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ABSTRACT 

Indole-3-acetic acid (IAA) is known to be an important phytohormone that helps to 

regulate plant growth and development. In this study, the optimum culture medium 

for the production of IAA by Rhodopseusomonaspalustris in shake flask culture was 

studied.  Rhodopseudomonaspalustris is a purple non-sulfurbacteria which has been 

well recognised as one of the most metabolitically versatile bacteria.  The research 

was divided into three parts.  First, a pre-screening process based on Taguchi Design 

was conducted to identify the significant factors that could affect the production of 

IAA.  The pre-screening indicated that three parameters were found to be significant, 

which include the concentration of tryptophan, glucose and potassium nitrate.  These 

parameters were selected and used to optimize the production IAA by Response 

Surface Methodology (RSM).  Lastly, a kinetic study for the bacterial growth and 

IAA production was investigated.  The optimal amount of IAA was obtained after 

incubation of 48 hours at 35 ⁰C in the presence of 5 g L
-1

 of tryptophan, 4.94 g L
-1

 of 

glucose and 0.60 g L
-1

 of KNO3, as recommended by the RSM.  Under this 

condition, the experimental yield of IAA production was 80.77 2.13 μg mL
-1

, which 

was in close agreement with the value predicted by the RSM model (77.64 μg mL
-1

).  

This was the highest yield of IAA that was reported compared to the IAA yields 

obtained from the 20 experiments designed under the RSM.  The IAA production 

depends on growth stage as most of the IAA was produced during the stationary 

growth phase of Rhodopseudomonaspalustris.  This study has successfully optimized 

the production of IAA by Rhodopseudomonaspalustris by statistical approach and 

proved that Rhodopaeudomonaspalustris has the  potential to be used as plant 

bioenhancer or biofertiliser for plant growth development. 
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ABSTRAK 

Asid indola-3-asetik (IAA) merupakan fithormon yang dapat menggalakan 

dan mengawal pertumbuhan dan perkembangan tumbuh-tumbuhan.  Dalam kajian 

ini, medium kultur yang optimum bagi penghasilan  IAA oleh Rhodopseusomonas 

palustris dalam kelalang gocang telah dikaji. Rhodopseudomonas palustris adalah 

bakteria ungu bukan sulfur yang telah mempunyai metabolisme yang amat versatil. 

Kajian ini dibahagikan kepada tiga bahagian. Pertama, proses pra-saringan telah 

dijalankan untuk mengenalpasti faktor-faktor penting yang menentukan penghasilan 

IAA.  Daripada proses pra-saringan tersebut, tiga parameter telah dikenalpasti 

sebagai parameter yang signifikan, yakni kepekatan triptofan, glukosa dan kalium 

nitrat.  Pada bahagian yang kedua, ketiga-tiga parameter ini telah dipilih dan 

digunakan untuk mengoptimumkan penghasilan IAA melalui pendekatan statistik, 

iaitu Metodologi Permukaan Respon (RSM).  Akhirnya, pertumbuhan bakteria dan 

penghasilan IAA telah dikaji. Penghasilan optimum IAA dicapai selepas pengeraman 

selama 48 jam pada suhu 35 C dengan kehadiran 5 g L
-1

 triptofan, 4.94 g L
-1

 

glukosa dan 0.60 g L
-1

kalium nitrat, seperti yang dicadangkan oleh kaedah RSM.  

Dalam keadaan ini, hasil eksperimen pengeluaran IAA adalah 80.77 ± 2.13 g mL
-1

, 

nilai ini agak hampir dengan nilai yang diramalkan oleh model RSM (77.64 g mL
-1

).  

Ini adalah nilai hasil IAA yang tertinggi berbanding dengan hasil IAA yang 

diperoleh daripada 20 ujikaji lain yang disarankan oleh kaedah RSM.  Kadar 

penghasilan IAA juga didapati berkait rapat dengan pertumbuhan sel, dimana 

kebanyakan IAA telah dihasilkan semasa fasa pertumbuhan statik sel 

Rhodopseudomonas palustris. Kajian ini telah berjaya dioptimumkan pengeluaran 

IAA dan membuktikan bahawa Rhodopaeudomonaspalustris mempunyai potensi 

untuk digunakan sebagai bio-peringkat tumbuhan atau bio-baja untuk menumbuhkan 

tumbuh-tumbuhan. 
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CHAPTER 1 

INTRODUCTION 

a. 1.1 Research Background 

 

