NETWORK-ON-CHIP FLOORPLANNING AND APPLICATION MAPPING USING CROSS-ENTROPY METHOD

TAN CHEE WEI

UNIVERSITI TEKNOLOGI MALAYSIA

NETWORK-ON-CHIP FLOORPLANNING AND APPLICATION MAPPING USING CROSS-ENTROPY METHOD

TAN CHEE WEI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer and Microelectronic System)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2015

To my beloved father, mother and sister.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest appreciation to my Master project supervisor, Assoc. Prof. Dr. Muhammad Nadzir Marsono for giving me the opportunity to complete my Master project under his supervision and guidance. I would like to grab this opportunity to thank him for his patience in guiding me and giving me lot of creative ideas on how to complete my project and research.

Special thanks to Ms. Tei Yin Zhen, a PhD candidate from UTM for sharing with me her valuable research results on Network-on-Chip (NoC) application mapping using Genetic Algorithm (GA).

I would also like to salute all the authors and researchers that published their valuable research results and findings through journals, articles or books that are vital for my references to understand more about Network-on-Chip (NoC) architecture and NoC floorplanning and application mapping techniques so that I can complete this project successfully.

Last but not least, I would like to thank all lecturers, moderators, department staffs and friends that helped me in making my Master project successful.

Tan Chee Wei Bayan Lepas, Penang

ABSTRACT

The increase in number of on-chip components (IP core) integration on System on Chip (SoC) has caused the communication of on-chip components (IP core) to hit the bottleneck of communication due to bandwidth limitation of buses. Networkon-Chip (NoC) is introduced to solve the communication bandwidth problem and it is widely used in System-on-Chip (SoC) nowadays to enable the communication between on-chip components through routers and network channel within the chip so that the complexity of communication between on-chip components can be reduced by reducing number of wire used which can lead to huge saving in chip area and reducing dynamic power significantly. The performance of Network-on-Chip (NoC) is highly dependence on floorplanning methodology used which can improve performance (transfer rate) of Network-on-Chip (NoC) blocks while meeting communication requirements and achieving minimal area overhead. The Cross-Entropy (CE) method has been applied successfully by researcher in various optimization problems and able to produce promising results. Therefore, the Cross-Entropy (CE) Method is introduced to solve optimization problems for Network on Chip (NoC) floorplanning and application mapping. The Cross-Entropy (CE) method is used to generate optimal floorplan with optimal communication cost for various multimedia benchmark applications. Evaluation results show that the Cross-Entropy (CE) method is able to produce comparable results compared to other selected methods from published journal papers and has faster convergence in terms of iteration/generation when compared to GA with heuristic crossover and random initial mapping.

ABSTRAK

Peningkatan dalam bilangan atas cip komponen (teras IP) integrasi Sistem pada Chip (SoC) menyebabkan komunikasi komponen atas cip (teras IP) megalami kesesakan komunikasi kerana had jalur lebar bas. Rangkaian pada cip (NOC) yang diperkenalkan untuk menyelesaikan masalah lebar jalur komunikasi dan ia digunakan secara meluas dalam Sistem pada Chip (SoC) hari ini untuk membolehkan komunikasi antara komponen atas cip melalui router dan saluran rangkaian dalam cip supaya kerumitan komunikasi antara komponen atas cip boleh dikurangkan dengan mengurangkan beberapa wayar yang digunakan yang boleh membawa kepada penjimatan kos yang besar di kawasan cip dan mengurangkan kuasa dinamik dengan Prestasi Rangkaian pada cip (NOC) adalah sangat bergantung kepada ketara. metodologi floorplanning digunakan yang boleh meningkatkan prestasi (kelajuan pemindahan) blok rangkaian pada cip (NOC) di samping memenuhi keperluan komunikasi dan mencapai overhed kawasan yang minimum. Kaedah Cross-Entropy (CE) telah digunakan dengan berjayanya oleh penyelidik dalam pelbagai masalah pengoptimuman dan dapat menghasilkan kejayaan awal. Oleh itu, Kaedah Cross-Entropy (CE) diperkenalkan untuk menyelesaikan masalah pengoptimuman untuk rangkaian pada cip (NOC) floorplanning dan aplikasi pemetaan. Kaedah Cross-Entropy (CE) yang digunakan untuk menghasilkan Pelan Lantai optimum dengan kos komunikasi yang optimum untuk pelbagai aplikasi penanda aras multimedia. Keputusan penilaian menunjukkan bahawa kaedah Cross-Entropy (CE) mampu menghasilkan keputusan yang setanding berbanding dengan kaedah lain dipilih dari kertas jurnal yang diterbitkan dan mempunyai penumpuan yang lebih cepat dari segi lelaran / generasi berbanding Genetic Algorithm (GA) dengan crossover heuristik dan pemetaan awal rawak.

