
CONFIGURABLE VERSION MANAGEMENT HARDWARE TRANSACTIONAL
MEMORY FOR EMBEDDED MULTIPROCESSOR FIELD-PROGRAMMABLE

GATE ARRAY

JEEVAN A/L SIRKUNAN

UNIVERSITI TEKNOLOGI MALAYSIA



CONFIGURABLE VERSION MANAGEMENT HARDWARE TRANSACTIONAL
MEMORY FOR EMBEDDED MULTIPROCESSOR FIELD-PROGRAMMABLE

GATE ARRAY

JEEVAN A/L SIRKUNAN

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JULY 2015



iii

To my supervisors, family and friends for taking care of me during my studies



iv

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the strength to
complete this thesis. I would also like to express my greatest appreciation to my
supervisor, Associate Professor Dr. Muhammad Nadzir Bin Marsono, for giving me
the opportunity in working in an amazing field of research. With his continuous
encouragement, criticism and guidance I was able to complete my research. Thanks to
him, I was able to realize my full potential in academic and also other aspects of life.
Besides that, I would like to thank my co-supervisor Dr. Ooi Chia Yee for commenting
on my work and involving me in external project which expanded my horizon in this
field.

My sincerest appreciation goes to my seniors and fellow lectures, Alireza
Monemi, Tang Jia wei, Dr. Shaikh Nasir @ Nasir bin Shaikh Husin and Dr Jasmine
Hau Yuan Wen for their support and technical advice. I would also like to thank my all
fellow researchers Tei Yin Zhen, Lee Yee Hui, Tan Tze Hon, Loo Ling Kim, Loo Hui
Ru and Lee Kher Li who had accompany and supported me through hard times during
my study here.

I would also like to thank the developers of the utmthesis LATEX project for
making the thesis writing process a lot easier for me. Thanks to them, I could focus on
the content of the thesis, and not waste time with formatting issues.

Finally, I would like to thank my family for always being there for me, through
thick and thin. Especially my parents who never gave up believing in me. Their role
in my life is something I will always nee and constantly appreciate.

Jeevan



v

ABSTRACT

Multiprocessor platforms have been introduced to solve the performance
limitation of uni-processor platform. However, programming on a shared memory
multiprocessor platform in an efficient way is difficult. The inefficiency of lock-
based synchronization limits the performance of the parallel programs. Transactional
memory (TM) provides a promising method in creating an abstraction layer for
programmers to maximize hardware capacity of multiprocessor platform. Hardware
TM (HTM) is faster compared to software TM although the performance of hardware
transactional memory (HTM) is application-specific. Previous HTM implementations
for embedded system were built on fixed version management which results in
significant performance loss when transaction behaviour changes. In this thesis,
a configurable version management HTM is proposed. The proposed version
management is able to be configured to eager version management for low contention
applications since it allows fast commit, or lazy version management that is suitable
for applications with high contention since it can abort fast. In this work, an analytical
model of the proposed hardware transactional processing time for different version
management has been developed. With the analytical model, the bounds of the worst
case and best case processing time can be estimated for a particular transaction size.
The switching point of the performance between eager and lazy version management
can also be estimated. The HTM has been prototyped and analyzed on Altera Cyclone
IV platform. Based on our experiments, lazy version management is able to obtain
up to 12.82% speed-up while eager version management obtains up to 37.84% speed-
up on different memory request distributions for transaction sizes of 4, 8 and 16. The
proposed HTM can be configured to obtain a shorter processing time for different types
of applications compared to fixed version management.



