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ABSTRACT 

 

 

In this study, the finite element formulation for the investigation of the effects 

of a localized interfacial delamination on the energy absorption of the [90˚/0˚] 

laminated composite plate under impact loading is conducted. The stiffness of the 

laminate is determined by assembling the stiffnesses of sub-elements contributed by 

top and bottom laminae as well as the interface under impact loading. An 

introduction of an interface layer with stress- and strain- influenced material 

description is proposed to model a more realistic interfacial delamination. Also, the 

kinematically consistent mass matrix and mass proportional damping are formulated 

to complete the transient vibration governing expression. To simulate the interfacial 

degeneration of the laminate, it is defined in a localized manner in accordance with 

the maximum stress and strain of material under study induced by impact loading. 

The effects of localized interface delamination on the laminated composite plates 

when subjected to low velocity impact loading for various energies are investigated. 

Generally, the central displacement and degenerated area of interface increases as the 

impact energy increased. In addition, the absorption energy by the interface is rises 

due to higher impact energy.  More realistic damaged models offer greater absorption 

energy compared to those undamaged.  
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ABSTRAK 

 
 
 
 

Dalam kajian ini, perumusan unsur terhingga untuk menyiasat kesan daripada 

pemishahan antratamuka setempat pada penyerapan tenaga plat komposit berlapis 

[90˚/0˚] di bawah beban hentaman dijalankan.  Kekukuhan laminat ditentukan oleh 

pengumpulan kekukuhan sub-elemen yang disumbangkan oleh lamina bahagian atas 

dan bawah serta antaramuka.  Satu pengenalan lapisan antara muka dengan 

keterangan bahan yang dipengaruhi ketegasan dan keterikan telah dicadangkan untuk 

memodalkan pemisahan antaramuka yang lebih realistik.  Sementara itu, matriks 

jisim konsisten secara kinematik dan redaman berkadar jisim telah dirumus untuk 

melengkapkan expressi pengawal getaran berjangkamasa.  Untuk mensimulasikan 

degenerasi antara muka lamina, ia ditakrifkan secara setempat mengikut tepasan dan 

terikan maksimum bahan yang dikaji disebabkan oleh pembebanan hentaman. Kesan 

kemerosotan setempat antara muka pada plat komposit berlapis apabila dikenakan 

halaju rendah untuk pelbagai tenaga telah disiasat. Secara amnya, anjakan pusat dan 

kawasan merosot antaramuka bertambah apabila tenaga hentaman yang meningkat. 

Di samping itu, tenaga penyerapan oleh antaramuka mengikat kerana kenaikan 

hentaman.  Modal yang mengandungi sifat kerosakan yang lebih realistik 

menghasilkan tenaga penyerapan yang lebih tinggi berbanding model tanpa 

kemorostan.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 
 
 
 
 

1.1 Background of Study 

 
 

In recent years, composite materials has become one of the main application 

materials in advanced engineering, primarily as components in civil engineering 

structures, aerospace, automotive and other structural applications.  It has high 

mechanical properties with low weight composite material.  Usually, they are 

fabricated as laminated structures where two or more laminas are bonded by a layer 

of adhesive material.  The composite laminated materials are able to achieve required 

strength and stiffness properties to specific design conditions through proper 

arrangement of stacking sequence, fiber orientation, thickness and material properties 

of each layer.  Figure 1.1 indicates an example of a laminated composite, 

demonstrating two face layers with an interface layer.  The face layers are laminar 

plates and viscoelastic material as the interface layer.     

 
Figure 1.1 Two layers laminated composite with an interface layer (Wang and 

Chen, 2002). 
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The dynamic response such as natural frequency, modal damping and loss 

factor depend on the material density, elastic constants, damping properties, 

geometry and layers orientations.  Therefore, damping has become one of the 

important parameters related to the study of dynamic behavior of composite 

laminated structures.  Damping usually occurs as a mixture of two mechanisms in a 

composite laminated.  One of the mechanisms is damping between the fiber and 

adhesive layer within the laminated plies and the other mechanism is damping 

between the plies or between the laminated. 

 
 

The equation of motion for damped system in free vibration environment can 

be written as: 

   𝑀  𝑞  +  𝐶  𝑞  +  𝐾  𝑞 = 0   (1.1) 

where  

[𝑀] is the global mass matrix, 

 𝑞   is the nodal accelerations, 

[𝐶] is the global proportional matrix, 

 𝑞   is the nodal velocity, 

 𝐾  is the global stiffness matrix, 

 𝑞  is the nodal displacement.  

 
 

The damping behavior of the laminated composite plate can be determined by 

using the finite element theory. In general, damping matrix, [𝐶], which is introduced 

by the finite element theory can be assembled from damping properties of material. 

