ISOGEOMETRIC ANALYSIS OF PLANE STRESS STRUCTURE

CHUM ZHI XIAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2015

Specially dedicated to my beloved parents, brother, sister, lecturers, and friends.

ACKNOWLEDGEMENTS

First of all, I would like to express gratitude to my supervisor, Dr. Mohd. Ridza bin Mohd. Haniffah and co-supervisor, Dr. Airil Yasreen Mohd. Yassin for their patience, guidance and support as well as time that have been contributed throughout this research study. Also, special thanks to Dr. Ahmad Razin bin Zainal Abidin @ MD. Taib who has worked out this project together.

I am also thankful to Al Akhbar Mohd. Nor and Mohd. Zhafri Jamil. Without their helping hand, I would not be able to achieve this far. Last but not least, I would like to express my appreciation to my friends and family that have given me direct and indirect support in this project.

ABSTRACT

Differential equations are derived to describe the physical phenomena in engineering system. In this project, differential equations of simple rectangular plane stress problem were first derived and solved using Isogeometric Analysis (IGA) and Finite Element Method (FEM). The root idea of IGA is to use a single basis to represent the geometry and the analysis fields in order to overcome the bottleneck in Computer Aided Design (CAD) and Computer Aided Engineering (CAE). The aim is to investigate the performance of IGA as compared to FEM. It is realized that the main difference between the two numerical techniques adopted is the formulation of shape functions. Therefore, emphasis is put on the formulation of IGA using Non-Uniform Rational B-Splines (NURBS) as the basis function where the results obtained are compared against finite element formulation which uses polynomial functions for the shape functions. Besides that, the results by both formulations are verified against exact solution and commercial software. Although only the shape function differs, IGA uses a global shape function over the domain while FEM uses the same local shape functions over the elements in the domain. Performance study on IGA was also carried out. It has been found that the convergence of IGA is comparable to conventional FEM and the error is small against the exact solution. Despite more time is needed to compute the shape functions in IGA, there are various refinement mechanisms in IGA where knot insertion shows the best performance in this study. In short, IGA is worthwhile to be used as an analysis tool to initiate the communication between computer aided design (CAD) and computer aided engineering (CAE).

ABSTRAK

Persamaan terbitan diperolehi untuk menggambarkan fenomena fizikal dalam sistem kejuruteraan. Dalam kajian ini, persamaan terbitan bagi masalah tegasan dalam satah yang mempunyai bentuk segiempat diperolehi terlebih dahulu dan kemudiannya diselesaikan dengan menggunakan Isogeometric Analysis (IGA) dan Kaedah Unsur Terhingga (FEM). Tujuannya adalah untuk menyiasat prestasi IGA berbanding dengan FEM. Perbezaan utama antara kedua-dua kaedah berangka ini adalah pada penggubalan fungsi bentuk (shape functions). Oleh itu, penekanan diletakkan dalam penggubalan IGA yang menggunakan Non-Uniform Rational Bsplines (NURBS) sebagai fungsi asas (basis function) di mana hasil yang diperolehi akan dibandingkan dengan FEM yang menggunakan polinomial sebagai fungsi Selain itu, hasil kajian daripada kedua-dua formulasi ini telah bentuknya. dibandingkan dan disahkan dengan penyelesaian analitikal dan penggunaan perisian komersial. Walaupun hanya fungsi bentuk yang berbeza, IGA menggunakan fungsi bentuk yang global merangkumi keseluruhan domain manakala FEM menggunakan fungsi bentuk yang spesifik kepada satu elemen dan ianya adalah sama untuk keseluruhan elemen di dalam domain. Berdasarkan kepada kajian prestasi IGA, didapati bahawa penumpuan (convergence) IGA adalah setanding dengan FEM dengan ralat yang kecil berbanding dengan penyelesaian analitikal. Walaupun lebih banyak masa diperlukan untuk mengira fungsi bentuk IGA, terdapat pelbagai mekanisme untuk memperhalusi prestasi IGA dimana knot insertion menunjukkan prestasi yang terbaik dalam kajian ini. Sebagai rumusan, IGA boleh digunakan sebagai alat analisis bagi memulakan komunikasi di antara reka bentuk bantuan komputer (CAD) dan kejuruteraan bantuan komputer (CAE).