vi

ABSTRAK

Platform multipemproses telah diperkenalkan untuk meningkatkan prestasi
platform unipemproses. Walau bagaimanapun, proses utuk membina pengaturcaraan
cekap untuk multipemproses dengan ingatan sepunya adalah sukar. Ketidakcekapan
penyegerakan berasaskan kunci menghadkan kecekapan program selari. Ingatan
Transaksi (TM) mewujudkan lapisan abstrak untuk memudahkan pengaturcara
membina aturcara yang cekap supaya kapasiti multipemproses dapat dimaksimumkan.
Perkakasan TM (HTM) adalah lebih cepat berbanding dengan perisian TM walaupun
prestasi perkakasan ingatan transaksi (HTM) adalah khusus atas satu-satu aplikasi.
Pelaksanaan HTM sebelum ini untuk sistem terbenam dibina dengan pengurusan versi
tetap mengakibatkan penurunan prestasi yang ketara apabila corak transaksi berubah.
Dalam tesis ini, ingatan transaksi dengan pengurusan versi keboleh-konfigurasi adalah
dicadangkan. Pengurusan versi bersemangat sesuai untuk aplikasi dengan kadar
konflik yang rendah kerana masa yang diperlukan untuk menetapkan perubahan yang
dilakukan oleh satu transaksi adalah singkat. Manakala, versi malas adalah sesuai
untuk digunakan dengan aplikasi dengan kadar konflik yang tinggi kerana masa yang
diperlukan untuk membatalkan perubahan yang dilakukan oleh satu transaksi adalah
singkat. Model analisa berdasarkan perkakasan TM juga dibincangkan dalam tesis
ini. Dengan model analitikal ini, masa maksimum dan minimum untuk menjalankan
transaksi dapat dianggarkan. Titik pengalihan prestasi di antara versi malas dan versi
semangat dapat dianggarkan. Ingatan transaksi ini di prototaip dan dianalisa pada
platform Altera Cyclone IV. Berdasarkan eksperimen yang dijalankan, pengurusan
versi malas menunjukkan peningkatan sehingga 12.82% kelajuan manakala versi
pengurusan bersemangat menunjukkan peningkatan sehingga 37.84% kelajuan bagi
aras konflik yang berlainan untuk saiz transaksi 4, 8 dan 16. HTM yang dicadangkan
dapat dikonfigurasikan bagi mendapatkan masa pemprosesan yang lebih rendah
berbanding pengurusan versi tetap.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
LIST OF APPENDICES xiv

1 INTRODUCTION 1
1.1 Problem statement 2
1.2 Objectives 3
1.3 Scope of Work 4
1.4 Contributions 4
1.5 Thesis Organization 5

2 LITERATURE REVIEW 7
2.1 Parallel Programming on Shared Memory 7
2.2 Fine Grain Lock versus Coarse Grain Lock 9
2.3 Transactional Memory 12
2.4 Transactional Memory Architecture 13

2.4.1 Software Transactional Memory (STM) 13
2.4.2 Hardware Transactional Memory (HTM) 14
2.4.3 Hybrid Transactional Memory

(HybridTM) 15
2.4.4 Hardware Accelerated STM 15

2.5 Hardware Transactional Memory Configurations 16



viii

2.6 Related Works on Hardware Transactional Memory 18
2.7 Motivations for Extended Research 23

3 METHODOLOGY 27
3.1 Research Approach 27
3.2 Software Tools and Design Environment 29

3.2.1 Quartus II 29
3.2.2 Modelsim Altera Starter Edition 29
3.2.3 MATLAB 30
3.2.4 Software Transactional Memory (STM)

in GCC-4.7 30
3.3 Hardware Design Verification Methodology 31

3.3.1 Functional Verification 32
3.3.2 Performance Verification 32

3.4 Development of Synthetic Memory Trace 33
3.4.1 Standard Deviation 34
3.4.2 Isolation 34

3.5 Chapter Summary 35

4 CHARACTERIZATION OF HARDWARE TRANSAC-
TIONAL MEMORY 37
4.1 Top-level architecture view 37
4.2 HTM Conflict Management 38
4.3 HTM Version Management 39
4.4 Processing Time 41

4.4.1 Analytical Model of Proposed HTM 41
4.4.2 Bounds of TM Processing Time 43

4.5 Performance Verification 48
4.6 Chapter Summary 49

5 HARDWARE DESIGN AND IMPLEMENTATION 51
5.1 Design Consideration 51
5.2 System architecture of HTM 52

5.2.1 Processing Elements 52
5.2.2 Request Handler 54
5.2.3 Output Handler 55
5.2.4 TM core : Transactional Memory Core 56

