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ABSTRACT 

 

 

 

 

The main mechanism of bathymetry survey is relied on the measurement of the 

travel time of the two ways sound wave.  Speed of sound wave is dependent on the 

water density.  Density of every water layer is affected by temperature, salinity and 

pressure.  According to Snell’s Law, when sound wave travel through water layers with 

different densities, the travel speed will change and leads to refraction.  Thus, the 

variation of sound speed will significantly affect the accuracy of the bathymetry result, 

as the refraction will cause the sound wave to be refracted from their ideal propagation 

path, and, resulting false depth and position.  Compensation of the refraction can be 

completed by Trigonometry Method, Curvature Method and the Combined Method.  

The Trigonometry Method is implementing the averaging of the sound speed for a 

determined layer of depth. Conversely, the Curvature Method assumes the sound wave 

to travel in an arc of circle of different radius in every different depth layer. Meanwhile, 

the Combined Method is the combination of the Trigonometry Method and Curvature 

Method.  This study aims to identify which approach provides the better positional result 

and depth.  The sound speed data of the water column is recorded using the sound 

velocity probe at four different study areas.  The outer beam of the particular ping is 

selected for comparison and analysis.  As a result, the average of overall difference in 

horizontal distance between Trigonometry Method and Combined Method obtained 

from 30° beam and 60° beam is 0.038m and 0.122m, respectively.  From the simulation, 

as the sound speed increases or decreases continuously, the horizontal difference among 

Trigonometry Method and Combined Method exceeds the special order of International 

Hydrographic Organisation Standard (IHO) at the depth level where the sound speed 

exceed the difference of 10m/s from the transducer.   
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ABSTRAK 

 

 

 

 

 Mekanisma utama ukur batimetri adalah bergantung kepada cerapan masa 

perambatan dua hala gelombang bunyi.  Halaju gelombang bunyi adalah bergantung 

kepada ketumpatan air.  Ketumpatan air setiap lapisan dipengaruhi oleh suhu, kemasinan 

dan tekanan.  Menurut Hukum Snell, apabila gelombang merambat melalui lapisan air 

yang berbeza ketumpatan, halaju gelombang akan berubah dan menghasilkan pembiasan.  

Justeru, perubahan halaju gelombang bunyi akan memberi kesan terhadap hasil kejituan 

batimetri, kerana pembiasan akan menyebabkan gelombang bunyi terbias dari laluan 

perambatan yang sepatutnya, dan menghasilkan selisih dalam penentuan kedalaman dan 

kedudukan. Pembetulan untuk pembiasan boleh dijalankan dengan Kaedah Trigonometri, 

Kaedah Kelengkungan dan Kaedah Gabungan.  Kaedah Trigonometri menggunakan 

purata halaju untuk lapisan kedalaman yang ditentukan; Kaedah Kelengkungan 

menganggap gelombang bunyi merambat dalam bentuk arka bulatan di setiap lapisan 

kedalaman dengan jejari yang berbeza; Kaedah Gabungan merupakan gabungan Kaedah 

Trigonometri dan Kaedah Kelengkunan.  Kajian ini bertujuan untuk mengenalpasti 

kaedah yang lebih baik dalam memberi keputusan kedudukan dan kedalaman.  Data 

halaju gelombang bunyi direkod dengan pengesan halaju bunyi di empat kawasan kajian 

yang berlainan. Ping daripada alur luar dipilih untuk perbandingan dan analisis.  

Menurut keputusan yang diperolehi, purata keseluruhan untuk perbezaan jarak mendatar 

antara Kaedah Trigonometri dan Kaedah Gabungan yang diperolehi dari alur 30° dan 

alur 60° adalah masing-masing 0.038m dan 0.122m. Berdasarkan kepada simulasi, 

apabila halaju gelombang bunyi meningkat atau menurun secara berterusan, perbezaan 

jarak mendatar antara Kaedah Trigonometri and Kaedah Gabungan mencecah standard 

mimima Piawaian Organisasi Hidrografi Antarabangsa (IHO) pada paras kedalaman dari 

tranduser yang mencapai perbezaan halaju gelombang bunyi sebanyak 10m/s.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The evolution of multi-beam echo sounders (MBES) is leading to systems with 

enhanced capabilities in their traditional markets, but also provides features to allow the 

expansion of their use into new areas and applications. This short review highlights 

some of the features of the latest generation of systems. The attributes of an MBES 

system are traditionally described by technical specifications, such as operating 

frequency, pulse length, beam width, number of beams and coverage.  It is also apparent 

that potentially cost-effective systems are now available to users who may previously 

have only considered a single beam echo sounder (SBES) solution (Mann, 2013).  The 

MBES transducer is continuously transmitting acoustic sound toward seafloor.  When 

the acoustic sound makes contact with the bottom, it will be reflected back to the 

transducer as to complete a round trip.  The beam array of MBES is pre-determined at 

the certain angle deviated at both side from the nadir.  Each beam is constantly separated 

by a fix angle (Gunathilaka, 2008).   

