance for existing facilities to be closed for inspections and maintenance. However, there scarcity of marine assessment programmes available in Malaysia. The benefits expected from this study are:

1) The proposed practical assessment programme can be applied for local marine structure in Malaysia.

2) Able to provide a long term relation data on existing structure in Malaysia between the rate of structure deterioration by measurements of strength, durability properties and mass loss.

3) Able to sufficiently estimate the remaining service life of the jetty facility using information obtained from the study.

REFERENCES

- Al-Rabiah, A.R. and Baggott, R. (1990). Durability requirements for reinforced concrete construction in aggressive marine environments. *Marine Structures*, 3(4), 285-300.
- American Society of Civil Engineers (2001). Appendix B Types and Causes of Defects and Deterioration. Underwater Investigations Standard Practive Manual. ASCE Manuals and Reports on Engineering Practice No. 101, 99-118
- Albrecht, P. and Hall Jr, T.T. (2003). Atmospheric corrosion resistance of structural steels. *Journal of Materials in Civil Engineering*, 15(1), 2-24.
- Azlan Abdul Rahman (2004), Lecture Notes MAB 1033 NDT Guide Supplement MAB 1033, Faculty of Civil Engineering, University Technology Malaysia, Skudai, Johor
- ASTM D610 08(2012). Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces
- Bertolini, L. (2008). Assessment methods for reinforced concrete structures. *Structure and Infrastructure Engineering*, 4(2), pp.33-77.
- Beutel, R., Reinhardt, H.W., Grosse, C.U., Glaubitt, A., Krause, M., Maierhofer, C., Algernon, D., Wiggenhauser, H. and Schickert, M. (2008). Comparative performance tests and validation of NDT methods for concrete testing. *Journal of Nondestructive Evaluation*, 27(1-3), 59-65.
- British Standards Institution (1986). *BS 1881-201:1986*. London: British Standards Institution.
- British Standards Institution (2010). BS 6349-2:2010. London: British Standards Institution.
- Cao, W.Q., Zhang, P. and Zhao, T.J. (2010). Corrosion Monitoring for Service Life Prediction of Reinforcement Concrete Infrastructures. In *Proceedings of the* 10th International Conference of Chinese Transportation Professionals.

- Detwiler, R.J., Taylor, P.C., Corley, W.G., Klemm, W.A. and Johansen, V.C. (2000), May. Engineering and science in structural forensic work. In *Proceedings of the Second Forensic Congress*.
- Do, P., Voisin, A., Levrat, E. and Iung, B. (2015). A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions. *Reliability Engineering & System Safety*, 133, 22-32.
- Exxon Engineering (1995). Piling Concrete Pile Deterioration Symptoms. *Marine Terminal I & M Guide*, Section 3, Pg. 33
- Emmons, P. H., & EMMONS, B. W. (1993). Concrete repair and maintenance illustrated: problem analysis, repair strategy, techniques. Kingston, MA, R.S. Means Co.
- Gheitasi, A. and Harris, D.K. (2015), June. Performance assessment of steelconcrete composite bridges with subsurface deck deterioration. In *Structures* (Vol. 2, 8-20). Elsevier.
- Hansson, C.M. (1984). Comments on electrochemical measurements of the rate of corrosion of steel in concrete. *Cement and Concrete Research*, 14(4), 574-584.
- Heffron, R.E. and Buslov, V.M. (2004). Predicting the Remaining Service Life of Waterfront Structures. In *Ports 2004@ sPort Development in the Changing World* (1-8). ASCE.
- Hille, F., Rohrmann, R. and Rücker, W. (2005), February. Guidelines for the assessment of existing structures. In *Proceedings of the Institution of Civil Engineers-Transport* (Vol. 158, No. 1, 17-25).
- Hold, S. (2015). Modern concepts to save marine structures. *Proceedings of the Institution of Civil Engineers-Engineering History and Heritage*, 168(3), 122-134.
- Kog, Y.C. (2005). Fifty-year-old jetties in a tropical Marine environment.
- Kuehn, B., Lukić, M., Nussbaumer, A., Guenther, H.P., Helmerich, R., Herion, S., Kolstein, M.H., Walbridge, S., Androic, B., Dijkstra, O. and Bucak, Ö. (2008), February. Assessment of existing steel structures: recommendations for estimation of remaining fatigue life. In *Joint Research Centre-European Convention for Constructional Steelwork Report*.
- Leong M.C. and Sew S.T. (1992), June. Jetty Inspection Report: Above Water. Hydrocarbon Storage Terminal Archive
- Liam, K.C. and Roy, S.K. (1992). Chloride ingress measurements and corrosion potential mapping study of a 24-year-old reinforced concrete jetty structure in

a tropical marine environment. *Magazine of Concrete Research*, 44(160), pp.205-215.