5.2.4.1 DU TM 57



ix

5.2.4.2 CU TM 61
5.2.4.3 Main Memory 62
5.2.4.4 Address FIFO 63

5.3 Programming Model 63
5.4 Functional Verification 63
5.5 Performance verification 68
5.6 Chapter Summary 69

6 CONCLUSIONS 70
6.1 Contributions 70
6.2 Directions for Future Works 71

REFERENCES 73
Appendix A 78



x

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Maximum performance improvement for eager versus lazy
version management. 49

5.1 Contention policy for attacker and defender. Tick represent
valid transactions. 60

5.2 Area and maximum frequency comparison. 68



xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Shared memory versus distributed memory architecture. 23
2.2 System architecture of CTM 25
2.3 Finite state machine of memory controller of CTM 26
3.1 Approximation of the probability of conflict produce by

standard deviation and isolation 33
3.2 Relationship of standard deviation and the probability of

conflict for 2 processor. 35
3.3 Relationship of isolation region towards the probability of

conflict for 4 processors. 36
4.1 Proposed HTM architecture overview 38
4.2 Eager Conflict Management versus Lazy Conflict Manage-

ment. 39
4.3 Eager Version Management versus Lazy Version Manage-

ment. 40
4.4 Analytical model estimation for maximum and minimum

total execution time for eager and lazy version management
for transaction of size 16. 45

4.5 Analytical model estimation of eager and lazy version
management for different size of abort for transaction of size
16. 46

4.6 Relationship of abort penalty towards early and late conflict
detection. 47

4.7 Total execution time of analytical and experimental model for
2000 transaction versus probability of conflict for different
transaction sizes. 50

5.1 System architecture of the proposed HTM on MPSoC system. 53
5.2 State machine of the processor model. 53
5.3 System architecture of Nios2 processor and TM interface. 54
5.4 Request handler. 55
5.5 Output handler. 56



xii

5.6 TM Core: Consists of four parts: DU TM, CU TM,
MAIN MEM and ADD FIFO. 56

5.7 TM buffer: Consist of arrays of registers which are divided
into Valid, R-W-Set, Address and Data. 57

5.8 TM access: Determines the address and data that accessing
the TM buffer and Main memory. 58

5.9 TM search: Search for speculated address and available
locations in the TM buffer. 59

5.10 TM flush flag: Allows compare shared and occupied flags to
allow fast abort and commit. 60

5.11 TM conflict: Detects conflict between transactions and holds
the conflict flags. 61

5.12 State diagram of the proposed HTM control unit. 62
5.13 Read-after-read, condition, both transaction successfully

completed its transaction in one try. Both CPU 0 and CPU 1
read address 80 65

5.14 Read-after-write, CPU 1 read from address 112, which is
already written by CPU 0. CPU 1 is conflicted and need to
retry. 66

5.15 Write-after-read, CPU 0 write on address 96 after being read
by CPU 1. CPU 1 is conflicted and need to retry. 66

5.16 Write-after-write, condition, CPU 1 writes on address 81,
which has already been written by CPU 0. CPU 0 is
conflicted and need to retry. 67

5.17 Results for software implementation. 67
5.18 Results for hardware implementation. 68



xiii

LIST OF ABBREVIATIONS

HTM – Hardware Transactional Memory

MPSoC – Multiprocessor System on Chip

STM – Software Transactional Memory



xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A LIST OF PUBLICATIONS 78



CHAPTER 1

INTRODUCTION

Multiprocessor System-on-Chip (Multiprocessor System on Chip (MPSoC))
consists of several general-purpose processors on in a single chip and shares hardware
resources such as memory and input/output (I/O) pins. MPSoC offers lower latency,
higher bandwidth and lower clock rate without losing throughput [1] compared
to uni-processor systems. MPSoC has become a norm for servers, desktop, and
embedded systems. However, programmers could not fully exploit parallelism
potential of MPSoC parallel architecture as software industry still produce programs
for uniprocessor. Application tasks are still handled sequentially, thus making the
performance of MPSoC similar to uniprocessor for a single segmented application.
In order to improve MPSoC throughput by running programs in parallel [1], memory
architecture must also facilitate parallelism at atomic level.

