EVALUATION OF MECHANICAL PROPERTIES OF ALLUMINIUM FILLED EPOXY COMPOUND FOR RAPID TOOLING APPLICATIONS

JAAFAR SIDEK BIN MOHD ANI

A dissertation submitted as partial fulfilment of the requirement for the Degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

هُ للله (برجم لترجموا 21

In the name of God, most Gracious, most Compassionate

ACKNOWLEDGEMENT

In the name of Allah, the most Gracious and most Compassionate

First of all, thanks to almighty ALLAH S.W.T for the blessing and opportunity to completed this thesis. I would like to thanks and express my sincere appreciation to Prof Dr Safian Sharif for his excellence supervision, advice, guidance and continuous encouragement and help.

I am also indebted to Majlis Amanah rakyat (MARA) for providing funding assistant during my study.

My sincere appreciation and acknowledgement to UTM technical staff (En Azizi / En Azri), Dr Nik , School of Material (UniMAP) , En Tanwyn (GMi) , En Hainol (UTM) , Pak Toto (UTM), School of Material and Mineral USM , En Mohammad (Technician Plastic Lab) , Ms Maslinda (Postgraduate) , Mr Tan (Carl Ziess), Dr Tan (Microvisual) for assistant and guidance .

Last but not least, my further gratitude goes to my family and wife for their supporting and understanding, love, patience, encouragement, moral support and their endless prayer.

ABSTRACT

In this study, the mechanical properties and microstructure inspection for aluminium filled epoxy including hardness, dimension accuracy, density, compressive test, fracture analysis were evaluated . An investigation measurement for the grain size on the three different temperature was carried out. Result shows that the grain size or G number microstructure for aluminium filled epoxy having a different size and distribution was corresponding with increase in temperature. In term of dimensional accuracy inspection, aluminium filled epoxy tends to have shrinkage experience with rate of 0.05% to 0.06% for round part while 0.15% for pin .The compressive strength shows a better trend during cooling in ambient temperature compared to cooling in an oven. In term of density, there was no significant effect to the hardness when tested with Vickers Hardness Tester, Barcol Impresser and Shore D Durometer. The parameter design mixing and curing for aluminium filled epoxy using Taguchi Method which based on larger is better is optimized .Four control factors are investigated in the study: pre curing time, degassing time, Interval time curing and maximum curing time. The response plot of the control factor shows factor A2 (pre curing at 50°C), B2 (degassing time at 45 minute) C3 (interval curing at 14 hour) D2 (maximum curing at (165°C) and factor A2 (pre cuing at 27°C), B3 (degassing time at 30 minute) C1 (interval curing at 14 hour) D2 (maximum curing at (165°C) were significant in contributing in mixing and curing to increase the hardness and density of aluminium filled epoxy.

ABSTRAK

Dalam kajian ini, sifat-sifat mekanikal dan pemeriksaan microstruktur untuk aluminium filled epoxy termasuk kekerasan, ketepatan dimensi, ketumpatan, ujian mampatan, analisis patah telah dinilai. Ukuran untuk saiz bijian pada tiga suhu yang berbeza telah dijalankan. Keputusan menunjukkan bahawa saiz butiran atau G number mikrostruktur aluminium filled epoxy mempunyai saiz yang berbeza selaras dengan peningkatan suhu. Dalam pengukuran ketepatan dimensi, aluminium filled epoxy cenderung untuk mengalami pengecutan dengan kadar 0.05% kepada 0.06% bagi sampel bulatan manakala 0.15% untuk pin. Kekuatan mampatan menunjukkan trend yang lebih baik semasa penyejukan suhu persekitaran berbanding penyejukan dalam oven . Dari segi ketumpatan, tidak ada kesan yang ketara kepada kekerasan apabila diuji dengan Vickers Hardness Tester, Barcol Impresser dan Shore D durometer. . Reka bentuk parameter bagi penyediaan bahan untuk Aluminium filled epoxy .denagn menggunakan Kaedah Taguchi yang berdasarkan yang lebih besar adalah lebih baik (Larger the better) Empat faktor kawalan disiasat dalam kajian ini:. Curing time, Degassing time masa Intervel time dan Maximum Curing Time .Keputusan menunjukkan faktor A2 (Curing time 50 ° C), B2 (Degassing time 45 minit) C3 (Intervel time 14 jam) D2 (Maximum Curing 165 ° C) dan A2 (Curing time 27 ° C), B3 (Degassing time 30 minit) C1 (Intervel time 14 jam) D2 (Maximum Curing 165 ° C) adalah faktor penting bagi menyumbang kepada kekerasan dan ketumpatan semasa proses penyediaan bagi aluminium filled epoxy.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