TABLE OF CONTENTS

CHAPTER	
---------	--

1

2

TITLE

PAGE

DEC	LARATION	ii
DED	ICATIONS	iii
ACK	NOWLEDGMENTS	iv
ABS'	TRACT	V
ABS'	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	TOF TABLES	X
LIST	COF FIGURES	xi
LIST	OF ABBREVIATIONS/ TERMINOLOGY	xiv
LIST	TOF SYMBOLS	XV
LIST	COF APPENDICES	xvii
INTI	RODUCTION	1
1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Study and Limitation	5
1.5	Significance of the Study	5
1.6	Outline of Thesis	6
LITI	ERATURE REVIEW	7
2.1	Introduction	7
2.2	Plane Stress Theory	7
2.3	Finite Element Method	9
2.4	Isogeometric Analysis	13

	2.4.1	The Sign	nificance of Isogeometric Analysis	13
	2.4.2	Towards	the Understanding of NURBS	
		Based IC	GA	16
2.5	Comp	arison bet	ween IGA and FEA	20
2.6	Previo	ous Studie	S	21
2.7	Concl	uding Rer	narks	23
METH	HODOI	LOGY		24
3.1	Introd	uction		24
3.2	Deriva	ation of Pl	ane Stress Partial Differential	
	Equati	ion		25
3.3	FEM I	Formulation	on for Plane Stress	28
	3.3.1	Degrees	of Freedom and Shape Function	
		of Plane	Stress Element	29
		3.3.1.1	Degrees of Freedom and Shape	
			Functions of 4-Noded Element	29
		3.3.1.2	Degrees of Freedom and Shape	
			Functions of 8-Noded Element	32
	3.3.2	Discretiz	zation by Galerkin Weighted	
		Residual	Method	35
	3.3.3	Integrati	on by Parts (IBP)	35
3.4	IGA F	formulatio	n for Plane Stress	36
	3.4.1	NURBS	as a Basis for Isogeometric	
		Analysis		36
	3.4.2	Selection	n of Polynomial Order	37
	3.4.3	Selection	n of Knot Vector	38
	3.4.4	Control	points	39
	3.4.5	Isogeom	etric Analysis (IGA)	39
3.5	Perfor	mance Stu	ıdy	42
3.6	Conclu	uding Ren	narks	43

3

4	RES	ULTS AND DISCUSSION	44
	4.1	Introduction	44
	4.2	Preliminary Study	45
	4.3	Plane Stress Cantilever Problem	48
	4.4	Comparison of the Shape Functions	50
	4.5	Results Verification	52
	4.6	Convergence of IGA and FEM for Plane Stress	54
	4.7	Refinement	56
		4.7.1 Knot Insertion	57
		4.7.2 Order Elevation	58
		4.7.3 <i>k</i> -refinement: Higher Order and Higher	
		Continuity	59
	4.8	Concluding Remarks	60
5	CON	CLUSIONS AND RECOMMENDATIONS	61
	5.1	Conclusions	61
	5.2	Recommendations	62
REFEREN	CES		63
Appendices	A-H		65 - 87

LIST OF TABLES

TABLE NO	. TITLE	PAGE
2.1	Timeline: Milestone in FEA and meshless basis functions	
	development (Cottrell et al., 2009)	10
2.2	Timeline: Milestones in CAD representations	
	(Cottrell <i>et al.</i> , 2009)	16
2.3	NURBS paraphernalia in IGA (Cottrell et al., 2009)	18
2.4	Comparison of FEA and NURBS based IGA	
	(Hughes <i>et al.</i> , 2005)	21
3.1	Device Properties	42
4.1	Converged results for exact solution, IGA, FEM and	
	commercial software (COMSOL)	52
4.2	Rate of convergence for FEM (8-noded) and IGA	
	(p = 2, q = 2)	56
4.3	Computing time for different refinement method	57

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Illustrations of plane stress condition (Hutton, 2004)	8
2.2	Piecewise approximation of a function (Reddy, 2006)	10
2.3	Representation of two-dimensional domain by a collection of triangles and quadrilaterals (Reddy, 2006)	11
2.4	Estimation of the relative time costs of each component of	
	the model generation and analysis process at Sandia	
	National Laboratories (Cottrell et al., 2009)	14
2.5	Schematic illustration of NURBS paraphernalia for one- patch surface model. Open knot vectors and quadratic C^{1} -	
	continuous basis functions $(p = 2)$ are used. Basis functions	S
	are multiplied by control points and summed to construct	
	geometrical objects, in this case a surface in \mathbb{R}^3	
	(Cottrell <i>et al.</i> , 2009)	19
3.1	Plane stress differential element	25
3.2	4-noded plane stress element	29
3.3	8-noded plane stress element	32
3.4	Pascal Triangle of cubic terms	32