Parallel programming model partitions tasks to parallel executables in parallel
execution such that the time taken to complete the task can be made considerably
low. However, maximizing parallel programming potential is not trivial, even for
expert programmers [2]. Message passing and shared memory are the most common
parallel programming models. Message passing models need explicit communication
in which programmers are required to synchronize memory access. On the other
hand, shared memory model requires blocking synchronization to maintain coherency
among multiple threads. When a task acquires a lock for a specific memory
segment, other tasks have to wait until that particular task has been completed and the
memory segment is unlocked. Shared memory model are hardware supported, where
everything occurs implicitly [1]. Software level management causes large overhead
and programmers needs to know the memory segments modified. The scratch pad
model is an example of methods which manage parallel access of memory. However,
memory transfer need to be done beforehand, thus making it suitable for certain
applications [2].



2

In general, shared memory MPSoC uses blocking synchronization. Blocking
synchronization can be divided into fine grain lock and coarse grain lock. Fine grain
locking gives better performance than coarse grain but at the cost of development
time. On top of that, fine grain method requires programmers to explicitly develop
applications using fine-grain locks. On the other hand, coarse grain locking is much
easier to implement. However, large chuck of memory segment which are locked
becomes unavailable to other threads and thus, potential parallelism could not be fully
exploited. Fine grain lock requires multiple locks each for a memory segment to
allow parallelism. However, this type of synchronization needs to be handled by the
programmer. In short, synchronization on shared memory based on locks and mutual
exclusion are difficult to scale [2].

A much simpler abstraction for MPSoC synchronization is by using
transactions. A transaction is defined as a sequence of memory read and write that
belong within a single thread. Transactional memory provides non-blocking wait-
free synchronization on multiple threads accessing the same memory location. Its
execution is atomic, isolated, durable and consistent. Each thread or processor will
have to execute its task as transactions. When there is a conflict between two or
more transactions, all transactions except the winner have to restart or abort. For a
successful transaction, modification made by it becomes permanent and available for
other transactions to modify at the end of the transaction. In the end, all these changes
are updated for all transactions and become visible to the other threads or processors.

1.1 Problem statement

Currently, lock-based synchronization schemes are widely used for
synchronizing MPSoC threads. The increasing application programming complexity
has led on researches towards TM. Software Transactional Memories (STM) such
as [3, 4] are flexible in-terms of size of transaction. However, their performance
is inferior to hardware TM. The main tasks of transactional memory (TM): conflict
detection, commit and abort; are done in software and cause high latency, making STM
the bottle neck in MPSoC [1]. Thus, several hardware transactional memory (HTM)
architectures have been proposed such as [5–10] which focus on high performance
cache coherent systems.

Existing HTM architectures were implemented and tested in simulation



3

environment to allow architectures that are more complex to be proposed without
concerning about the underlying hardware implementation details. Another spectrum
of HTM implementation are those works that focus on building HTM prototype
on field programmable gate array (FPGA) platform. ATLAS [11] and Real Time
Transactional Memory (RTTM) [12] focuses on prototyping HTM for embedded
architecture. NetTM [13] HTM implementation is targeted for network applications.
These HTM architectures are based on fixed configurations and their performance is
highly dependent on the variant running applications.

Designing HTM for embedded system put consideration on energy
consumption and simplified complexity of HTM design. EmbeddedTM [14] focuses
on reducing power consumption. However, it also uses cache coherent protocols which
adds significant resource overhead that is too complex for embedded applications [2].
CTM [2] has introduced a generic approach in building HTM for embedded system.
In this design, HTM can be configured to either lazy or eager conflict management
to suit to application demand (i.e., probability of conflict). Its architecture consists
of a unified cache for all processors, eliminating the need for complex coherence
protocol. However in [2], version management context was not fully exploited, where
transactional memory cache inside CTM needs to update main memory one word at a
time.