TITLE PAGE	i
DECLARATION OF SUPERVISOR	ii
DECLARATION OF AUTHOR	iii
DEDICATION	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF APPENDICES	vix

INTR	ODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Research aim and objectives	4
1.4	Objectives of the study	4
1.5	Research Scopes	5

1

2.1	Overv	iew of Rapid Tooling Technology	6
2.2	Soft T	Cooling and Hard Tooling	9
	2.2.1	Indirect Tooling – Soft Tooling	9
		2.2.1.1 Silicone Mould	10
		2.1.1.2 Epoxy Mould	12
2.2	Indire	ct Tooling - Hard Tooling	14
	2.1.1	Metal Spray tooling	15
	2.2.2	Cast Metal tooling	16
	2.2.3	Electroformed Tooling	16
	2.2.4	Keltool Tooling	16
2.3	Ероху	y Resin	18
	2.3.1	Introduction	18
	2.3.2	Research in Epoxy Resin in Rapid	
		Tooling Application	23
	2.3.3	Modifying Epoxy Resin	28
	2.3.4	Application of Epoxy Resin	30
2.4	The T	aguchi Approach	37
	2.4.1	The History of Taguchi Method	37
	2.4.2	Overview study by researcher using	
		Taguchi Method	39
	2.4.3	Product or Process Optimization	40
		2.4.3.1 System Design	40
		2.4.3.2 Parameter Design	40
		2.4.3.3 Tolerance design	41
	2.4.5	Methodology used in Taguchi Method	41
	2.4.6	Signal to Noise Ratio (SN ratio)	42
	2.4.7	Classification of SN ratio	42
		2.4.7.1 Dynamic SN ratio	43
		2.4.7.2 Non Dynamic type SN ratio	44
	2.4.8	Eight Steps in Taguchi Method	45

LITERATURE REVIEW

2

3

RESEARCH METHODOLOGY

3.1	Metho	odology	46
3.2	Mater	ial Preparation	48
3.3	Experi	imental Method	52
	3.3.1 (Compressive Testing	53
	3.3.2	Density Check	54
	3.3.3	Dimensional Accuracy	55
	3.3.4	Grain Measurement and Morphology	
		Inspection	56
	3.3.5	Hardness Test.	57
		3.3.5.1 Vickers Tester	57
		3.3.5.2 Shore D Durometer	58
		3.3.5.3 Barcol Impresser Hardness tester	59
3.4	Summ	nary	61
3.5	Taguc	hi Method	62
	3.5.1	Eight Steps in Taguchi Method	62

4

RESULTS AND DISCUSSION

4.1	Introduction	65
4.2	Morphology / Microstructure inspection	66
4.2	Grain Measurement	68
	4.2.1 Summary of Effect of Grain Size Area	
	with the Temperature	70
4.3	Dimension Accuracy	77
4.4	Hardness Test	96
	4.4.1 Vickers Hardness	96
	4.4.2 Shore D Durometer Hardness Tester 100	
4.4.3	Barcol Impresser Hardness test	102
4.4.4	Effect of Grain Size to Hardness Properties of	
	Aluminium Filled Epoxy	104
4.5	Density	105

4.5.1	Effect	Air Trapped to Density	109
4.5.2	Effect	of Grain Size to Density Properties of	
	Alumi	nium Filled Epoxy	110
4.6	Comp	pressive Strength	111
4.7	Fractu	are Analysis	117
4.8	Param	eter Design using Taguchi Method	120
	4.8.1	Step-1: Identify the main function,	
		side effects, and failure mode	120
	4.8.2	Step-2: Identify the noise factors,	
		testing conditions, and quality	
		characteristics	120
	4.8.3	Step-3: Identify the objective function to	
		be optimized	121
	4.8.4	Step-4: Identify the control factors and	
		their levels	121
	4.8.5	Step-5: Select the orthogonal array	
		matrix experiment 122	
	4.8.6	Step-6: Conduct the matrix experiment	123
	4.8.7	Step-7: Analyse the data, predict the	126
		optimum levels and performance	
	4.9	Discussion on Taguchi Analysis on	
		Hardness and Density	134

