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ABSTRACT

Multiprocessor platforms have been introduced to solve the performance
limitation of uni-processor platform. However, programming on a shared memory
multiprocessor platform in an efficient way is difficult. The inefficiency of lock-
based synchronization limits the performance of the parallel programs. Transactional
memory (TM) provides a promising method in creating an abstraction layer for
programmers to maximize hardware capacity of multiprocessor platform. Hardware
TM (HTM) is faster compared to software TM although the performance of hardware
transactional memory (HTM) is application-specific. Previous HTM implementations
for embedded system were built on fixed version management which results in
significant performance loss when transaction behaviour changes. In this thesis,
a configurable version management HTM is proposed. The proposed version
management is able to be configured to eager version management for low contention
applications since it allows fast commit, or lazy version management that is suitable
for applications with high contention since it can abort fast. In this work, an analytical
model of the proposed hardware transactional processing time for different version
management has been developed. With the analytical model, the bounds of the worst
case and best case processing time can be estimated for a particular transaction size.
The switching point of the performance between eager and lazy version management
can also be estimated. The HTM has been prototyped and analyzed on Altera Cyclone
IV platform. Based on our experiments, lazy version management is able to obtain
up to 12.82% speed-up while eager version management obtains up to 37.84% speed-
up on different memory request distributions for transaction sizes of 4, 8 and 16. The
proposed HTM can be configured to obtain a shorter processing time for different types
of applications compared to fixed version management.
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ABSTRAK

Platform multipemproses telah diperkenalkan untuk meningkatkan prestasi
platform unipemproses. Walau bagaimanapun, proses utuk membina pengaturcaraan
cekap untuk multipemproses dengan ingatan sepunya adalah sukar. Ketidakcekapan
penyegerakan berasaskan kunci menghadkan kecekapan program selari. Ingatan
Transaksi (TM) mewujudkan lapisan abstrak untuk memudahkan pengaturcara
membina aturcara yang cekap supaya kapasiti multipemproses dapat dimaksimumkan.
Perkakasan TM (HTM) adalah lebih cepat berbanding dengan perisian TM walaupun
prestasi perkakasan ingatan transaksi (HTM) adalah khusus atas satu-satu aplikasi.
Pelaksanaan HTM sebelum ini untuk sistem terbenam dibina dengan pengurusan versi
tetap mengakibatkan penurunan prestasi yang ketara apabila corak transaksi berubah.
Dalam tesis ini, ingatan transaksi dengan pengurusan versi keboleh-konfigurasi adalah
dicadangkan. Pengurusan versi bersemangat sesuai untuk aplikasi dengan kadar
konflik yang rendah kerana masa yang diperlukan untuk menetapkan perubahan yang
dilakukan oleh satu transaksi adalah singkat. Manakala, versi malas adalah sesuai
untuk digunakan dengan aplikasi dengan kadar konflik yang tinggi kerana masa yang
diperlukan untuk membatalkan perubahan yang dilakukan oleh satu transaksi adalah
singkat. Model analisa berdasarkan perkakasan TM juga dibincangkan dalam tesis
ini. Dengan model analitikal ini, masa maksimum dan minimum untuk menjalankan
transaksi dapat dianggarkan. Titik pengalihan prestasi di antara versi malas dan versi
semangat dapat dianggarkan. Ingatan transaksi ini di prototaip dan dianalisa pada
platform Altera Cyclone IV. Berdasarkan eksperimen yang dijalankan, pengurusan
versi malas menunjukkan peningkatan sehingga 12.82% kelajuan manakala versi
pengurusan bersemangat menunjukkan peningkatan sehingga 37.84% kelajuan bagi
aras konflik yang berlainan untuk saiz transaksi 4, 8 dan 16. HTM yang dicadangkan
dapat dikonfigurasikan bagi mendapatkan masa pemprosesan yang lebih rendah
berbanding pengurusan versi tetap.
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CHAPTER 1

