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ABSTRACT 

The main purpose of controlling vehicle handling is to ensure that the vehicle 

follows the desired path. Vehicle yaw rate must be controlled in order to achieve a 

good vehicle handling. In this thesis, optimal Composite Nonlinear Feedback (CNF) 

controller with multi objective algorithms is proposed for the Active Front Steering 

(AFS) system in improving the vehicle yaw rate response. The model used to 

validate the performance of the controller is a 7 degree-of-freedom (DOF) nonlinear 

vehicle model. This vehicle model is also simplified to a 2 DOF bicycle model for 

the purpose of controller design. In designing the optimal CNF control, the 

parameter selection of optimal linear and non-linear gain parameters becomes very 

important to obtain a good system response. Optimization algorithms are utilized to 

minimize the complexity in selecting the best parameters. Hence, Multi Objective 

Particle Swarm Optimization (MOPSO) and Multi Objective Genetic Algorithm 

(MOGA) are proposed to produce the optimal CNF. Moreover, manual tuning 

method was utilized and has been compared with the proposed algorithms. As a 

result, the performance of the yaw rate response is improved with a 98 percent 

reduction in error. Hence, the vehicle handling can be improved and the vehicle will 

be able to travel safely on the desired path. 
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ABSTRAK 

Tujuan utama dalam kawalan pengendalian sesebuah kenderaan adalah untuk 

memastikan kenderaan dapat mengikuti jalan yang diberikan dengan baik. Kadar 

rewang kenderaan mesti dikawal dalam usaha mencapai satu kawalan kenderaan 

yang baik. Dalam tesis ini, teknik-teknik Pengawal Maklum Balas Komposit Tidak 

Linear (CNF) yang optimum dicadangkan untuk aplikasi Sistem Stereng Hadapan 

Aktif (AFS) bagi memperbaiki kadar rewang kenderaan. Model kenderaan yang 

tidak linear dengan 7 darjah kebebasan (DOF) telah digunakan untuk pengesahan 

mutu prestasi pengawal CNF. Model ini juga dimudahkan menjadi model basikal 

dengan 2 DOF untuk diguna pakai dalam mereka bentuk pengawal CNF. Bagi reka 

bentuk pengawal CNF yang optimum, pemilihan parameter-parameter gandaan 

linear dan tidak linear yang optimum adalah penting untuk menghasilkan tindak 

balas sistem yang baik. Algoritma-algoritma pengoptimuman telah digunakan untuk 

mengurangkan kerumitan dalam pemilihan parameter-parameter yang terbaik. Maka, 

Objektif Berganda Pengoptimuman Kawanan Zarah (MOPSO) dan Objektif 

Berganda Pengoptimuman Algoritma Genetik (MOGA) dicadangkan untuk 

menghasilkan CNF yang optimum. Bagi tujuan perbandingan dan pengesahan 

terhadap kedua-dua kaedah optimum ini, kaedah penalaan manual telah 

dilaksanakan. Hasilnya, keseluruhan prestasi untuk kadar rewang kenderaan telah 

bertambah baik dengan kadar 98 peratus penyusutan kesilapan. Dengan ini, 

pengawalan pengendalian kereta dapat ditingkatkan dan kereta dapat bergerak 

dengan selamat tanpa terpesong keluar daripada jalan yang dikehendaki. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

Recently, many researchers have implemented active safety systems with a 

variety of controllers to improve the handling and stability performances of a 

vehicle. Active safety systems, specifically in lateral control are capable to improve 

the vehicle’s stability and enhance comfort. Besides, it also manages to avoid any 

unexpected changes occurring in a vehicle’s dynamics response to the driver’s steer 

input. One of the examples of an active safety system is active front steering system 

(AFS). Figure 1.1 illustrates the basic diagram of an active vehicle dynamics control 

system. By applying an active control system, it decreases the driver’s workload so 

that the driver can use her/his skills during normal driving conditions to control a 

vehicle in an emergency situation. 

 

In controlling a vehicle handling system, the driver serves as a major 

controller to control the vehicle’s dynamic behaviour through three control inputs 

provided in the vehicle which are the throttle, brake pedals and steering wheel. 