5	CONCLUSION	
	Conclusion	136
	REFERENCES	139

LIST OF TABLES

TABLEE NO.TITLEPAGE

2.1	Epoxy resin available in a wide variety of physical	
	from low viscosity liquid to high melting point.	
	(T. M. Goulding , 2003)	22
2.2	Comparison between RT and conventional tooling	
	(Cheah et al., 2002)	24
2.3	Cost and lead time comparison between epoxy	
	resin tooling, silicon rubber molding and conventional	
	tooling in manufactured turbine blade.	
	(M. Vaezi et al., (2011)	25
2.4	Basis of product size and the desired amount of	
	shots using rapid tooling method	26
2.5	Comparison between cast epoxy tool and CNC machine	
	(Krikorian, G. 1996)	27
2.6	Rapid Tooling process an application comparison	
	(Krikorian, G. 1996)	27
2.7	Epoxy resin with modifying ingredients	30
2.8	Example orthogonal array	41
2.9	Type and Application for dynamic SN ratio	43
3.1	Product data for Rencast© CW47 and Ren © HY 33	49
3.4	Sample preparation for aluminium epoxy compound	50

3.5	Summary physical mechanical testing method	
	and equipment	61
3.6	Control factors and their levels	63
4.1	Morphology of aluminium filled epoxy at different	
	conditions	67
4.2	Grain size formulation based on the ASTM Grain Size, G	68
4.3	Summary of effect grain size aluminium filled epoxy	70
4.4	Measurements (Statistics) at curing temperature	
	of 150 ° C	71
4.5	Measurements (Statistics) at curing temperature	
	of 150 ° C	72
4.7	Measurements (Statistics) at curing temperature	
	of 165° C	74
4.8	Measurements (Statistics) at curing temperature	
	of 180° C	75
4.9	Measurements (Statistics) at curing temperature	
	of 150° C	76
4.10	Measurement sample for dimensional accuracy	79
4.11	Dimensional accuracy for round sample under	
	ambient cooled	80
4.12	Dimensional accuracy for round Sample	
	under oven cooled.	81
4.14	Dimensional accuracy for pin under oven cooled	83
4.15	Dimensional Accuracy for T-Bone under ambient cooled	85
4.16	Summary of the dimensional accuracy	
	under Ambient Cool	87
4.17	Dimensional Accuracy for T-Bone under oven cooled	90
4.18	Summary Dimensional Accuracy (Oven Cool)	92
4.19	Summary Vickers hardness data	98
4.20	Summary average using Shore D Durometer	100
4.21	Summary data hardness by using Barcol Impressor	103

4.22	Density of aluminium filled epoxy under ambient	
	cooled and oven cooled conditions.	107
4.23	The summarized of compressive test	115
4.24	Control factors and levels for aluminium filled	
	epoxy compound	122
4.25	Experimental design using L18	123
4.26	Experimental calculated Mean (HV) and S/N ratio (dB)	
	of Hardness	124
4.27	Experimental calculated Mean (HV) and S/N ratio (dB) of	
	Density	125
4.28	Response S/N Ratio	126
4.29	Response Mean Hardness (HV)	127
4.30	Response S/N ratio (Density)	130
4.31	Response Mean (Density)	131
4.32	Prediction optimize parameter to obtain Hardness value	134
4.33	Prediction to obtain parameter design to obtain	
	Density value	134