INTRODUCTION

Multiprocessor System-on-Chip (Multiprocessor System on Chip (MPSoC))
consists of several general-purpose processors on in a single chip and shares hardware
resources such as memory and input/output (I/O) pins. MPSoC offers lower latency,
higher bandwidth and lower clock rate without losing throughput [1] compared
to uni-processor systems. MPSoC has become a norm for servers, desktop, and
embedded systems. However, programmers could not fully exploit parallelism
potential of MPSoC parallel architecture as software industry still produce programs
for uniprocessor. Application tasks are still handled sequentially, thus making the
performance of MPSoC similar to uniprocessor for a single segmented application.
In order to improve MPSoC throughput by running programs in parallel [1], memory
architecture must also facilitate parallelism at atomic level.

Parallel programming model partitions tasks to parallel executables in parallel
execution such that the time taken to complete the task can be made considerably
low. However, maximizing parallel programming potential is not trivial, even for
expert programmers [2]. Message passing and shared memory are the most common
parallel programming models. Message passing models need explicit communication
in which programmers are required to synchronize memory access. On the other
hand, shared memory model requires blocking synchronization to maintain coherency
among multiple threads. When a task acquires a lock for a specific memory
segment, other tasks have to wait until that particular task has been completed and the
memory segment is unlocked. Shared memory model are hardware supported, where
everything occurs implicitly [1]. Software level management causes large overhead
and programmers needs to know the memory segments modified. The scratch pad
model is an example of methods which manage parallel access of memory. However,
memory transfer need to be done beforehand, thus making it suitable for certain
applications [2].
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In general, shared memory MPSoC uses blocking synchronization. Blocking
synchronization can be divided into fine grain lock and coarse grain lock. Fine grain
locking gives better performance than coarse grain but at the cost of development
time. On top of that, fine grain method requires programmers to explicitly develop
applications using fine-grain locks. On the other hand, coarse grain locking is much
easier to implement. However, large chuck of memory segment which are locked
becomes unavailable to other threads and thus, potential parallelism could not be fully
exploited. Fine grain lock requires multiple locks each for a memory segment to
allow parallelism. However, this type of synchronization needs to be handled by the
programmer. In short, synchronization on shared memory based on locks and mutual
exclusion are difficult to scale [2].

A much simpler abstraction for MPSoC synchronization is by using
transactions. A transaction is defined as a sequence of memory read and write that
belong within a single thread. Transactional memory provides non-blocking wait-
free synchronization on multiple threads accessing the same memory location. Its
execution is atomic, isolated, durable and consistent. Each thread or processor will
have to execute its task as transactions. When there is a conflict between two or
more transactions, all transactions except the winner have to restart or abort. For a
successful transaction, modification made by it becomes permanent and available for
other transactions to modify at the end of the transaction. In the end, all these changes
are updated for all transactions and become visible to the other threads or processors.

1.1 Problem statement

Currently, lock-based synchronization schemes are widely used for
synchronizing MPSoC threads. The increasing application programming complexity
has led on researches towards TM. Software Transactional Memories (STM) such
as [3, 4] are flexible in-terms of size of transaction. However, their performance
is inferior to hardware TM. The main tasks of transactional memory (TM): conflict
detection, commit and abort; are done in software and cause high latency, making STM
the bottle neck in MPSoC [1]. Thus, several hardware transactional memory (HTM)
architectures have been proposed such as [5–10] which focus on high performance
cache coherent systems.

Existing HTM architectures were implemented and tested in simulation
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environment to allow architectures that are more complex to be proposed without
concerning about the underlying hardware implementation details. Another spectrum
of HTM implementation are those works that focus on building HTM prototype
on field programmable gate array (FPGA) platform. ATLAS [11] and Real Time
Transactional Memory (RTTM) [12] focuses on prototyping HTM for embedded
architecture. NetTM [13] HTM implementation is targeted for network applications.
These HTM architectures are based on fixed configurations and their performance is
highly dependent on the variant running applications.