Throttle and brake pedals are known to control the longitudinal motion for forward 

speed and acceleration, respectively. The steering wheel is used by the driver to 

control the lateral motion or the direction of the vehicle. Hence, lateral motion is a 

major interest to be studied and analysed in this project. The driver’s steering input 

will be the main component to be examined in detail. Basically, there are two main 

tasks for the driver in order to control the steering wheel, which are the path 

following task and stabilisation due to any disturbance (Ackermann, 1990). The task 
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of path following needs the driver to apply steering angles consistently, following 

the desired path. Meanwhile for stabilisation, the driver must compensate for any 

deviation from the desired path by providing extra or less steering angle to neutralize 

the effect of deviation. This can happen under untypical situations, for example, any 

objects such as an animal, a human or other vehicles which suddenly appear ahead 

and lead to dangerous driving situations. Moreover, external disturbances such as 

crosswind could become additional distractions in driving. Thus, vehicle handling 

behaviour becomes highly unpredictable and could lead to unsafe conditions.  

 

 

 

     

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Active vehicle dynamics control diagram 

 

 

In AFS system, the important vehicle parameters that can improve handling 

stability performance is the yaw rate. Vehicles without a proper yaw rate control 

could lose precision in driving, especially in severe cornering manoeuvres. More 

importantly, the yaw rate needs to follow the desired yaw rate preference to ensure 

that the system is able to produce satisfactory results in terms of transient and steady 

state performance characteristics. Hence, a specific controller is needed for AFS 

system to meet these characteristics such as fast response and small overshoot. The 

implementation of AFS with composite nonlinear feedback (CNF) to control vehicle 
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handling and stability systems is significant due to its advantage in improving the 

transient performance. This is because CNF is designed such that the closed loop 

system has desired performances such as fast response and small overshoot (Chen 

and Weiyao, 2007). CNF has also been implemented in the AFS system as reported 

in Hassan (2013) and the results showed that CNF was able to improve the yaw rate 

of vehicles in maintaining stability performance.   

 

However, in the CNF controller, there are a few parameters in CNF control 

law that must be optimized in order to obtain the optimal performance response. 

These parameters consist of linear feedback gain and nonlinear gain parameters of 

the CNF control law. In order to find all these parameters, an optimization algorithm 

is necessary to be applied, rather than using the trial and error method. By utilizing 

an optimization algorithm, it could reduce the computational complexity of the 

optimization process. A result of poor output response is due to improper technique 

used to optimize the controller. A lot of work was done using the trial and error 

method which is not practical to be applied and requires extra time to determine the 

optimal values of those parameters. Besides, the results obtained are also not 

guaranteed, as the parameters are not precisely determined. This problem could be 

solved by using an optimization algorithm that manages to capture all possible 

optimal points by using its special capability of the designed algorithm. Furthermore, 

an optimization algorithm with the multi-objective approach will ensure that the 

system achieves all the desired requirements, especially in meeting more than one 

objective function.       

1.2 Problem Statement 

A fast response and small overshoot are desirable in the target tracking 

control problems (Chen and Weiyao, 2007). In general, fast response results in a 

large overshoot (Chen and Weiyao, 2007). For a high performance system, it should 

settle fast without any overshoot.  
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The CNF controller has advantages in producing a fast response and 

eliminating overshoot of the system (Chen et al., 2003). However, in CNF control 

law, the linear feedback gain and nonlinear gain parameters are the important 

parameters that could affect the performance of output response. An artificial 

intelligence method can be applied to select the optimal values for all these 

parameters. Hence, the trial and error process can be eliminated and optimal 

parameters can be designed and selected based on the desired design criteria. 

Regarding the design criteria, an optimal CNF is designed based on the transient and 

steady state performance of the output response. Specifically, those parameters in 

CNF control law will be optimized based on the overshoot, settling time and steady 

state error to find the minimal error between the actual and desired response to 

produce a good system performance. By the implementation of a multi-objective 

approach, all the objective functions can be computed together in one optimization 

algorithm. The application of this investigation is implemented on the AFS system.         

1.3 Research Objectives 

The objectives of the study are defined as follows: 

 

1. To obtain the optimal values of linear and nonlinear gain parameters in CNF 

control by using multi-objective optimization algorithms called multi-

objective particle swarm optimization (MOPSO) and multi-objective genetic 

algorithm (MOGA). 

2. To investigate the effectiveness of MOPSO and MOGA in CNF for the 

application of the AFS system. 