- Lunsford, B.R. (1993). Statistics: Screening and Data Summary. Journal of Prosthetics and Orthotics. 5(4), 125-130.
- Leong M.C. and Sew S.T. (1996), October. Jetty Inspection Report: Underwater. Hydrocarbon Storage Terminal Archive
- Leung, W.C. and Lai, T.K. (2002), September. Maintenance strategy of reinforced concrete structures in marine environment in Hong Kong. In *Concrete for extreme conditions. proceedings of the international conference held at the University of Dundee, Scotland, uk on 9-11 September 2002.*
- Leong M.C. and Sew S.T. (2007), November. Jetty Inspection Report: Above water and Underwater. Hydrocarbon Storage Terminal Archive
- Liu, J.C., Sue, M.L. and Kou, C.H. (2009). Estimating the Strength of Concrete Using Surface Rebound Value and Design Parameters of Concrete Material. *Tamkang Journal of Science and Engineering*, *12*(1), 1-7.
- Loretoa, G., Di Benedettia, M. and Nannia, A.(2012). Evaluation of Concrete Structures in Marine Environment–Geiger Key Bridge. *SPIE Vol.8347* 83472C-1.
- Mattson, R.A. and Ahlgren, C.S. (1999). Nondestructive Examination of Steel Liners and Penstocks to Ascertain Structural Integrity. In *Waterpower'99@ sHydro's Future: Technology, Markets, and Policy* (1-7). ASCE.
- Morandian et al. (2012). Assessment of Long-Term Performance of a 50-Year –Old Jetty in South of Iran. *Journal of Performance of Constructed Facilities, American Society of Civil Engineers*, 26: 633-643.
- Nguyen, V.H. and Ngo, T.A.T. (2005). Service-life estimation for concrete structures in marine environment. In *Admixtures-Enhancing Concrete Performance*. *The International Conference*.
- Ou, Y.C. and Nguyen, N.D. (2015). Cyclic Behavior of Reinforced Concrete Beams with Corroded Transverse Steel Reinforcement. London: Taylor & Francis Group.
- Paramasivan, P. and Lim, C.T.E. (2004). Performance of Reinforced Concrete Piles Exposed to Marine Environment. *Structural Concrete*, *5*(1), 5-9.

Papavinasam, S. (2013). Corrosion control in the oil and gas industry. Elsevier.

- Potty, N.S and Fawwaz Ahmad Sohaimi, A. (2013). Ultimate strength assessment for fixed steel offshore platform.
- Reading, T.J. (1982). Chloride content limits recommended by ACI Committee 201. *Concrete Construction*, 27(10), 45.
- Ratcliffe, A. (1983), November. The basis and essentials of marine corrosion in steel structures. In *ICE Proceedings* (Vol. 74, No. 4, 899-907). Thomas Telford.
- Seleem, H.E.D.H., Rashad, A.M. and El-Sabbagh, B.A. (2010). Durability and strength evaluation of high-performance concrete in marine structures. *Construction and building Materials*, 24(6), 878-884.
- Soon, C. and Lam, W.H. (2013). The growth of seaports in Peninsular Malaysia and East Malaysia for 2007–2011. *Ocean & Coastal Management*, 78, pp.70-76.
- Torres-Acosta, A.A. and Mart 1' nez-Madrid, M. (2003). Residual life of corroding reinforced concrete structures in marine environment. *Journal of Materials in Civil Engineering*, *15*(4), 344-353.
- Wagner, C. and Traud, W. (1938). Concerning the evaluation of corrosion reactions by superposition of electrochemical partial reactions and concerning the potential formation on mixed electrodes. *Z. Eletrochemical*, 44(391), p.52.
- Wall, H. and Wadsö, L. (2013). Corrosion rate measurements in steel sheet pile walls in a marine environment. *Marine Structures*, 33, 21-32.
- Wang, Y., Wharton, J.A. and Shenoi, R.A. (2014). Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: A review. *Corrosion Science*, 86, 42-60.
- Yokota, H., Kato, E. and Iwanami, M., 2010, May. Simplified assessment on structural performance of deteriorated concrete members. In *Proceedings of* the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures (pp. 23-28).
- Zeng L, Song R, (2013). Controlling Chloride Ions Diffusion in Concrete, *Scientific Reports*, 3: 3359