In order to conduct a modal analysis of damped systems, it is common to presume 

the proportional damping, which is a special type of viscous damping.  The 

proportional damping model defines the damping matrix as a linear combination of 

the mass and stiffness matrices:  

    𝐶 = 𝛼 𝑀 + 𝛽 𝐾     (1.2) 

where 𝛼 and 𝛽 are are computed the required levels of proportional damping at two 

different frequencies. 
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Therefore, the equation makes damping frequency-dependent. Four types of 

physical damping can be modeled in finite element techniques as shown below:   

 

i) Undamped case (𝛼 = 0; 𝛽 = 0)  

ii) Stiffness-proportional damping (𝛼 = 0; 𝛽 > 0) 

iii) Mass-proportional damping (𝛼 > 0; 𝛽 = 0) 

iv) Rayleigh damping (𝛼 > 0; 𝛽 > 0) 

 
 

Although composite laminated has almost unlimited potential in satisfying 

the strength requirement, they may exhibit several peculiar modes of failure such as 

matrix crazing, delamination, fiber failure and interfacial bond failure due to 

debonding.   Figures 1.2 shows interfaces and bonding layers of laminated composite. 

   

 

Figure 1.2 Interfaces and bonding layers of laminated composited, (Bui, 

Marechal and Nguyen-Dang, 2000b). 

 
 

In reality, it is impossible to have a perfect interfacial bond especially during 

manufacturing process or the actual service life of composite laminates.  One of the 

most common failures, the delamination, is an interlayer separation damage mode, 

which possibly occurs in the interface of a laminated composite.  Therefore, a model 

of composite laminated with imperfect interfaces due to impact load should be 

adopted since significant contribution of imperfect laminates on the mechanical 

responses has recently been recognized (Bui, Marechal and Nguyen-Dang , 2000).  
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In addition, the demand of lightweight, high strength and high energy 

absorption of material has increased in construction industry.  In order to improve 

performance of composite material against strong wind and ground motion, interface 

layers have been generally used.  Interface layers have advantages on isolating 

vibration, absorbing shock and reducing noise if proper material is used.  Generally, 

the interface layer is used to resist the vibration and shock load in order to absorb the 

energy and emit energy absorbed as heat so as to protect the material from damage.  

Interface layer will absorb kinetic mechanical energy when compressed or deflected 

at a relatively low stress over an extended distance, and not rebounding.  Thus, it is 

essential to capture the effects of a proper mechanical description of interfacial 

method in resisting impact load in terms of energy absorption capability. 

 
 

The composite laminated are known to be susceptible to damage resulting 

from impact load of foreign objects.  The impact load causes the laminated 

composite to resist a high energy in a short time period.  Impact on composite 

laminated is a dynamic problem, which leads to a local damage phenomena.  It is the 

most significant damage in laminated composite subjected to impact force due to the 

invisible damage to the back face.  Hence, the general problem of impact is 

extremely complex. 

 
 

Laminated composite is prone to damage by impact loads during 

manufacturing, transportation or service life.  The effect on the response of 

mechanical properties of laminated composite under impact load has become one of 

the issues in many advanced engineering structures. Figure 1.3 shows examples of 

damage of composite material caused by an impact load. 
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(a) 

 

(b) 

 

(c) 

Figure 1.3 Examples of damage on composite material caused by impact load: (a) 

Damaged steel bar-reinforced concrete panel (b) Damaged steel-fiber reinforced FRC 

panel (c) Damaged hybrid-ECC panel, (Zhang, 2012). 
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In response to this issues, Rahme et.al. (2012) suggested adding a mechanical 

protection on composite structures. An experiment study of low energy impacts on 

composite plates covered protective layer was conducted.  Figure 1.4 shows that the 

damage can be reduced by using a protection layer on the surface of plate.  Two 

configurations of protective layers have been tested.  Configuration 1 is designed for 

50 J energy impacts as shown in Figures 1.5.  It is composed of a 1.4 mm thick 

0
o
/90

o
 Kevlar woven fabric skin and of a polymer hollow spheres core made by 

ATECA Company.  Sphere diameter is between 5.4 and 6 mm, and spheres are glued 

together as well as with the skin. 

 

Figure 1.4 Composite plate impacted at 50J: (a) with protective layer (b) without 

protective layer (Rahme et.al., 2012). 

 
 

 
 

Figure 1.5 Two configurations with protective layers (Rahme et.al., 2012). 
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1.2 Problem Statement 

 
 

Generally, the dynamic resonance technique is used to evaluate the modulus 

and damping behavior of a variety of materials such as composite laminated plate.  

Damping is an energy dissipation mechanism in reducing the resonant vibration of 

material.  Thus, the total energy dissipated at the viscoelastic interface due to impact 

loading has become an interest in order to determine the behavior of composite 

laminated plate. The higher energy absorbed at interface, the better resistance to 

chatter phenomenon such as earthquake, strong wind and shock load. According to 

Shariyat and Hosseini (2014), the viscoelastic layer has high energy absorption 

ability, which can provide better control on the structure vibration and noise. 