TABLE OF CONTENTS

CHAPTER	TITLE DECLARATION			PAGE		
				ii		
	DEDI	CATION		iii		
	ACKN	OWLED	GEMENT	iv		
	ABST	RACT		v		
	ABST	RAK		vi		
	TABL	E OF CO	NTENTS	vii		
	LIST	OF TABL	ES	Х		
	LIST	OF FIGU	RES	xi		
	LIST	OF ABBR	REVIATIONS	xiv		
	LIST	OF SYMI	BOLS	XV		
1	INTR	ODUCTI	DN	1		
	1.1	Motiva	tion of Research	1		
	1.2	Proble	n Statement	1		
	1.3	Object	ves	2		
	1.4	Scope	of Work	2		
	1.5	Report	Organization	2		
2	LITE	RATURE	REVIEW	4		
	2.1	Overvi	ew of NoC Architecture	4		
	2.2	NoC A	NoC Architecture			
		2.2.1	Regular NoC topology	5		
		2.2.2	Other NoC topology	6		
	2.3	Floorp	an Representation Models	7		
		2.3.1	Slicing Floorplans	8		
		2.3.2	Non-slicing Floorplans	9		
	2.4	NoC F	loorplanning and Application Mapping	10		
	2.5	The Cr	oss-Entropy Method	14		

		2.5.1	Smoothed Probabilities Updating Equa-	
			tion	14
		2.5.2	Main Cross-Entropy (CE) Algorithm for	
			Optimization	15
		2.5.3	Node Transition Algorithm (Fast Trajec-	
			tories Generation Algorithm)	17
	2.6	Chapter	r Summary	19
3	PROP	POSED S	OLUTION AND IMPLEMENTATION	20
	51 KA 2 1	IEGI Introdu	ation	20
	5.1 2.2	MaC I	Cuon	20
	3.2	Not I Mathad	cloorplanning and Application Mapping	20
	2.2		thed for NeC Electrology	20
	5.5	Mannir		21
		3 3 1	CE NoC Electrolanning and Application	21
		5.5.1	Mapping Algorithm	22
		337	Sink Node and NoC Sequence Handling	
		5.5.2	in CE Program	25
	34	Commi	unication Cost	25 26
	3.1	Node T	ransition Probabilities Matrix	20
	3.6	Represe	entation of Solution	27
	3.7	Chapter	r Summary	30
	5.1	Chapte	Summary	50
4	EVAL	UATION	RESULTS	31
	4.1	Genera	ted NoC Floorplans	32
		4.1.1	Multiwindow Display (MWD) Bench-	
			mark Application with 9 IP Cores	32
		4.1.2	Audio Video Benchmark Application	
			with 18 IP Cores	34
		4.1.3	MPEG4 Decoder Benchmark Application	
			with 12 IP Cores	36
		4.1.4	Video Object Plane Decoder (VOPD)	
			Benchmark Application with 16 IP Cores	38
		4.1.5	263 Decoder MP3 Decoder Benchmark	
			Application with 14 IP Cores	40
	4.2	NoC F	loorplan Comparison: CE Method versus	
		Selecte	d Methods	42