 

 

As mentioned by Koomans (2010), MBES have speedily established their 

superior competencies over earlier systems used to attain complete seafloor coverage.  

The distinctive capabilities of the MBES allow it to provide high accuracy full coverage 

of the bottom, that exceeding International Hydrographic Organisation (IHO) 
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specifications.  The fact that the MBES transducer is firmly mounted to the hull allows 

the user to compute its position as precisely as the current positioning system.  Thus, 

MBES have become a widely accepted reliable system for various hydrographic tasks. 

  

 

The implementation of Real Time Kinematic (RTK) Global Positioning System 

(GPS) has further improved the positional accuracy of MBES.  By measuring the phase 

of the carrier wave of the RTK, centimeter level horizontal positional accuracy can be 

achieved (Yasuda, 1999).  The accuracy of tidal measurement from electronic tide 

gauges has been proven reliable for many years.  The accuracy of these real-time digital 

water level data is able to obtain centimeter level (Rabah, 2011).  The sum of these 

errors is within the tolerance set by IHO.  Therefore, the sound speed deviation and roll 

biases will be the critical factor in affecting the precision of absolute depth (Capell, 

1999). 

 

 

Sounding data from the MBES system is a product of processing information 

from numerous data sources.  These comprise the heading of ship and attitude data from 

the gyrocompass and the motion sensor; vertical reference data (tidal data) from the tide 

gauge; horizontal positional data from the GPS unit and sound velocity data from the 

Conductivity Temperature Density (CTD) or Sound Velocity Profile (SVP) probe in 

addition to the basic MBES data itself.  Data from each source are issue to singular 

errors which are contributing to overall data quality.  To minimise these errors, system 

planners often have established error budgets for different components of the system 

(Gunathilaka, 2008). 

 

 

 

 

1.2 Problem statements 

 

 

Sound refraction artifacts are often present in multibeam swath bathymetry data.  

For a flat array, the artifacts are usually severe in outer beams than in inner beams.  In a 

three dimensional (3D) topographical mapping they appear as along track ridges.  To 
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minimise the survey time, the outer beams should be utilized.  Therefore, the refraction 

errors should be removed.  The sound speed of the two upper layers has a constant 

gradient, and the third layer has the same sound speed as the most bottom measured 

layer.  The model parameters can be searched based on the principle of the minimum 

difference of depth between the overlap of two adjacent swaths.  The horizontal position 

and depth of each beam can be accordingly recalculated using the model parameters 

(Yang et al, 2007). 

 

 

Ports, harbours and marine bases are regularly located in estuaries, where river 

discharge and tidal stirring stoutly influence the sound velocity profile.  Scales of 

temporal and spatial variability are frequently inadequate, resulting in unexpected 

variation to the acoustic environment.  Such diminutive estuarine SVP and temporal 

changes have considerable influences on sound propagation and therefore must be 

described and enumerated in order to optimise sensor performance (Priestley and Thain, 

2010). 

 

 

Monitoring underwater environments is important for future near-shore 

exploration and port safety.  The efficiency of underwater acoustic sensor systems is 

affected by the water environment, as sharp gradients in salinity and temperature cause 

sound to refract and reflect.  Sound transmission can be impaired in estuaries where the 

salinity of the water is highly erratic in space, and tidal action causes water conditions to 

vary as a function of time. Thus, the correction of refraction is important for near shore 

location (Shi and Kruger, 2009). 

 

 

Tides and an altering existence of salt and freshwater from river flow can cause 

significant variation of the water column SVP at the dynamic water environments, such 

as the estuaries, harbours and ports.  It is important to sufficiently compensate 

bathymetric data for sound refraction effects in the face of limited SVP information.  In 

practice, refraction correction can be hindered by insufficient knowledge of the water-

column SVP at the time and place of MBES measurement (Jeroen, 2007). 
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The research on the effect of refraction and compensation of propagation path is 

inadequate in Malaysia.  According to Kammerer (2000); Yang et. al (2007); Plaa, 

Snellen and Simons (2008), the depth uncertainty due to refraction can be eliminated via 

interpolation of adjacent swath.  Moreover, Imahori and Hiebert (2008) cited that the 

total depth uncertainty can be estimated using Combined Uncertainty and Bathmetry 

Estimator (CUBE) algorithm.  However, the monitoring of the propagation path was not 

mentioned.  Cartwright (2003) and Medwin (2005) stated about the ray tracing 

techniques that can be used to monitor the effect of refraction towards propagation path, 

but the comparative study regarding the techniques is not performed.      