 
 

Due to high labor and cost demands of experimental studies, the predictions 

of changes in structural dynamic properties can be investigated by using the finite 

element method. With the modeling of degeneration of localized interfacial in 

composite laminated plate in accordance with experienced stress and strain changes 

induced by impact load, the accuracy to predict the failure will be improved and 

more realistic. An accurate modeling expression for energy absorption due to low-

velocity impact loading is essential in describing better the material properties of 

laminated composite structures.  

 
 

Most of the interfacial model adopted linear and constant material properties.  

Therefore, they are incapable of modeling accurately the energy absorption effect 

contributed by the interfacial material.  Hence, better description of model in analysis 

should be conducted to develop knowledge that can be used to improve the energy 

absorption of the interface based on stress- and strain-induced behaviour.  
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1.3 Objectives 

 
 

This study is concerned with the energy absorption of layered structure due to 

impact loading.  The main objectives of this study are: 

a) To formulate the finite element model for a two-layer composite plate 

with a defined interface element incorporating more realistic stress- and 

strain induced  material description in presence of impact load. 

b) To develop the MATLAB code for the aforementioned finite element 

model.  

c) To determine the damage initiation and progress of interface due to 

impact loading with stress- and strain- influenced localized interfacial 

degeneration.  

d) To investigate the effects of energy absorption due to impact loading with 

stress- and strain- influenced localized interfacial degeneration. 

 

 

1.4 Scope of the Study  

 
 

The main structure studied is a rectangular laminate plate. The laminated 

composite plate is considered to be thin and flat according to thin plate theory. The 

shear deformation is neglected. The laminated composite plate is constructed from 

two layers of lamina with equal thicknesses and an interfacial layer in between. Each 

lamina is formed by unidirectional fibers, the E-glass, and the matrix material, epoxy 

3501-6, with a volume fraction of fiber 0.4. A cross-ply laminate plate configuration 

is considered in this study. The top lamina is of 90 degrees fiber direction and the 

bottom lamina is of 0 degree fiber direction. The initial velocity of the impactor is 

1.0-1.5 m/s having a 0.2-0.5 kg weight and 0.002 s impact duration. This time span is 

chosen such that an appreciable deformation can be observed in simulation. Only 

impacts of low velocity are considered in this study. The boundary condition of the 

plate is fully clamped at all edges. 
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The lamina is modeled and discretized by using a rectangular plate finite 

element with 4 nodes. In this study, the laminated composite plate is considered as a 

transversely isotropic solid material. There are five degrees of freedom for each of 

the nodes, which are displacement in x-direction (u), displacement in y-direction (v), 

displacement in z-displacement (w), rotation about y-direction (øx) and rotation about 

x-direction (øy). 

 
 

Besides that, the interfacial layer is considered as an orthotropic material with 

null normal stresses in x-direction and y-direction as well as the in-plane shear stress 

on x-y plane (σx=σy=τxy=0).  It is modeled using a quadrilateral solid element with 8 

nodes. However, there are only three degrees of freedom for each node, which are 

the displacement in x-direction (u), displacement in y-direction (v), and displacement 

in z-displacement (w). The stiffness matrix of the lamina and interfacial element is 

computed using a 2 × 2 Gauss quadrature rule. 

 

This model is applied to describe the energy absorption at interface due to 

low velocity impact. The load is applied at the center of the plate without taking into 

consideration the impactor shape. To simulate the interfacial degeneration of the 

laminate, the degenerated areas are defined in a localized manner in accordance with 

stress and strain induced by impact loading.  

 
 
 

1.5 Significance of the Study 

 
 

Composite laminated material has been widely used in construction industry 

in the past several decades.  The composite laminated material such as plate element 

is very common in structures.  This has made the study of the dynamic behavior of 

composite laminated plate important.  In most cases, the bonding layer of composite 

laminated plate is assumed to be perfect.  However, it is impossible to have a perfect 

bonding during the manufacture process. Therefore, the debonding area may exist 

between the layers of composite laminated plate.  
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The behavior of composite laminated plate is highly depended on the 

dynamic properties such as natural frequency and loss factor.  As the debonding or 

delamination occur on the interfacial layer of laminated plate, the dynamic properties 

will change with respect to the area of degeneration.  Hence, improvement in 

prediction can be accessed from the comparison of perfect bonding and imperfect 

bonding cases.  On the other hand, a mass proportional damping model is considered.   

 
 

With the wide application of laminated composite plate, the ability of 

strength and energy absorption of plate is desired.  It is practically dangerous in 

applications when the laminated composite plate is attacked by external load 

especially impact load.  In order to enhance the energy absorption, interface layer of 

composite laminated plate is encounter to make the modeling more realistic.     

 
 

In many structural design problems, the requirement is to provide proof that 

the structure remains considerably safe even though damaged.  Therefore, the effect 

of energy absorption of the composite laminated plate due to impact load is required 

in structural behavior investigation.  
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