	4.3	Relationship between Parameters	47
	4.4	Chapter Summary	50
5	CON	CLUSIONS AND FUTURE WORK	51
3	CON	CLOSIONS AND FUTURE WORK	51
	5.1	Summary of findings	51
	5.2	Future Work	52
REFEREN	NCES		53
Appendice	s A – D		55 – 71

ix

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Advantages and disadvantages of mapping techniques	13	
3.1	Descriptions of variables used in CE MATLAB program		
4.1	Number of IP core and size of mesh topology of various		
	multimedia benchmark applications	31	
4.2	Possible search space and startpoint defined for various		
	multimedia benchmark applications	31	
4.3	Results comparison: CE vs selected methods for MWD,		
	Audio Video, MPEG4, VOPD and MP3	42	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	a) Generic 3x3 Mesh Network with 9 routers b) Torus		
	network NoC architecture	5	
2.2	Butterfly fat tree NoC architecture	6	
2.3	Extended butterfly fat tree NoC architecture	7	
2.4	a) Example of a slicing floorplan with 6 blocks (P1 to P6) and		
	its possible corresponding slicing tree b) Another possible		
	slicing tree for slicing floorplan that consists of 6 blocks (P1		
	to P6)	8	
2.5	Two types of minimal non-slicing floorplans (wheel		
	floorplans)	9	
2.6	A hierarchical floorplan and its corresponding floorplan tree		
	where W represents wheel floorplan that consists of 5 blocks		
	(P3 to P7)	10	
2.7	Different types of mapping techniques	12	
2.8	Flowchart of Main Cross-Entropy (CE) Algorithm for		
	Optimization	16	
2.9	Flowchart of Node Transition Algorithm (Fast Trajectories		
	Generation Algorithm)	18	
3.1	CE concept for NoC floorplanning and application mapping	21	
3.2	Flowchart of CE Algorithm for NoC floorplanning and		
	application mapping	24	
3.3	Optimal NoC mapping sequence sink node handling and		
	transformation	25	
3.4	Example of optimal NoC mapping sequence	28	
3.5	Example for graphical representation of node transition		
	probabilities matrix	28	
3.6	Example of mathematical representation of probabilities		
	matrix (in excel - xls format)	29	
3.7	Example for graph of Communication Cost (Mbps) versus		
	Iteration	29	

4.1	TDG of Multiwindow Display (MWD) benchmark applica-	
	tion with 9 IP cores	32
4.2	CE generated optimal floorplan for Multiwindow Display	
	(MWD) benchmark application with 9 IP cores	33
4.3	a) Node transition probabilities matrix b) Graph of Communi-	
	cation Cost (Mbps) versus Iteration for Multiwindow Display	
	(MWD) benchmark application with 9 IP cores	33
4.4	TDG of Audio Video benchmark application with 18 IP cores	34
4.5	CE generated optimal floorplan for Audio Video benchmark	
	application with 18 IP cores	35
4.6	a) Node transition probabilities matrix b) Graph of	
	Communication Cost (Mbps) versus Iteration for Audio	
	Video benchmark application with 18 IP cores	35
4.7	TDG of MPEG4 decoder benchmark application with 12 IP	
	cores	36
4.8	CE generated optimal floorplan for MPEG4 decoder	
	benchmark application with 12 IP cores	37
4.9	a) Node transition probabilities matrix b) Graph of	
	Communication Cost (Mbps) versus Iteration for MPEG4	
	decoder benchmark application with 12 IP cores	37
4.10	TDG of Video Object Plane Decoder (VOPD) benchmark	
	application with 16 IP cores	38
4.11	CE generated optimal floorplan for VOPD benchmark	
	application with 16 IP cores	39
4.12	a) Node transition probabilities matrix b) Graph of	
	Communication Cost (Mbps) versus Iteration for VOPD	
	benchmark application with 16 IP cores	39
4.13	TDG of 263 decoder mp3 decoder benchmark application	
	with 14 IP cores	40
4.14	CE generated optimal floorplan for 263 decoder mp3 decoder	
	benchmark application with 14 IP cores	41
4.15	a) Node transition probabilities matrix b) Graph of	
	Communication Cost (Mbps) versus Iteration for 263 decoder	
	mp3 decoder benchmark application with 14 IP cores	41
4.16	Communication Cost (Mbps) of various mapping techniques	
	for MWD, Audio Video, MPEG4, VOPD and MP3	43
4.17	Communication Cost (Mbps) of various mapping techniques	
	for VOPD	43