Designing HTM for embedded system put consideration on energy
consumption and simplified complexity of HTM design. EmbeddedTM [14] focuses
on reducing power consumption. However, it also uses cache coherent protocols which
adds significant resource overhead that is too complex for embedded applications [2].
CTM [2] has introduced a generic approach in building HTM for embedded system.
In this design, HTM can be configured to either lazy or eager conflict management
to suit to application demand (i.e., probability of conflict). Its architecture consists
of a unified cache for all processors, eliminating the need for complex coherence
protocol. However in [2], version management context was not fully exploited, where
transactional memory cache inside CTM needs to update main memory one word at a
time.

1.2 Objectives

The primary objective of this thesis is to prototype a hardware transactional
memory for MPSoC system. The baseline architecture is an improvement on
CTM [2] by embedding configurable version management mechanism. Hence, the
proposed HTM version management can be configured between eager and lazy as each
configurations is more suitable for different types applications. Specifically, this thesis
proposes the following.

1. The first objective is to characterize the performance of different version
management schemes based on the CTM architecture [2] to work with varying
application behaviours (contention level). This is done through analytical
modelling of HTM version management.

2. The second objective is to prototype configurable version management HTM
architecture on FPGA. The proposed architecture is parametrizable and able to
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initiate switching of version management at run time.

3. The third objective is to verify the proposed HTM performance. This includes
comparison and analysis of the analytical model with results from simulation on
hardware prototype.

1.3 Scope of Work

This thesis focuses on characterizing the effect of version management on
the performance of HTM. Conflict management is kept constant using lazy conflict
management to provide a fair comparison between both version managements.
Different conflict management may result in different pathology to complete execution
of program, thus producing varying performance [15].

HTM overflow handling mechanism is not implemented. Overflow in HTM
happen when the number of transactions that need to be speculated is more then the
available memory space. All transactions in the test cases in this thesis are designed to
be within the bound of the memory hardware capacity.

The HTM prototype presented in this thesis uses only available memory blocks
available on the FPGA device. There is no difference in access time for speculative
memory or the main memory. The memory access speed up factor between the
speculative memory and main memory is fixed at 1. The discussion on the effect
of hierarchical memory is not included in this thesis.

There are no additional instructions implemented in for the proposed
transactional memory. Processors access the proposed HTM at the instruction level.
Similar with [2], the HTM is shared among different processors, where each processor
has a local cache for instructions. By doing this, heterogeneous core with or without
individual cache is able to use the HTM.

1.4 Contributions

The proposed HTM architecture is an improved architecture over [2]. A
MPSoC platform using four Nios II processors has been developed to verify the
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functionality of the proposed HTM architecture against the STM library [16]. A
configurable version management HTM architecture is proposed with the ability to
switch its version management at run time. The proposed HTM is also parameterizable
and is able to be configured based on varying application demand. An analytical model
has been formulated to approximate the bounds of processing time for both eager and
lazy version management. Using this analytical model, it is possible to determine the
most suitable version management for a certain application.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 covers related works in literature and discusses important aspects
of TM analysis. This chapter also explains the problems in producing efficient
programs for MPSoC systems. The advantages and disadvantages of current parallel
programming models are also discussed. This chapter then provides a detailed
discussion on TM and existing TM architecture in hardware.

Chapter 3 provides the methodology for the work done presented this thesis.
This chapter also includes the general approach in TM research, as well as the tools
and platform used to model, prototyped, and verify the proposed TM. The final section
in this chapter describes the method used for creating datasets for verification purposes.

Chapter 4 presents the characterization of the proposed HTM. An analytical
model is proposed to characterize the bounds of HTM processing time. Based
on the model, the relationship of HTM processing time and different application
contention levels is analysed. The comparison between the mathematical model and
the implementation model is also provided.

Chapter 5 provides an overview of the hardware TM architecture of the
proposed HTM system and a detail description of the proposed FPGA SoC hardware
prototyping at different abstraction levels. This chapter also discusses the design
consideration to allow HTM to be deployed in real MPSoC embedded system. Besides,
the HTM programming model is also shown at the end of in this chapter.
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Chapter 6 summarizes the work presented in this thesis, re-stating the
contributions to knowledge, and suggests directions for future research.
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