1.2 Objectives

The primary objective of this thesis is to prototype a hardware transactional
memory for MPSoC system. The baseline architecture is an improvement on
CTM [2] by embedding configurable version management mechanism. Hence, the
proposed HTM version management can be configured between eager and lazy as each
configurations is more suitable for different types applications. Specifically, this thesis
proposes the following.

1. The first objective is to characterize the performance of different version
management schemes based on the CTM architecture [2] to work with varying
application behaviours (contention level). This is done through analytical
modelling of HTM version management.

2. The second objective is to prototype configurable version management HTM
architecture on FPGA. The proposed architecture is parametrizable and able to



4

initiate switching of version management at run time.

3. The third objective is to verify the proposed HTM performance. This includes
comparison and analysis of the analytical model with results from simulation on
hardware prototype.

1.3 Scope of Work

This thesis focuses on characterizing the effect of version management on
the performance of HTM. Conflict management is kept constant using lazy conflict
management to provide a fair comparison between both version managements.
Different conflict management may result in different pathology to complete execution
of program, thus producing varying performance [15].

HTM overflow handling mechanism is not implemented. Overflow in HTM
happen when the number of transactions that need to be speculated is more then the
available memory space. All transactions in the test cases in this thesis are designed to
be within the bound of the memory hardware capacity.

The HTM prototype presented in this thesis uses only available memory blocks
available on the FPGA device. There is no difference in access time for speculative
memory or the main memory. The memory access speed up factor between the
speculative memory and main memory is fixed at 1. The discussion on the effect
of hierarchical memory is not included in this thesis.

There are no additional instructions implemented in for the proposed
transactional memory. Processors access the proposed HTM at the instruction level.
Similar with [2], the HTM is shared among different processors, where each processor
has a local cache for instructions. By doing this, heterogeneous core with or without
individual cache is able to use the HTM.

1.4 Contributions

The proposed HTM architecture is an improved architecture over [2]. A
MPSoC platform using four Nios II processors has been developed to verify the



5

functionality of the proposed HTM architecture against the STM library [16]. A
configurable version management HTM architecture is proposed with the ability to
switch its version management at run time. The proposed HTM is also parameterizable
and is able to be configured based on varying application demand. An analytical model
has been formulated to approximate the bounds of processing time for both eager and
lazy version management. Using this analytical model, it is possible to determine the
most suitable version management for a certain application.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 covers related works in literature and discusses important aspects
of TM analysis. This chapter also explains the problems in producing efficient
programs for MPSoC systems. The advantages and disadvantages of current parallel
programming models are also discussed. This chapter then provides a detailed
discussion on TM and existing TM architecture in hardware.

Chapter 3 provides the methodology for the work done presented this thesis.
This chapter also includes the general approach in TM research, as well as the tools
and platform used to model, prototyped, and verify the proposed TM. The final section
in this chapter describes the method used for creating datasets for verification purposes.

Chapter 4 presents the characterization of the proposed HTM. An analytical
model is proposed to characterize the bounds of HTM processing time. Based
on the model, the relationship of HTM processing time and different application
contention levels is analysed. The comparison between the mathematical model and
the implementation model is also provided.

Chapter 5 provides an overview of the hardware TM architecture of the
proposed HTM system and a detail description of the proposed FPGA SoC hardware
prototyping at different abstraction levels. This chapter also discusses the design
consideration to allow HTM to be deployed in real MPSoC embedded system. Besides,
the HTM programming model is also shown at the end of in this chapter.



6

Chapter 6 summarizes the work presented in this thesis, re-stating the
contributions to knowledge, and suggests directions for future research.



REFERENCES

1. Navazo, M. L. Hardware Approaches for Transactional Memory. M.sc.
thesis. Departament d’Arquitectura de Computadors, Universitat Politecnica
de Catalunya. 2008. URL arco.e.ac.upc.edu/wiki/images/e/

e3/Mlupon_msc.pdf.