4.18	Communication Cost (Mbps) versus Iteration/Generation for MWD - CE vs GA		
4.19	Communication Cost (Mbps) versus Iteration/Generation for		
	Audio Video - CE vs GA	44	
4.20	Communication Cost (Mbps) versus Iteration/Generation for		
	MPEG4 - CE vs GA	45	
4.21	Communication Cost (Mbps) versus Iteration/Generation for		
	VOPD - CE vs GA	45	
4.22	Communication Cost (Mbps) versus Iteration/Generation for		
	MP3 - CE vs GA	46	
4.23	Graph of computation time versus total number of random		
	NoC sequences generated each iteration, N	48	
4.24	Graph of computation time versus Alpha, α	49	
4.25	Graph of communication cost (Mbps) versus Alpha, α	49	
A.1	Netlist of MWD (multiwindow_netlist.m)	55	
A.2	Netlist of Audio Video (audiovideo_netlist.m)	56	
A.3	Netlist of MPEG4 (mpeg4_netlist.m)	56	
A.4	Netlist of VOPD (VOPD_netlist.m)	57	
A.5	Netlist of MP3 (mp3_netlist.m)	57	
A.6	CE program wrapper (demo_NOC_CE.m) part 1	58	
A.7	CE program wrapper (demo_NOC_CE.m) part 2	58	
A.8	CE program wrapper (demo_NOC_CE.m) part 3	59	
A.9	Main CE program (NOC_CE.m) part 1	59	
A.10	Main CE program (NOC_CE.m) part 2	60	
A.11	Main CE program (NOC_CE.m) part 3	60	
A.12	Main CE program (NOC_CE.m) part 4	61	
A.13	Main CE program (NOC_CE.m) part 5	61	
A.14	Main CE program (NOC_CE.m) part 6	62	
A.15	Main CE program (NOC_CE.m) part 7	62	
A.16	Node Transition Algorithm (Fast Trajectories Generation		
	Algorithm) (gen_NOC.m) part 1	63	
A.17	Node Transition Algorithm (Fast Trajectories Generation		
	Algorithm) (gen_NOC.m) part 2	64	
A.18	Node Transition Algorithm (Fast Trajectories Generation		
	Algorithm) (gen_NOC.m) part 3	65	
A.19	Algorithm for calculating communication cost	66	
A.20	Algorithm for updating probabilities matrix based on best		
	NoC sequence generated	66	

LIST OF ABBREVIATIONS

SoC	-	System-on-Chip
NoC	-	Network-on-Chip
IC	-	Integrated Circuit
IP	-	Intellectual Property
VLSI	-	Very-large-scale integration
PE	-	Processing Element
TDG	-	Traffic Distribution Graph
TDM	-	Traffic Distribution Matrix
BSG	-	Bounded Slicing Grid Structure
NP-hard	-	Non-deterministic Polynomial-time hard
CBL	-	Corner Block List
GA	-	Genetic Algorithm
PSO	-	Particle Swarm Optimization
DPSO	-	Discrete Particle Swarm Optimization
ILP	-	Integer Linear Programming
ACO	-	Ant Colony Optimization
SA	-	Simulated Annealing
CE	-	Cross-Entropy
MWD	-	Multiwindow Display
VOPD	-	Video Object Plane Decoder
NP_GA	-	Genetic Algorithm with Network Partitioning
NMAP	-	Fast algorithm for mapping IP cores onto mesh floorplan
PSMAP	-	Meta-heuristic strategy using Particle Swarm Optimiza- tion technique