3.5	Element discretization of IGA and FEM. (a) In IGA,	
	B-spline parameter space is local to entire patch. Internal	
	knots partition the patch into elements. (b) In FEA, the	
	parameter space is local to individual elements	
	(Cottrell, et al., 2009)	38
3.6	B-spline quadratic curve in \mathbb{R}^2 . (a) Control point locations	
	are denoted by •. (b) The knots which define a mesh by	
	partitioning the curve into elements are denoted by	
	(Cottrell, <i>et al.</i> , 2009)	39
3.7	Flowchart of a classical FEA code. (Cottrell, et al., 2009)	41
3.8	Program architecture of the assembly algorithm in IGA.	
	(Cottrell, et al., 2009)	41
4.1	Cantilever bar with uniformly distributed load and a single	
	point load (Airil et al., 2013)	45
4.2	1-D IGA: Exact geometry, quadratic basis functions and	
	mesh in the parametric space	46
4.3	Comparison of deflection between IGA (Unumerical) and	
	exact solution (Uexact)	47
4.4	Rectangular cantilever loaded with an external force P	
	distributed in a parabolic fashion at the end of cantilever	
	(Liu, 2010)	48
4.5	Rectangular cantilever loaded with an external force, P	
	assumed to be UDL	49
4.6	$R_{1,2}^{2,2}(\xi,\eta)$, shape function of $p = 2$, $q = 2$ for IGA. The basis	5
	function of IGA is local to the domain. As a note, this shape	e
	function is one of the 16 shape functions formulated for this	5
	study.	51

4.7	N_2 , shape function of FEM 8-noded. The shape function	N_2 , shape function of FEM 8-noded. The shape function of			
	FEM is local to the element	51			
4.8	Displacement in <i>x</i> -direction by (a) IGA, (b) FEM, (c) Exact solution	53			
4.9	Displacement in y-direction by (a) IGA, (b) FEM, (c) Exact solution	54			
4.10	Convergence of displacement in <i>x</i> -direction by IGA and FEM	55			
4.11	Knot insertion mechanism	57			
4.12	Displacement results by knot insertion method	58			
4.13	Order elevation mechanism	58			
4.14	Displacement results by order elevation	59			
4.15	Displacement results by k-refinement	60			

LIST OF ABBREVIATIONS / TERMINOLOGY

CAD	Computer Aided Design
CAE	Computer Aided Engineering
FEA	Finite Element Analysis
FEM	Finite Element Method
IBP	Integration By Part
IGA	Isogeometric Analysis
NURBS	Non-Uniform Rational B-Splines
PDE	Partial Differential Equation
UDL	Uniformly Distributed Load
WRD	Weighted Residual Method

LIST OF SYMBOLS

а	-	Length of plane stress element in <i>x</i> -direction
b	-	Length of plane stress element in y-direction
$B_{i,j}$	-	Control net
С	-	Convergence rate
е	-	Relative error
Ε	-	Young's modulus
F_{x}	-	Body force in <i>x</i> -direction
Fy	-	Body force in <i>y</i> -direction
т	-	Multiplicity
М	-	Shape function in y-direction
Ν	-	Shape function in <i>x</i> -direction
р	-	Polynomial order in x-direction
q	-	Polynomial order in y-direction
t	-	Thickness
и	-	Deformation in <i>x</i> -direction
v	-	Deformation in y-direction
[E]	-	Material properties

[k]	-	Element stiffness matrix
[<i>K</i>]	-	Global stiffness matrix
[∂]	-	Differential operator matrix
<i>{N}</i>	-	Shape functions vector
{ <i>r</i> }	-	Force vector
Ω	-	Original domain
Ω_e	-	Finite element domain
Ω_h	-	Domain formed by assemblage of elements
σ_{xx}	-	Normal shear stress in x-direction
σ_{xy}, σ_{yx}	-	Shear stress
σ_{yy}	-	Normal shear stress in y-direction
$\mathcal{E}_{\chi\chi}$	-	Strain in <i>x</i> -direction
ε_{xy}	-	Shear strain
ε_{yy}	-	Strain in y-direction
ω	-	Weighting
υ	-	Poisson's ratio
ξ	-	Knot vectors in <i>x</i> -direction
η	_	Knot vectors in y-direction