 

 

This study discussed about the comparison of compensation approach of Layer 

with Constant Sound Speed (Trigonometry method) and Layer with Constant Sound 

Speed Gradient (Curvature method). Both approaches are mentioned by Kammerer 

(2000), Cartwright (2003), Medwin (2005) and Andersson (2008) in previous.  However, 

the comparison of both approaches was not carried out.  In addition, the setback of the 

inability of Curvature method to handle continuous unchanged sound speed layer is not 

mentioned.  In this study, Combined Method is designed to solve the inability of the 

Curvature method to compute the data consist of zero gradient sound speed layers. 

 

 

According to the Gunathilaka (2008), the approach of constant SVP is common 

to remove uncertainty in refraction.  In fact, the sound speed does not change abruptly 

from layer to layer, but it changes gradually from the water surface to seabed.  Henc, the 

approach of assuming the sound speed change constantly per layer is unfeasible to 

handle all kind of refraction situation, as the beam does not propagates in the line of 

sight in that particular layer (Figure 1.2).  However, the beam is expected to be 

propagated in the curvature line that bends gradually when heading towards the seabed.  

Thus, new approach should be considered to monitor the actual path of the beam. 
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1.3 Research objectives 

 

 

The objectives of this research are: 

 

 

1) To develop algorithm to calculate the fittest curvature gradient for refracted 

sound velocity profile.   

 

 

2) To compare the point position of the refracted beam on the seabed obtained 

from Trigonometry method, Curvature method and Combined method.   

 

 

 

 

1.4 Scope of study 

  

 

 The SVP does not experience great change in open sea, as the physical 

characteristic of water column is approximately similar.  However, the dynamic 

fluctuation of seawater and freshwater at estuary area or at port will cause the SVP to 

vary erratically and inconsistently.  Therefore, for this study, the research is carried out 

at Lido Beach, Lumut, Penang and Kota Bahru.  In addition, simulation data are used for 

the study as well.  Information on the data are discussed thoroughly in Chapter 3. 

 

 

 The MBES is used in this research is RESON SeaBat 8124 which is Mill’s cross 

type with flat array.  The system consists of 80 beams with swath coverage that can 

exceed 120 degrees.  Each beam is separated 1.5 degree from each other.  In addition, 

the accuracy of the system is compliant International Hydrography Organisation (IHO) 

standard. 

 

 

 SVP probe is used to measure the sound velocity profile throughout the water 

column.  Meanwhile, the SSS is measured using the surface sound speed-measuring 
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probe located at the face of the transducer.  The rate of sound velocity recording is set to 

0.25 meter or 0.5 meter depth interval depends on the requirement of the study. 

 

 

Tidal reading is collected using automatic tide gauge, Valeport.  Motion sensor 

and positioning system are installed onboard.  The embodiment of all instruments is 

measured.  MBES bathymetry data gathering and processing is completed using QINSy 

Version 7.5.   

 

 

The SVPs under both circumstances are obtained and compared correspondingly.  

The profile obtained from both methods is generated for evaluation.  Additionally, the 

difference in depth is compared as well.       

 

 

In order to process and analyse the refraction information, a computational 

program is developed using the Microsoft Excel.  Filtered data is inserted in the program, 

and the required parameters will be calculated using the developed program. 

 

 

 

 

1.5 Significant of research 

 

 

  Since the development of MBES, refraction of acoustic ray in water column 

frequently leads to errors in depth.  The estimation of ray path in the industry is usually 

using the step gradient approach, which less compromises to the refracted path.  Thus, 

the accuracy of the most feasible distance travelled may be degraded, hence, influence 

the depth and position measurement. 

 

 

The research will provide an overview on the influence of variation of sound 

speed and profile toward bathymetric measurements.  The variation will cause the 

disputation over depth and horizontal position.  In addition, the risk of grounding can be 

reduced, if the depth and position is measured properly. 



7 
 

 In Malaysia, the research on the effect of refraction in beam propagation is 

inadequate.  The knowledge is very important for hydrographers to take into account 

when survey is being conducted.  Thus, proper study has to be carried out, as the MBES 

has became the mainstream hydrography survey instrument in the sector.  This study 

will provide the information regarding the comparative study of the different techniques 

for compensation of refraction at propagation path.   

 

 

 The comparison on Trigonometry, Curvature and Combined methods is yet to be 

carried out in any previous study.  As we all know, the variation of ocean characteristic 

is unpredictable.  It is impractical to handle all scenarios with single approach.  Hence, 

this study can offer the novel information for the approach to be taken on refraction 

study.   
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