LIST OF FIGURES

FIGURE NO .	
-------------	--

TITLE

PAGE

1.1	Crack appearing on the surface of mould half	3
	(Cheah et al., 2002)	
2.1	Classification of rapid tooling	8
2.2	Classification of rapid tooling (C.K Chua, 1999)	9
2.3	Silicone mould (A. Rosochowski et al., 2000)	10
2.4	Schematic illustration of fabrication process	11
2.5	Core and cavity made by epoxy tooling	
	(Antonio J. Pontes et al., 2010)	12
2.6	Epoxy mold (D T Pham and S S Dimov (2003)	13
2.7	Spray metal tooling A 800 by 600 mm spray formed	
	steel for press tool application under assessment	
	in volume production (P.S. Grant et al., 2006)	15
2.8	Detail roadmap functional parts and tools by additive	
	fabrication for plastic and metal parts	17
2.9	U.S epoxy resin production	18
2.10	Basic chemical of Epoxy group	19
2.11	Structure and properties of epoxy resin	20
2.12	Productivity gas turbine blade using epoxy resin	
	tooling and silicone rubber mold with a built	
	wax pattern	25
2.13	Epoxy resins in surface coating application	31

2.14	Construction of a segmental precast concrete	
	bridge by the cantilever construction method	32
2.15	Epoxy resins in structural applications	33
2.16	Application epoxy resin in sealing and bonding	
	in electronic industry	34
2.17	Completed RT core and cavity mould halves	
	(Cheah et al 2002)	35
2.18	Resin tool of punch and blank holder for the	
	shock absorber (H. Muller et al., 2001)	36
2.19	P diagram for Dynamic S/N ratio	43
2.20	P Diagram for Non Dynamic S/N ratio	44
3.1	Research work flow chart	47
3.2	Rencast© CW47 and Ren© HY 33	49
3.3	INSTRON 50kN Universal Testing Machine	53
3.4	Precisa XB220A	54
3.5	CMM Carl Ziess Contura G2	55
3.6	Nikon Optical Microscope	56
3.7	Vickers hardness tester	57
3.8	Shore D Durometer	58
3.9	Barcol Impresser hardness tester	59
3.10	Scanning electron microscope	60
3.11	Cool suptter Coater	60
4.1	Dark colour represent epoxy and white	
	color is aluminium grain	66
4.2	Example of grain measurement by boundaries	
	using I Solution Software	69
4.3	Identification of grain boundaries counted	
	by using I Solution Software	69
4.4	Effect of temperature to the Grain size	70
4.5	Grain size at temperatures at 150 ° C	71

4.6	Grain size at temperatures at 165 ° C	72
4.7	Grain size at temperatures at 180° C	73
4.8	Grain size at temperatures at 165 ° C	74
4.9	Grain size at temperature at 180° C	75
4.10	Grain size at temperature at 150 ° C	76
4.11	Measurement of sample using CMM	77
4.12	Measurement using Calypso software	78
4.14	Data Analysis Dimensional Accuracy for Round	
	Shape (Wear Rate) Sample	84
4.15	Dimensional Accuracy (Length)	88
4.16	Dimensional Accuracy (Width 1)	88
4.17	Dimensional Accuracy (Width 2)	89
4.18	Dimensional Accuracy (Middle)	89
4.19	Dimensional Accuracy (Length)	93
4.20	Dimensional Accuracy (Width 1)	93
4.21	Dimensional Accuracy (Width 2)	94
4.22	Dimensional Accuracy (Middle)	94
4.23	Vickers Hardness tester	96
4.24	Indention using Vickers Hardness Test	97
4.25	Indention of diamond shape at different temperatures	97
4.26	Comparison an average Vickers Hardness Number for	
	N1 and N2	99
4.27	Comparison average Shore D Number average for N1	
	(ambient cooled) vs N2 (Oven cooled)	101
4.28	Hardness test using Barcol Impresser	102
4.29	Indention of Barcol Impressor	102
4.30	Comparison of Barcol Hardness Number of Average	
	N1 and N2	104
4.31	Samples for Density measurement	105
4.32	Measure weight in the air	106
4.33	Measure weight in the water	106