LIST OF SYMBOLS

α	-	Smoothing parameter
ρ	-	Rarity parameter

CHAPTER 1

INTRODUCTION

1.1 Motivation of Research

Performance, power and area are three areas of focus of System-on-Chips (SoCs) design nowadays. Network-on-Chip (NoC) plays an important role in balancing and achieving these aggressive three critical key targets. The performance of NoC is highly dependence on floorplanning methodology used as the placement of NoC core and routers may impact the data transfer rate and area overhead of the chip. Optimal NoC floorplan can help to improve performance (transfer rate) of NoC while meeting communication requirements and achieving minimal area overhead. Besides this, optimal NoC floorplan can help to achieve low power while meeting performance and area requirements.

1.2 Problem Statement

Heuristic optimization method has been used to solve application mapping and floorplanning problem due to large NoC mapping search space. Simulated Annealing (SA) and other heuristic optimization methods such as Genetic Algorithm (GA) and adaptive search techniques can be trapped in local minimum. Reference [1] shows that the Cross-Entropy (CE) method has fast convergence and is less susceptible trapped in a local minimum as Cross-Entropy (CE) method is a global search method.

1.3 Objectives

The main objectives of this project are:

- 1. To propose Network-on-Chip (NoC) floorplanning and application mapping based on Traffic Distribution Graph (TDG) using the Cross-Entropy (CE) method.
- 2. To find the optimal source-to-destination communication path through routers for each communication path in Traffic Distribution Graph (TDG) given.

1.4 Scope of Work

The main focus of this project is to develop MATLAB program based on the Cross-Entropy (CE) method that can:

- 1. Generate random NoC mapping sequences based on given Traffic Distribution Graph (TDG).
- 2. Find optimal NoC floorplan/mapping sequence with the lowest communication cost.

1.5 Report Organization

This report is divided into 5 chapters:

- 1. Chapter 1 discusses about the motivation of research, problem statement, objective, scope of work and report organization.
- 2. Chapter 2 summarizes literature reviews on the floorplan representation models, NoC architecture and NoC application mapping and floorplanning. Various NoC application mapping and floorplanning techniques/methods are discussed. A brief introduction of the Cross-Entropy (CE) method, smoothed probabilities updating equation, the main Cross-Entropy (CE) Algorithm for Optimization and Node Transition Algorithm (Fast Trajectories Generation Algorithm) are discussed at the end of this chapter.

- 3. Chapter 3 discusses about the NoC floorplanning and application mapping, communication cost, node transition matrix and how solution can be represented.
- 4. Chapter 4 shows CE generated floorplans for each of the multimedia benchmark applications. Optimal floorplans with optimal communication cost generated using the Cross-Entropy (CE) method are then compared with floorplans generated using selected methods in term of communication cost and convergence speed in terms of iteration/generation. Besides this, the relationship between parameter is also discussed at the end of this chapter.
- 5. Chapter 5 summarizes all the findings of this project and discusses briefly about future works recommendations for future researchers that plan to do research on NoC floorplanning and application mapping.