1.4 Research Contributions 

The significant contributions of this research are 
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1. Optimal algorithms for tuning CNF parameters to achieve a better AFS 

system. 

2. An active steering system with the optimal CNF controller to ease drivers’ 

effort in handling and stabilizing vehicles. 

1.5 Research Scopes 

This thesis focuses on the optimization method in order to enhance the 

performance of CNF controller by using a multi-objective optimization approach. 

The scopes of the overall project are listed as:  

 

i. A 7-DOF nonlinear two track vehicle model is implemented for the 

evaluation of optimal controller performance and constructed using 

Matlab/Simulink software. 

ii. A mathematical model of a linearized 2-DOF single track model is derived 

and used for the controller design. 

iii. The CNF controller is implemented to the AFS system only to improve 

vehicles’ steering response, with steerability as a control objective. 

iv. The model is a time invariant system. The uncertainties occurring in the 

system is due to external disturbance. 

1.6 Research Methodology 

This section presents information on the research methods applied throughout 

the project. The main topics involved in the research methods are the 

implementations of vehicle modelling system, active front steering system, 

controller, and optimization algorithm. Figure 1.2 shows the flowchart of the overall 

process. 
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Figure 1.2 Research methodology flowchart 

 

 

The research started with the physic fundamental law that comprises the 

vehicle body system and tyre dynamics in order to build a whole body with a certain 
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utilized to evaluate control performance is a two track nonlinear vehicle model. 

Besides that, this model is simplified into a bicycle model (single track model) for 

the purpose of controller design. In order to design the tyre dynamics, the Magic 

Formula (Pacejka, 2002) has been used for the nonlinear tyre characteristic. Other 

than that, the vehicle’s condition in certain situations such as understeer and over-

steer are studied and analysed to investigate the main reasons that may lead to 

accidents. This is important as the application conducted in the project is related to 

the active safety system. A lot of manoeuvre tests can be used, such as J-turn, lane 

change, fishhook and many more. It depends on the aim of the control strategy. In 

this project, the J-turn has been chosen because it represents an avoidance 

manoeuvre. The evaluation of transient and steady state properties can also be 

performed. 

 

AFS is an active steering system that is specifically designed to control a 

vehicle’s handling system. Hence, the main component in this system is the steering 

wheel that is used to control the lateral motion of a vehicle. The important 

parameters needed to control lateral motion are the yaw rate and side slip angle. A 

CNF controller is utilized for the AFS system in order to control the handling 

performance by producing a corrective steer angle to the steering wheel’s angle set 

by the driver. Hence, the yaw rate and side slip angle of the vehicle can be controlled 

and the vehicle can have a good handling performance.  

 

In CNF, there are certain parameters that has to be estimated in order to yield 

an optimal output response for the system. These parameters can be tuned easily by 

using an intelligence algorithm. In designing the optimization algorithm, the 

strategies involved must be constructed first in the form of a flowchart. Based on the 

flowchart, all main steps can be clearly assigned, especially when doing algorithm 

programming in the software. Furthermore, for the optimization problem, the tuning 

parameters must satisfy all limitations provided in CNF control law. This is essential 

in order to specify the search space area that has the most possibility in finding the 

optimal point. 
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1.7  Structure of Thesis 

Chapter 2 presents literature studies on ASC, vehicle dynamics model and 

CNF controller. The studies reviewed comprise of the design background and 

existing tuning methods. Besides that, the effectiveness of using the swarm 

intelligent approach is also discussed. Chapter 3 explains the vehicle model that will 

be used for the AFS system. The 2-DOF single track vehicle model and the 7-DOF 

nonlinear two track vehicle model are constructed. In Chapter 4, a thorough design 

of CNF control law is presented which consists of linear and nonlinear feedback law 

methods. Besides that, the reference model used in this project and the control 

objective for the design of the AFS controller are presented. Chapter 5 presents the 

proposed multi-objective optimization approach for the CNF controller. The multi-

objective optimization problem is applied in these two algorithms called the Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA). Chapter 6 presents the 

results and discussions based on the optimal CNF performance achieved through the 

optimization approaches of MOPSO and MOGA. Lastly, the overall conclusions are 

stated and some recommendations for future implementation are discussed in 

Chapter 7.                  
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