2. Kachris, C. and Kulkarni, C. Transactional memories for multi-processor
FPGA platforms. Journal of Systems Architecture, 2011. 57(1): 160–168.

3. Shavit, N. and Touitou, D. Software transactional memory. Proceedings of

the 14th Annual ACM Symposium on Principles of Distributed Computing.
Ottowa, Ontario, Canada. 1995. 204–213.

4. Dice, D., Shalev, O. and Shavit, N. Transactional Locking II. Proceedings

of the 20th International Conference on Distributed Computing. Berlin,
Heidelberg: Springer-Verlag. 2006, DISC’06. ISBN 3-540-44624-9, 978-
3-540-44624-8. 194–208. doi:10.1007/11864219 14. URL http://dx.

doi.org/10.1007/11864219_14.

5. Hammond, L., Wong, V., Chen, M., Carlstrom, B. D., Davis, J. D., Hertzberg,
B., Prabhu, M. K., Wijaya, H., Kozyrakis, C. and Olukotun, K. Transactional
Memory Coherence and Consistency. SIGARCH Comput. Archit. News, 2004.
32(2).

6. Ananian, C. S., Asanovic, K., Kuszmaul, B. C., Leiserson, C. E. and Lie,
S. Unbounded Transactional Memory. Proceedings of the 11th International

Symposium on High-Performance Computer Architecture. Washington, DC,
USA. 2005. 316–327.

7. Yen, L. Signatures in transactional memory systems. Ph.d. dissertation.
University of Wisconsin. 2009.

8. Shriraman, A., Dwarkadas, S. and Scott, M. L. Flexible Decoupled
Transactional Memory Support. Proceedings of the 35th Annual International

Symposium on Computer Architecture. Beijing, China. 2008. 139–150.

9. Lupon, M., Magklis, G. and González, A. A dynamically adaptable
hardware transactional memory. Proceedings of the 43rd Annual IEEE/ACM



74

International Symposium on Microarchitecture. 2010. 27–38.

10. Titos-Gil, R., Negi, A., Acacio, M., Garcia, J. and Stenstrom, P. ZEBRA: Data-
Centric Contention Management in Hardware Transactional Memory. IEEE

Transactions on Parallel and Distributed Systems, 2014. 25(5): 1359–1369.
ISSN 1045-9219. doi:10.1109/TPDS.2013.262.

11. Njoroge, N., Casper, J., Wee, S., Teslyar, Y., Ge, D., Kozyrakis, C. and
Olukotun, K. ATLAS: A chip-multiprocessor with transactional memory
support. Proceedings of the Conference on Design, Automation and Test in

Europe. Nice, France. 2007. 3–8.

12. Schoeberl, M. and Hilber, P. Design and implementation of real-time
transactional memory. Proceedings of the 20th International Conference on

Field Programmable Logic and Applications (FPL). Milan,Lombardy,Italy.
2010. 279–284.

13. Labrecque, M. and Steffan, J. G. NetTM: Faster and Easier Synchronization
for Soft Multicores via Transactional Memory. Proceedings of the 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
New York, NY, USA: ACM. 2011, FPGA ’11. ISBN 978-1-4503-0554-9. 29–
32. doi:10.1145/1950413.1950422. URL http://doi.acm.org/10.

1145/1950413.1950422.

14. Ferri, C., Wood, S., Moreshet, T., Bahar, R. I. and Herlihy, M. Embedded-
TM: Energy and complexity-effective hardware transactional memory for
embedded multicore systems. Journal of Parallel and Distributed Computing,
2010. 70(10): 1042–1052.

15. Bobba, J., Moore, K. E., Volos, H., Yen, L., Hill, M. D., Swift, M. M. and
Wood, D. A. Performance pathologies in hardware transactional memory.
Proceedings of the 34th Annual International Symposium on Computer

architecture (ISCA). New York, NY, USA. 2007. 81–91.