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Table of Results	66
В	Exact Solution	70
С	IGA of Plane Stress	72
D	Shape Function of IGA in <i>x</i> -direction	75
Е	Shape Function of IGA in y-direction	77
F	Stiffness Matrix of IGA for Plane Stress	79
G	FEM Plane Stress (4 Noded)	80
Н	FEM Plane Stress (8 Noded)	84

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Elasticity is a part of solid mechanics that deals with stress and deformation of solid continua. There are two categories of plane elasticity; plane stress and plane strain. However, the interest is on plane stress structure and hence only plane stress will be brought into further discussion. Plane stress element is a two-dimensional solid and is used to model thin body or structure that is subjected to in plane loading (or boundary stresses). Plane stress solids are solids whose thickness in the z direction is insignificant, less than one-tenth compared to the smallest dimension in the x and y direction (Hutton, 2004). In practical, plane stress is used to model structures such as shear walls, load bearing walls and steel web.

The study of plane stress formulation is important not only for its direct application to physical problems but as a basis that is used in other elements formulations. For example, plane stress formulation can be evolved to Mindlin's plate formulation. Meanwhile, in the discussion of shell elements, its formulation can be viewed as combination of plane stress and plate element. Also, with some modifications, plane stress element can be used to model fluid flow in the field of fluid dynamics. The differential equations of plane stress element can be derived using principle of conservation of linear and angular momentum and solved numerically. Myriad numerical techniques are commonly used to solve differential equations such as Finite Difference Method, Finite Element Method (FEM) and Meshfree method. In this study, Isogeometric Analysis (IGA) and FEM are adopted to solve the plane stress problem.

The development of Finite Element Method is one of the most advanced in the field of numerical methods and was introduced in 1950s. It is a numerical technique used to solve differential equations. Generally, in FEM, a complicated shape continuum is divided into elements; finite elements and the individual elements are then connected together by a mesh. It uses weighted residual method and interpolation function to construct the shape function. FEM is widely used in engineering field because of its versatility for complex geometry and flexible for many types of linear and non-linear problems. There are plenty of well-developed FEM software packages built to solve most of engineering problems related to solids and structures. Nevertheless, FEM has its drawbacks and limitations. For instances, analyst has to spend most of the time in mesh creation and is required to recover the accuracy of stresses in post processing stage, possess difficulty in adaptive analysis in ensuring high accuracy and limitation in analyzing of problems under large deformation, crack and simulating breakage of material (Liu, 2010).

Besides that, the existence of gap between the current technology and engineering process will require designers to draw their drawing in Computer Aided Design (CAD) file and then translated into Computer Aided Engineering (CAE) by the engineers. The concept of analysis procedure based on CAD is referred to Isogeometric Analysis. Isogeometric Analysis seeks to unify the field of CAD and numerical analysis such as FEM and Meshfree, hence bridging the gap of CAD and CAE. Among the computational geometry technologies used in IGA, Non-Uniform Rational B-Splines (NURBS) is most widely used in engineering design. The preeminence of NURBS in engineering design as compared to other computational geometry technologies is generally because of the convenient for free-form surface modeling (J.A. Cottrell, *et al.*, 2009). For example, it can represent exactly all conic sections and there are many efficient and numerically stable algorithms to generate

3

NURBS. Since NURBS is the most popular computational geometry in CAD, it is selected to be the basis function in the derivative of domain equation and analysis.

FEM and IGA start to diverge during the construction of shape functions. In FEM, the shape functions are constructed using polynomial interpolation functions and the shape functions are the same for the entire element. On the other hand, the shape functions constructed in IGA are based on knot vector of the patch of the entire domain. This means that the NURBS parameter space is local to patches rather than local to elements in Finite Element Analysis (FEA). A more detailed description of NURBS is explained in Section 2.4.2. Both methods follow the same procedure once the global discretized system equation is established. The formulations of both numerical methods are further discussed in Chapter 3.