REFERENCES

- I. Walter, I. Cidon, A. Kolodny, and D. Sigalov, "The era of many-modules soc: revisiting the noc mapping problem," in *Proceedings of the 2nd International Workshop on Network on Chip Architectures*, pp. 43–48, ACM, 2009.
- M. Danashtalab and M. Palesi, "Basic concepts on on-chip networks," in Routing Algorithms in Networks-on-Chip, pp. 1–18, Springer, 2014.
- 3. H. Zhou, C.-W. Sham, and H. Yao, "Slicing floorplans with handling symmetry and general placement constraints," in *VLSI (ISVLSI), 2014 IEEE Computer Society Annual Symposium on*, pp. 112–117, IEEE, 2014.
- L. Jain and A. Singh, "Non slicing floorplan representations in vlsi floorplanning: A summary," *International Journal of Computer Applications*, vol. 71, no. 15, pp. 12–20, 2013.
- R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, "Outstanding research problems in noc design: system, microarchitecture, and circuit perspectives," *Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on*, vol. 28, no. 1, pp. 3–21, 2009.
- P. K. Sahu and S. Chattopadhyay, "A survey on application mapping strategies for network-on-chip design," *Journal of Systems Architecture*, vol. 59, no. 1, pp. 60–76, 2013.
- 7. Y. Z. Tei, Y. W. Hau, N. Shaikh-Husin, and M. Marsono, "Network partitioning domain knowledge multiobjective application mapping for large-scale network-on-chip," *Applied Computational Intelligence and Soft Computing*, vol. 2014, p. 9, 2014.
- 8. A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali, "Area and delay optimization for networks-on-chip architectures using genetic algorithms," in *Design and Test Workshop (IDT), 2009 4th International*, pp. 1–6, IEEE, 2009.
- Y. Z. Tei, M. Marsono, N. Shaikh-Husin, and Y. W. Hau, "Network partitioning and ga heuristic crossover for noc application mapping," in *Circuits and Systems (ISCAS), 2013 IEEE International Symposium on*, pp. 1228–1231, May 2013.

- 10. J. Soumya and S. Chattopadhyay, "Application-specific network-on-chip synthesis with flexible router placement," *Journal of Systems Architecture*, vol. 59, no. 7, pp. 361–371, 2013.
- J. Soumya, S. Tiwary, and S. Chattopadhyay, "Area-performance trade-off in floorplan generation of application-specific network-on-chip with soft cores," *Journal of Systems Architecture*, vol. 61, no. 1, pp. 1–11, 2015.
- P. K. Sahu, T. Shah, K. Manna, and S. Chattopadhyay, "Application mapping onto mesh-based network-on-chip using discrete particle swarm optimization," *Very Large Scale Integration (VLSI) Systems, IEEE Transactions on*, vol. 22, no. 2, pp. 300–312, 2014.
- R. Y. Rubinstein and D. P. Kroese, *The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning.* Springer Science & Business Media, 2004.
- V. Dumitriu and G. N. Khan, "Throughput-oriented noc topology generation and analysis for high performance socs," *Very Large Scale Integration (VLSI) Systems, IEEE Transactions on*, vol. 17, no. 10, pp. 1433–1446, 2009.
- 15. S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores onto noc architectures," in *Proceedings of the conference on Design, automation and test in Europe-Volume 2*, p. 20896, IEEE Computer Society, 2004.
- K. Srinivasan, K. S. Chatha, and G. Konjevod, "Linear-programming-based techniques for synthesis of network-on-chip architectures," *Very Large Scale Integration (VLSI) Systems, IEEE Transactions on*, vol. 14, no. 4, pp. 407–420, 2006.
- 17. I. C. Chia, "Floorplaning methodology for network on chip," Master's thesis, Universiti Teknologi Malaysia, 2012.
- Z. Lu, L. Xia, and A. Jantsch, "Cluster-based simulated annealing for mapping cores onto 2d mesh networks on chip," in *Design and Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop on*, pp. 1–6, IEEE, 2008.
- 19. S. Tosun, "Cluster-based application mapping method for network-on-chip," *Advances in Engineering Software*, vol. 42, no. 10, pp. 868–874, 2011.
- 20. P. K. Sahu, P. Venkatesh, S. Gollapalli, and S. Chattopadhyay, "Application mapping onto mesh structured network-on-chip using particle swarm optimization.," in *ISVLSI*, pp. 335–336, 2011.