16. Krizhanovsky, A. Software Transactional Memory (STM) in GCC-4.7.
Technical report. 2014. URL http://natsys-lab.blogspot.com/

2012/05/software-transactional-memory-stm-in.html.

17. Hennessy, J. L. and Patterson, D. A. Computer architecture: A quantitative

approach. San Francisco, CA, USA: Elsevier. 2012.

18. Dagum, L. and Menon, R. OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Comput. Sci. Eng., 1998. 5(1): 46–55. ISSN
1070-9924. doi:10.1109/99.660313. URL http://dx.doi.org/10.

1109/99.660313.



75

19. Casper, J., Oguntebi, T., Hong, S., Bronson, N. G., Kozyrakis, C. and
Olukotun, K. Hardware Acceleration of Transactional Memory on Commodity
Systems. SIGPLAN Not., 2011. 46(3): 27–38. ISSN 0362-1340. doi:10.1145/
1961296.1950372. URL http://doi.acm.org/10.1145/1961296.

1950372.

20. Forum, M. P. I. MPI: A Message-Passing Interface Standard Version 3.0.
Technical report. 2012. Chapter author for Collective Communication, Process
Topologies, and One Sided Communications.

21. Marathe, V. J., Scherer, W. N. and Scott, M. L. Adaptive Software
Transactional Memory. Proceedings of the 19th International Conference on

Distributed Computing. Berlin, Heidelberg: Springer-Verlag. 2005, DISC’05.
ISBN 3-540-29163-6, 978-3-540-29163-3. 354–368. doi:10.1007/11561927
26. URL http://dx.doi.org/10.1007/11561927_26.

22. Saha, B., Adl-Tabatabai, A.-R., Hudson, R. L., Minh, C. C. and Hertzberg, B.
McRT-STM: A High Performance Software Transactional Memory System
for a Multi-core Runtime. Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming. New York,
NY, USA: ACM. 2006, PPoPP ’06. ISBN 1-59593-189-9. 187–197. doi:
10.1145/1122971.1123001. URL http://doi.acm.org/10.1145/

1122971.1123001.

23. Spear, M. F., Michael, M. M. and von Praun, C. RingSTM: Scalable
Transactions with a Single Atomic Instruction. Proceedings of the Twentieth

Annual Symposium on Parallelism in Algorithms and Architectures. New
York, NY, USA: ACM. 2008, SPAA ’08. ISBN 978-1-59593-973-9. 275–
284. doi:10.1145/1378533.1378583. URL http://doi.acm.org/10.

1145/1378533.1378583.

24. Herlihy, M., Luchangco, V., Moir, M. and Scherer, W. N., III. Software
Transactional Memory for Dynamic-sized Data Structures. Proceedings of the

Twenty-second Annual Symposium on Principles of Distributed Computing.
New York, NY, USA: ACM. 2003, PODC ’03. ISBN 1-58113-708-7. 92–101.
doi:10.1145/872035.872048. URL http://doi.acm.org/10.1145/

872035.872048.

25. Herlihy, M. and Moss, J. E. B. Transactional memory: Architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 1993. 21(2):
289–300.

26. Labrecque, M. and Steffan, J. G. The case for hardware transactional memory
in software packet processing. Proceedings of the 6th ACM/IEEE Symposium



76

on Architectures for Networking and Communications Systems. La Jolla,
California, USA. 2010. 37.

27. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M. and Nussbaum,
D. Hybrid Transactional Memory. Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and

Operating Systems. New York, NY, USA: ACM. 2006, ASPLOS XII. ISBN
1-59593-451-0. 336–346. doi:10.1145/1168857.1168900. URL http:

//doi.acm.org/10.1145/1168857.1168900.

28. Kumar, S., Chu, M., Hughes, C. J., Kundu, P. and Nguyen, A. Hybrid
Transactional Memory. Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming. New York,
NY, USA: ACM. 2006, PPoPP ’06. ISBN 1-59593-189-9. 209–220. doi:
10.1145/1122971.1123003. URL http://doi.acm.org/10.1145/

1122971.1123003.