4.34	Comparison Density Average for N1 vs N2	108
4.35	Vacuum casting machine	109
4.36	Sample locate and secure in fixture for compressive test	111
4.37	Stress vs strain for under ambient cooled condition	
	(Curing temperature 150°C)	112
4.38	Stress vs strain for under ambient cooled condition	
	(Curing temperature 180°C)	112
4.39	Stress vs strain for under ambient cooled condition	
	(Curing temperature 100°C)	113
4.40	Stress vs strain for under ambient cooled condition	
	(Curing temperature 165°C)	113
4.41	Compressive Strength in Ambient Cool	114
4.42	Compressive Strength in Oven Cool	114
4.43	Ambient cool vs Oven Cool	116
4.44	Fracture surface of compressive	117
4.45	Fracture at magnification 100x	118
4.46	Fracture at magnification 250x	118
4.47	Fracture at magnification 500x	119
4.48	Fracture at magnification 1000x	119
4.49	Response S/N ratio for hardness value	128
4.50	Response mean for hardness value	128
4.51	Response S/N ratio for Density	132
4.52	Response Mean for Density	132

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A1	Material safety data sheet for aluminium filled epoxy	146
B2	Result CMM (Round and Pin Shape)	147
C1	Quotation for Image Analyzer	148
C2	Quotation for Density inspection	149
D1	Barcol conversion table	150
E1	Gantt Chart	151

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Increasing global competition, together with the rising number of product variants with shorter life cycles in today's way forcing manufacturing companies and industries to reduce their development time of the manufactured components. Currently, companies are experiencing increasing pressure to produce complex and diverse products in shorter product development cycles, aiming to achieve less overall cost with improved quality (Evans and Campbell, 2003). Besides product costs and quality, the set-up time of a new product is a key factor for the competitiveness of the manufacturing. Due to that, new manufacturing methods such as rapid tooling are becoming increasingly important to save the time, cost and lead time for fabricated tooling for injection moulding mould especially mold and cavity insert. Production of tooling is a slowest and most expensive exercises because of accuracy and quality needed depending on the manufacturing process involved. Rapid tooling processes are now being considered as an option specifically tooling to be developed economically. An idea in this research is to develop accurate process parameters for mixing and curing of aluminium filled epoxy compound for rapid tooling applications. It offers great potential and opportunity in product development especially to mold maker and rapid tooling application.

1.2 Problem Statement

Over the past years, rapid tooling (RT) has been largely seen as complementary technology, for quickly making tools for various kinds of prototype applications, within the tooling sector. Compare with conventional method, the traditional method of developing tool (punch and cavity) takes more time to be ready for production (Rahmati *et al.*, 2007). The use of epoxy resin in aircraft, guided weapons, ships and vehicle construction has increased markedly in the last decade and this dramatic growth rate shows every sign of continuing in shaping the future. Many efforts and attempts have been made to understand the behaviour of epoxy resin in product quality. Research by M.Vaezi *et al.*, (2010) reported that epoxy resin moulds had higher accuracy compared with conventional tooling for injection mould for manufacturing gas turbine blade. Epoxy resin in rapid tooling application can help to reduce both the cost and lead time required for part production by up to 25% and 50%. (Cheah *et al.*, 2002)

Like other materials, plastic, can be sensitive and tend to lose the structure integrity when damage. The damage can happen whether at time of manufacture or during in service. Its same goes to epoxy based material. When cured, epoxy resins are highly cross-linked, amorphous thermoset polymers and this structure results in many useful properties, such as high modulus, low creep and good performance at elevated temperature.

However, it also means that the unmodified epoxies are relatively brittle polymers with poor resistance. Cheah *et al.*, (2002) reported high pressures were imposed during moulding which caused significant amount of stress to be generated within the mould and causing crack in the epoxy resin mould. Figure 1.1 below shows a crack line observed on the cavity side mould half after series of 400 moulding cycle with PC material.

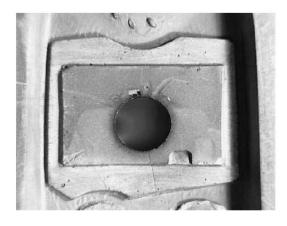


Figure 1.1 Crack appearing on the surface of mould half (Cheah *et al.*, 2002)

Depending on the specific needs for certain physical and mechanical properties, combinations of the right choices of epoxy resin and curing agents can usually be formulated to meet the market demands. The current challenges and issues found in epoxy resin are to combine strength, accuracy, surface finish and thermal characteristics. It is widely acknowledged that not all rapid tooling meet all above requirements. When tooling engineers considers RT to use in functional prototype production, varieties of issues arises. According to Nagahanumaiah *et al.*, (2003) issues in rapid tooling as follows:

- i. The accuracy, durability, surface finish and overall performance of tooling
- ii. Cost, lead time, process capability (geometric constraints)
- iii. The quantity of part produced
- iv. The quality of part produced

From previous researches that has been done, the data for curing and mixing is limited. No comprehensive data optimization in mixing and curing of aluminium filled epoxy. Thus, an initiative has been undertaken to conduct this research in order to determine the setting best parameter in mixing and curing for rapid tooling application. The mechanical and metallurgical properties of aluminium filled epoxy will be evaluated. It is expected that appropriate process parameters for mixing and curing of aluminium filled epoxy compound will offers significant benefits to mold maker and rapid tooling industries.

1.3 Research aim and objectives

The aim of the study is to establish and to evaluate the aluminium epoxy compound for rapid tooling application. In order to achieve the above goal, the specific objectives and scope were set for this research as follows:

1.4 Objectives of the study

- i. To determine the appropriate process parameters for mixing and curing aluminium filled epoxy compound for rapid tooling applications.
- ii. To evaluate the metallurgical and mechanical properties Aluminium filled epoxy compound.
- iii. To establish the optimum parameters for mixing and curing aluminium filled epoxy using Taguchi approach.

1.5 Research Scopes

- The resin used is aluminium filled with epoxy.
 (Rencast © CW47 / Ren © HY 33)
- ii. Develop appropriate process parameters using Design of Experiment (DOE) approach.
- iii. To evaluate the metallurgical and mechanical properties of aluminium filled epoxy using Scanning electron microscope (SEM) and others mechanical testing equipment was used to plan the experiments and identify the significant parameters that affect the responses..

REFERENCES

- Antonio J. Pontes ,Miguel P. Queirós ,Pedro G. Martinho , Paulo J. Bártolo and António
 S. Pouzada (2010). Experimental assessment of hybrid mould performance.
 International Journal Advance Manufacturing Technology.50: pp 441–448
- Ariyanti Sarwono , Zakaria Man and M. Azmi Bustam (2012) .Blending of Epoxidised
 Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and
 Mechanical Properties. *Journal Polymer Environment* 20:540–549
- A Rosochowskia and A. Matuszak (2000). The state of the art . Rapid tooling. *Journal* of Materials Processing Technology 106 ,pp191 198.

ASTM F2792 - 12a Standard Terminology for Additive Manufacturing Technologies.

ASTM 695-96 – Standard Test Method for Compressive Properties of Rigid Plastic

ASTM G99-95a – Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus

- Brush Wellman Inc. (2010) Grain Size and Material Strength: Technical Issue No 15 March 2010.
- Chil-Chyuan Kuo, Zhi-Yang Lin and Wang-Lin Tsai (2012). A New Environment
 Friendly Process For Making Green Epoxy-Based Composites Mold Advanced
 Materials Research Vols. 341-342 (2012) pp 194-198

- C. M. Cheah , C. K. Chua and H. S. Ong (2002) Rapid Moulding Using Epoxy Tooling Resin. International Journal Advance Manufacturing Technolpgy (2002) 20:368–374
- Daniel H. Herring. Grain Size and Its Influence on Materials Properties. August 2005 Industrial Heating.com.
- D T Pham and S S Dimov (2003) Rapid Prototyping and Rapid Tooling- The Key Enablers for Rapid Manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: *Journal of Mechanical Engineering Science* 217:1
- Eric Radstok (1999) Rapid tooling *Rapid Prototyping Journal*. Volume 5 . Number 4 . 1999 . pp. 164-68
- Evans, M.A. and Campbell, R. I. (2003). A Comparative Evaluation of Industrial Design Models Produced Using Rapid Prototyping and Workshop-Based Fabrication Techniques. *Rapid Prototyping Journal*, Vol. 9
- J.C. Ferreira and A. Mateus (2003) A. Studies of Rapid Soft Tooling With Conformal Cooling Channels For Plastic Injection Moulding. *Journal of Materials Processing Technology*. pp 508–516
- H. Brull 1959 Anti-Corrosion Methods and Materials Volume: 6 Issue: 10 1959
- H.Muller and J.Sladojevic (2001) Rapid Tooling Approaches For Small Lot Production Sheet-Metal Parts *Journal of Materials Processing Technology* 115 (2001) 97-103
- I. M. low, C. SHI (1998) Vickers Indentation Responses of Epoxy Polymers .Journal of Materials Science Letters 17 (1998) pp 1181-1183