Realizing that this study is in its preliminary phase i.e. in the realm of basics and fundamental of IGA, only plane stress problem is going to be solved. This study focuses on the formulation of IGA and FEM to solve plane stress problem and verifying the results against exact solutions. Besides that, commercial software, COMSOL is used to check the validity of overall deflection behavior.

1.2 Problem Statement

There is a shortcoming of current technology and engineering process where the designers have to generate their drawings in computer aided design (CAD) files and then translated by engineers into analysis-suitable geometries, meshed and input to large-scale numerical analysis codes (Hughes *et al.*, 2005). This reflects the existence of communication gap between CAD and CAE. Thus, the motivation of this study is to fill the gap of CAD and CAE and also reduce work redundancy. At this preliminary stage of study and in order to initiate the conversation between CAD and numerical analysis, it is of interest to:

- 1. Solve plane stress structure using Isogeometric Analysis and Finite Element Method.
- 2. Report the performance of Isogeometric Analysis against Finite Element Method.

1.3 Objectives

The objectives of this study are as follows:

- 1. To formulate Isogeometric Analysis and Finite Element Analysis for plane stress problem.
- 2. To verify the formulations with closed form solution.
- 3. To assess the performance of Isogeometric Analysis against Finite Element Method.

The programming of both methods of IGA and FEM to achieve the objectives will be done using MATLAB.

1.4 Scope of Study and Limitation

The scope of the study and limitations were listed in the following:

- There are a number of candidate computational geometry technologies used in Isogeometric Analysis such as S-patches, A-patches, T-spline and NURBS. Only NURBs will be used as basis function throughout the analysis.
- 2. The problem to be solved is a cantilever rectangular plane stress with boundary condition fixed at one end.
- The loading on the plane stress is uniformly distributed load applied on the other end of plane stress, opposite of the constraint end. No other load pattern is considered.
- 4. The plane stress structure is analyzed based on linear analysis only.

1.5 Significance of the Study

The usage of IGA to solve partial differential equations is relatively new. Hence, more studies on IGA is sought to establish the robustness and performance of this numerical technique. By making use the basis in CAD technology for analysis, results is ought to be more accurate as the basis represents the actual geometry of domain. In fact, it can be used to bridge the gap between CAD and CAE and reduce the cost of analysis.

1.6 Outline of Thesis

Theoretical background of plane stress structure will be discussed in Chapter 2. Besides that, numerical techniques of interest, FEM and IGA are reviewed and related works that have been done will be discussed into detail. Chapter 3 is the methodology which explains in detail of the procedure in the derivation of the differential equation of plane stress element. Formulations of plane stress using FEM and NURBS based IGA are described in this chapter. Meanwhile, Chapter 4 shows the result of deflection at one corner of the plane stress element obtained from both FEM and IGA. The results obtained are compared against exact result and critical discussion is made in this section. Lastly, the summary of the whole thesis is made in Chapter 5 with inclusive of recommendation for future research in this topic.

REFERENCES

- Airil, Y., Akhbar, A., Kasiman, E. H. and Jamil, Z. (2013) *Linear and Nonlinear Finite Element Analysis for Solids and Fluids*. Unpublished Note. Malaysia.
- Bathe, K. J. (1996) Finite Element Procedures. (3rd ed.). Texas: Prentice Hall.
- Chien, T. H., Dung, T. T., Canh, L. V. and Hung, N. X. (2012) Isogeometric Limit Analysis for Plane Stress Problems. The International Conference on Advances in Computational Mechanics (ACOME), Ho Chi Minh City, Vietnam.
- Cottrell, J. A., Hughes, T. J. R. and Bazilevs, Y. (2009) *Isogeometric Analysis: Toward Integration of CAD and FEA*. Chichester: John Willey & Sons, Ltd.
- Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y. (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Austin: Science Direct.
- Hutton, D. V. (2004). Fundamental of Finite Element Analysis. New York: McGraw-Hill.
- Liu, G. R. (2010). *Meshfree Methods, Moving Beyond the Finite Element Method.* (2nd ed.). London: CRC Press LLC.
- Kacprzyk, Z. and Trybocki, Z. (2013) *Isogeometric Plane Stress Analysis*. Computer Methods in Mechanics, Poland.

Reddy, J. N. (2006) An Introduction to The Finite Element Method. Texas: McGraw-Hill.