29. Lev, Y., Moir, M. and Nussbaum, D. PhTM: Phased transactional
memory. In Workshop on Transactional Computing (Transact), 2007.

research.sun.com/scalable/pubs/TRANSACT2007PhTM.pdf. 2007.

30. Shriraman, A., Marathe, V. J., Dwarkadas, S., Scott, M. L., Eisenstat, D.,
Heriot, C., III, W. N. S. and Spear, M. F. Hardware Acceleration of Software

Transactional Memory. Technical report. DEPT. OF COMPUTER SCIENCE,
UNIV. OF ROCHESTER. 2006.

31. Minh, C. C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper,
J., Kozyrakis, C. and Olukotun, K. An Effective Hybrid Transactional Memory
System with Strong Isolation Guarantees. Proceedings of the 34th Annual

International Symposium on Computer Architecture. New York, NY, USA:
ACM. 2007, ISCA ’07. ISBN 978-1-59593-706-3. 69–80. doi:10.1145/
1250662.1250673. URL http://doi.acm.org/10.1145/1250662.

1250673.

32. Moore, K. E., Bobba, J., Moravan, M. J., Hill, M. D. and Wood, D. A. LogTM:
Log-based transactional memory. Proceedings of the 12th International

Symposium on High-Performance Computer Architecture. Austin, Texas,
USA. 2006. 254–265.

33. Harris, T., Larus, J. and Rajwar, R. Transactional Memory, 2Nd Edition.
2nd ed. Morgan and Claypool Publishers. 2010. ISBN 1608452352,
9781608452354.

34. Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G.,



77

Högberg, J., Larsson, F., Moestedt, A. and Werner, B. Simics: A Full System
Simulation Platform. Computer, 2002. 35(2): 50–58. ISSN 0018-9162. doi:
10.1109/2.982916. URL http://dx.doi.org/10.1109/2.982916.

35. Martin, M. M. K., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu,
M., Alameldeen, A. R., Moore, K. E., Hill, M. D. and Wood, D. A.
Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. SIGARCH Comput. Archit. News, 2005. 33(4): 92–99. ISSN 0163-
5964. doi:10.1145/1105734.1105747. URL http://doi.acm.org/10.

1145/1105734.1105747.

36. Pusceddu, M., Ceccolini, S., Tumeo, A., Palermo, G. and Sciuto, D. Emulating
Transactional Memory on FPGA Multiprocessors. Proceedings of the 24th

International Conference on Architecture of Computing Systems. Berlin,
Heidelberg: Springer-Verlag. 2011, ARCS’11. ISBN 978-3-642-19136-7.
74–85. URL http://dl.acm.org/citation.cfm?id=1966221.

1966231.

37. Grinberg, S. and Weiss, S. Investigation of Transactional Memory Using
FPGAs. Electrical and Electronics Engineers in Israel, 2006 IEEE 24th

Convention of. IEEE. 2006. 119–122.

38. Altera. User Guide Getting Started with Quartus II Simulation Using the
ModelSim-Altera Software. 2014. URL http://www.altera.com.my/

literature/ug/ug_gs_msa_qii.pdf.

39. Matlab. Matlab Primer. 2014. URL http://in.mathworks.com/

help/pdf_doc/matlab/getstart.pdf.

40. System, G. O. What is GNU? Technical report. 2014. URL https://www.

gnu.org/.

41. Xilinx. LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c). Technical
report. 2010.

42. Dimitrakopoulos, G. and Kalligeros, E. Dynamic-priority Arbiter and
Multiplexer Soft Macros for On-chip Networks Switches. Proceedings

of the Conference on Design, Automation and Test in Europe. San Jose,
CA, USA: EDA Consortium. 2012, DATE ’12. ISBN 978-3-9810801-
8-6. 542–545. URL http://dl.acm.org/citation.cfm?id=

2492708.2492843.


	JeevanSirkunanMFKE2015ABS
	JeevanSirkunanMFKE2015TOC
	JeevanSirkunanMFKE2015CHAP1
	JeevanSirkunanMFKE2015REF