- Ismet Ilyas, Chris Taylor, Kenny Dalgarno and John Gosde. (2010). Design and Manufacture of Injection Mould Tool Inserts Produced Using Indirect SLS and Machining Processes, *Rapid Prototyping Journal*. Vol. 16, No. 6, pp. 429-4
- Jack G. Zhou, Monnappa Kokkengada, Zongyan He, Yun S. Kim and Ampere A. Tseng (2004). Low Temperature Polymer Infiltration for Rapid Tooling, *Materials* and Design 25 (2004) pp145–154.
- J. C. Male (1996) The Accuracy and Surface Roughness of Wax Investment Casting Patterns from Resin and Silicon Rubber Tooling Using a Stereolithography Master. *Second National Conference on Rapid Prototyping and Tooling Research*, pp. 43-52
- J. D. N. Shaw (1972) Epoxy Resins -Materials For The Engineer Pigment and *Resin Technology Volume*: 1 Issue: 12 1972
- J.L. Massingill Jr. and R.S Bauer 2000) Epoxy Resins *Applied Polymer Science*: 21st Century, Pages 393-424
- J. Zhang, Y. C. Xu and P. Huang (2009), Effect of Cure Cycle on Curing Process and Hardness for Epoxy Resin *eXPRESS Polymer Letters Vol.3*, *No.9* (2009) *pp 534–541*
- Khairur Rijal Jamaludin , Mohd Shahriman Adenan , Mohd Yusof Md Daud and Norazmein Abd Raman (2012) Delaminating Control on Drilling the Medium Density Fiber Board with Robust Optimization. Jurnal Teknologi (Sciences & Engineering) 59 (2012) Suppl 1, 99–103

- Krikorian, G. (1996) IEEE Conference Publications WESCON/96 Digital Object Identifier: 10.1109/WESCON.1996.554006 Year: 1996, pp 312 - 316
- K.P. Karunakaran , P. Vivekananda Shanmuganathan, Sanjay Janardhan Jadhav, Prashant Bhadauria and Ashish Pandey.P. Karunakaran et al., (2000) Rapid Prototyping of Metallic Parts and Moulds. *Journal of Materials Processing Technology* 105 (2000) 371 – 381
- Gayle Ramdeen Linka, John Fesslera, Alex Nickela and Fritz Prinza (1998) Rapid
 Tooling Die Cast Inserts Using Shape Deposition Manufacturing. *Materials and Manufacturing Processes* 13, pp263–274.

M. H. Irfan Chemistry and Technology of Thermosetting Polymers in Construction Applications 1998, pp 8-77 Springer Netherlands

- M.S. Bhagyashekar, Kavaitha Rao and R.M.V.G.K. Rao (2008) Studies on Rheological and Physical Properties of Metallic and Non-metallic Particulate Filled Epoxy Composites.*Journal of Reinforced Plastics and Composites* Vol. 28, no. 23/2009
- M.S. Bhagyashekar and R.M.V.G.K. Rao (2010). Characterization of Mechanical Behaviour of Metallic and Non-metallic Particulate Filled Epoxy Matrix Composites *Journal of Reinforced Plastics and Composites*, Vol. 29, No. 1/2010
- Mueller, T (1995). Stereolithography-Based Prototyping: Case Histories of Application in Product Development. *IEEE Technical Application and Conference Workshops*, Portland, Oregon, 10 October pp. 305–309.
- M. Vaezi, D. Safaeian and C.K. Chua (2011). Gas Turbine Blade Manufacturing By Use of Epoxy Resin Tooling and Silicone Rubber Molding Techniques *Rapid Prototyping Journal* 17/2 pp 107–115

Nagahanumaiah , K. Subburaj, B. Ravi (2003). Rapid Tooling Application in Functional Prototype Production: Towards Modeling RT Issues Technical paper presented at the RPSI Conference, Bangalore, June 2003