 

One of the major challenges for the twenty first century will be to create an 

environmental and sustaianble crop production.  In the current agricultural practices,  

improper using of the chemical fertiliser and pesticide have lead to a long list of 

environmental and health problems (Gunnell et al., 2007; Leach and Mumford, 

2008).  Moreover, new emerging and treatening plant disease continue to challenge 

the plant biosecurity and health worldwide (Miller et al., 2009).  Altogether was 

caused increasing the demand of using ecologically compatible strategies in the 

agricultural sectors, for example using the beneficial bacterial to increase the crop 

productivity.  Plant growth-promoting bacteria  (PGPB), is a group of beneficial 

bacteria which can offer a diverse functions for plant growth and at the same time 

fullfill a promising solution for an environentally friendly and sustainable agriculture. 

The PGPB able to enhance the plant growth by increasing the nutrient availability, 

release of phytohormone for phytostimulation, plant strengthening and biocontroling.
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Phytohormones are low molecular weight signal molecules that are naturally 

occurring and capable to influence plant growth and development in low 

concentration.  Among the five major groups of phytohormones, indole-3-acetic acid 

(IAA) has been well recognized for pivotal functions in nearly every aspect related to 

plant growth and architecture.  For examples, cell division, cell elongation, apical 

dominance,  adventitious and lateral roots initiation, and cell and vascular 

differentiation (Chen et al., 2009).  

 

 

Biosynthesis of IAA can be found in the plants and microorganisms.  The 

biosynthesis process occurs through several pathways, such as indole-3-pyruvic acid 

(IPA) pathway, tryptamine (TAM) pathway, indole-3-acetamide pathway (IAM) and 

indole-3-acetaldoxime (IAOx) pathways.  The biosynthesis of IAA in the 

microorganism could be very comprehensive because the level of the IAA 

biosynthesis can be altered by various environmental and genetic factors.  The 

environmental factors include the presence of tryptophan, carbon source, nitrogen 

source, pH, temperature.  The production of IAA by Az. Braisilense and the 

expression of key gene ipdC have been found to be decreased during the reduction of 

growth rate, carbon limitation and under acidic condition (Ositadinma Ona et al., 

2005; Vande Broek et al., 2005).  In term of genetic factor, it was found that the 

biosynthesis of IAA can be affected by the gene location, mode of gene expression 

and presence of transcriptional regulators across the microorganism (Spaepen et al., 

2007).   

 

 

Basically, auxin-type plant regulators are the oldest compounds that used in 

the agricultural sectors. After IAA was identified, it was chemically synthesized into 

the industry (Hofrichter, 2010). Currently a number of synthetic auxin-like 

substances such as indole-butyric acid (IBA), 2,4dichorophenoxyacetic acid (2,4-D), 

and naphthalene acid (NAA) were found to be have similar effects to IAA on plant 

growth development (Hofrichter, 2010).  The applications of these auxin-like 

substances in the agricultural sector were shown in Table 1.1. 

 



3 

 

 

Table 1.1:  Application of auxin-like substances in agriculture  (Hofrichter, 2010) 

Auxin-like compounds Application 

Indole-3-acetic acid  Cell enlarger, disease controller, anti-transpirant 

fruit ripening inhibitor 

indole-butyric acid (IBA) Stimulation of root development in the 

propagation of stem cuttings 

2,4 dichorophenoxyacetic acid 

(2,4-D) 

As herbicide: stimulates uncontrolled growth in 

broadleaf weeds in grasses 

naphthalene acid (NAA) Reduction of excessive fruit set to avoid 

development of many small fruits  

4-Chlorophenoxyacetic acid 

(4-CPA) 

Increase of fruit set in tomato and other 

solanaceous plants 

Indole-butyric acid (IBA) 2,4-

D together with gibberellic 

acid (GA3) 

Prolongation of the pre-harvest and post- 

harvest life of  navel oranges 

2,4-Dichorophenozyacetic acid 

(2,4-D) naphthalene-acetic acid 

(NAA) 

Delay of fruit abscission and senescence of the 

fruit button in grapefruit, prevention of fruit 

frop of apple, pear and lemon 

 

 

In order to meet the demand from the market, a statistical approach was used 

to optimize the production of IAA.  The Taguchi Design and Response Surface 

Methodology (RSM) are powerful statistical tools used for identifying the significant 

factors and optimization of the production.  Both techniques have significant 

advantages compared to the conventional methods.  For examples, they require less 

labour and time compared to other approaches.  These methods have successfully 

been applied for the optimization of media and culture conditions in many cultivation 

processes for the production of primary and secondary metabolites, for instance 

enzymes, amino acids, ethanol and flavouring compounds.  
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b. 1.2 Problem Statement 

 

 

Auxin is an important plant hormone that could influence the physiological 

processes of plant growth by modulating their development events, such as 

embryogenesis, root initiation, apical dominance, gravitropism and phototropism.  