One-Part Epoxy Resin Three Bond Technical News Issued October 1, 1987

- R.A. Harris, R.J.M. Hague and P.M. Dickens (2004) .The Structure of Parts Produced by Stereolithography Injection Mould Tools and The Effect on Part Shrinkage. *International Journal of Machine Tools & Manufacture* 44 (2004) 59–64
- Prashant K. Jain , K. Senthilkumaran, Pulak M. Pandey and P. V. M. Rao (2006)
 Advances in Materials for Powder Based Rapid Prototyping *Proceeding of International Conference on Recent Advances in Materials and Processing* Dec. 15-16, 2006, PSG-tech. Coimbatore, INDIA
- P.S. Grant, S.R. Duncan, A. Roche, and C.F. Johnson (2006) Scientific, Technological, and Economic Aspects of Rapid Tooling by Electric Arc Spray Forming *Journal* of Thermal Spray Technology Volume 15(4) December 2006—801
- P.V. Vasconcelos , F.J. Lino, A. Magalh^{*}aes and R.J.L. Neto (2005). Impact Fracture Study of Epoxy-Based Composites with Aluminium Particles and Milled Fibres. *Journal of Materials Processing Technology*. 170 (2005) 277–283
- Sadegh Rahmati and Phill Dickens (2007) Rapid Tooling Analysis of Stereolithography Injection Mold Tooling. *International Journal of Machine Tools and Manufacture*, 47,pp 740–747.
- R.J.M. Hague, and P.E. Reeves (2000) *Rapid Prototyping, Tooling and Manufacturing* Rapra Technology Ltd pp. 17

- Sayana John P , Jyothish Kumar P and Bejoy Francis (2009) Mechanical and Morphological Analysis of Epoxy Resin/San Blends. *ISSN: 0973-7464 Vol. XVI:* No.1 & 2 SB Academic Review 2009: 91-100
- S Bal (2010). Experimental Study of Mechanical and Electrical Properties of Carbon Nanofiber/Epoxy Composites *Materials and Design* .31 (2010) 2406–2413
- S.I Chung, Y.G Im, H.D Jeong and T.Nakagawa (2003) The Effect Metal Filler On The Characteristic of Casting Resin for Semi-Metallic Soft Tool. *Journal of Materials Processing Technology* 134 pp 26-34.
- S. Kashima and J.E Breen (1974) Epoxy Resins for Jointing Segmentally Constructed Prestressed Concrete Bridges. Center for Highway Research The University of Texas
- Shyam Kumar Karna and Dr. Rajeshwar Sahai (2012) An Overview on Taguchi Method International Journal of Engineering and Mathematical Sciences Jan.- June 2012, Volume 1, Issue – 1, pp.1-7
- S. Maa (2007) Rapid Tooling With Particulate Reinforced Epoxy Composites For Low Volume production SIMTech Technical Reports Volume 8 Number 1 Jan - Mar pp 11-17
- Somerville, G. R. and Jones, P. D. In: Applied Polymer Science"; Graver, J. K., Ed.; American Chemical Society, Advanced in Chemistry Series: Washington, D. C. (1975)
- Rencast CW47 Datasheet March 2007 Huntsman Advanced Material GmBH, Switzerland

T.M Goulding, Epoxy Resin Adhesives Taylor & Franciss Group, LLC 2003

- Tosin Tomori, Shreyes Melkote and Mahesh Kotnis (2004) Injection mold performance of machined ceramic filled epoxy tooling boards *Journal of Materials Processing Technology*. 145 (2004) pp 126–133
- Xiaoping Jiang , Xingyang Liu and Chao Zhang (2005) Feasibility study of a new rapid tooling process International Journal Advance Manufacturing Technology (2005) 27: 296–304
- Yonggwan Im, Hoyoun Kim, Sunjoon Park and Haedo Jeong (2005) Evaluation for
 Micro Scale Structures Fabricated Using Epoxy-Aluminium Particle Composite
 And Its Application. Journal of Materials Processing Technology pp 168-1173
- Yuin Wu and Alan Wu (2000) *Taguchi Methods for Robust Design*, The American Society of Mechanical Engineers