Currently, chemical auxins are the most common phytohormone used in the market 

such as indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid, 2,4,5-

trichlorophenoxy acetic acid, α-naphthalene acetic acid, 2-methoxy-3,6-

dichlorobenzoic acid and 4-amino-3,5,6-trichloropicolinic acid for promoting plant 

growth.  However excessive use of these chemical or synthetic auxins are not 

sustainable for soil and environment as the chemical auxin could increase heavy 

metal in the soil, nutrient imbalance and soil acidification by changing the 

aggregation degree of the potassium nitrate (KNO3) and nitrate (NaNO3) in the soil 

(Savci, 2012).  In addition, public are increasing concern on the quality of foods and 

health, as well as on their nutritional properties which stimulate the agriculture trend 

to a more sustainable and environmental friendly approach.  In this context, 

application of soil microorganisms with beneficial activities on plant growth 

represents an attractive alternative approach as compared to the conventional 

agriculture that uses chemical or synthetic fertilizer (Choudhary et al., 2011; 

Miransari, 2011; Verma et al., 2011).   

 

 

The release of tryptophan in the root exudates may results in its conversion 

into IAA by PGPB.  In the previous study found that PGPB from different genera 

(Alcali gene faecalis, Enterobacter, Azospirillum, Klebsiella) and fungi have shown 

to enhance plant growth by  synthesis of IAA (Reinekeiet al. 2008; Torres-Rubio et 

al., 2008). The Stretomyceteslydicus WYEC108 and Streptomycetesgriseoviridis 

K61 are used commercially for IAA production under the trade of 

Mycostop(Khamnaet al. 2010). 
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Rhodopseudomonaspalustris,a purple nonsulfur photosynthetic bacteria with 

extraordinary diversity of enzymes, can be considered as one of the promising PGPB 

for natural soil enhancer compared to other microorganisms.  It is not only able to fix 

carbon dioxide from atmosphere into biomass, but also fixing the nitrogen gas to 

form ammonia source for plants  (Larimer et al., 2004). Nevertheless, there are 

evidences from the genetic traits showing the capability of R. palustris to synthesis 

IAA.  These features enable R. palustris to exhibit potential to enhance plant 

productivity by increasing the nitrogen availability, release of functional 

phytohormones and even detoxifying contaminated soil from overuse of chemical 

fertilizers and pesticides (Chen et al., 2007; Elder and Kelly, 1994; Kim et al., 2004; 

Liu et al., 2011).  To date, the use of R. palustris for agriculture application is seldom 

been reported, particularly for the production of phytohormone such as the IAA.  

Therefore, in this study, the R. palustris strain NRRL-B4276 was chosen for 

validation as a candidate strain to produce IAA via submerged fermentation 

 

 

The level of IAA biosynthesis by bacteria can be influenced by a number of 

factors, such as bacteria strain, concentration of tryptophan, nutrient availability, pH, 

temperature and time of incubation (Apine and Jadhav, 2011; Chaiharn and 

Lumyong, 2011).  Thus, it is necessary to consider which type of factors would affect 

the production of IAA in the R. palustris.  In the present study, four key factors: the 

amount of tryptophan, types of carbon and nitrogen sources and pH was chosen by 

the Taguchi Design under the pre-screening process.  Subsequently, only the 

significant factors were chosen and proceeded for the optimisation study by RSM 

analysis.   
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c. 1.3 Research Objective  

The objective of this study is to optimize the key parameters for the production of 

IAA by Rhodopseudomonaspalustris under submerged fermentation using statistical 

analysis approach.   

d. 1.4 Scopes of Study  

The scopes of the study are to: 

a) determine the significant  factors that affect the production of IAA by R. 

palustriusing Taguchi Design as pre-screening step; 

b) optimize the parameters of IAA production by R. palustrisusing RSM 

analysis
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