COMPUTATIONAL APPROACHES FOR OPTIMAL DESIGN OF TAILOR MADE BIOFUEL BLENDS

MENAKA A/P NARAYANASAMY

UNIVERSITI TEKNOLOGI MALAYSIA

COMPUTATIONAL APPROACHES FOR OPTIMAL DESIGN OF TAILOR MADE BIOFUEL BLENDS

MENAKA A/P NARAYANASAMY

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

> Faculty of Chemical Engineering Universiti Teknologi Malaysia

> > JULY 2015

Dedicated with deepest gratitude and heartfelt thanks To my beloved family, for their endless love and care To my angel Huppysha, for his infinite love and joy To myself, for my hardwork and persistence And to HIM for every second of my life.

ACKNOWLEDGEMENTS

Gigantic hurdles, enormous challenges and countless obstacles were endured during preparation of this thesis. It would have been impossible to overcome all of those without help, courage, motivation, support, and inspiration from the many people whom I am forever in debt with. Therefore, I would like to take this opportunity to personally express my heartfelt appreciation to all those who have landed a helping hand either directly or indirectly towards completion of my thesis.

I am greatly honoured to have a wonderful supervisor, Associate Professor Dr. Haslenda Hashim, whom has an extremely versatile persona and a never ending urge to explore the realms of possibilities. Her suggestions and own special ways of guiding and supporting have assisted me to break barriers and discover the wilderness knowledge has to offer. I would also like to extend my earnest thanks to members of Automotive Engineering Centre, Universiti Malaysia Pahang for their willingness to assist with experimental tests and sharing knowledge without hesitance. Special thanks to Lotus Laboratory (M) Sdn Bhd for efficiently conducting experimental tests in a short duration of time.

There is probably no word adequate enough to describe my gratitude to a very dear friend, Dr. Lim Jeng Shiun, whom I have got to known well in a short stint of time. Without your support, motivation, and patience I would not have achieved so much today. Genuine appreciation goes out to my very dear friends whom I can always trust to watch my back. To my wonderful parents, amazing family, and loving angel who have always been my greatest pillar of support, care and love, who is always ready with a small prayer for me and loving me the way I am, a very special thank you for making me who I am today. Finally, to HIM for making me realise life is boundless and every small thing makes a difference. Thank you.

ABSTRACT

Diminishing fossil fuel supplies and increasing awareness on environmental issues surged the need for renewable and environmentally friendly alternative fuel options for the transportation sector. Diverse biofuel components can be produced from exploitation of biomass as an energy source. Malaysia having abundant palm biomass waste is prompted to efficiently utilize the available resources for production of second generation biofuel blends. However, complexity arises in designing suitable biofuel blends that comply to fuel regulation standards and generate reduced emissions while having equal performance as conventional diesel fuel. Experimental methods consume immense resources and time, require highly sophisticated equipments, and are difficult to conduct for fluid flow variations. Computational approaches adopt a systematic blend formulation process that assists on focused experimental work. In this study, optimal tailor made biofuel blends were designed and evaluated for engine performances, emissions, and in-cylinder fluid flow analyses through implementation of various computational approaches that follow an integrated framework. Systematic model based approach was applied to design tailor made biofuel blends that comply to EN590 fuel reference standard using B5 diesel, butanol, ethanol, and butyl levulinate as building blocks. Fuel blends were generated through Generalized Algebraic Modelling System and predicted fuel properties validated with experimental tests. In-cylinder fluid flow profiles were simulated through computational fluid dynamics model using ANSYS Fluent software version 13.0. Engine performances such as indicated power and indicated thermal efficiency were predicted through mathematical models where experimental validation was done for indicated power. Semi-empirical emission correlations were applied to predict nitrogen oxide, carbon monoxide, unburnt hydrocarbon, and smoke. Among the five tailor made biofuel blends formulated, Blend 4 was the most promising with enhanced performances and lower emissions in comparison to B5 diesel though nitrogen oxide emissions were higher.

ABSTRAK

Kemerosotan bekalan bahan api fosil dan peningkatan kesedaran terhadap isu-isu alam sekitar telah membangkitkan usaha berterusan untuk mencari bahan api alternatif yang mesra alam dan boleh diperbaharui bagi penggunaan di sektor pengangkutan. Pelbagai komponen bahan api bio dihasilkan daripada sisa buangan biojisim sebagai sumber tenaga. Malaysia antara negara pengeksport utama kelapa sawit kaya dengan sisa buangan kelapa sawit yang boleh digunakan secara cekap dan berkesan untuk penghasilan bahan api bio. Namun begitu, wujud kerumitan dalam merekabentuk bahan api bio yang mematuhi piawaian sekaligus menjana prestasi setanding diesel biasa dengan penghasilan emisi yang rendah. Kaedah eksperimen memakan masa dan sumber manakala variasi pembolehubah sukar dilaksanakan tanpa penggunaan peralatan canggih. Pendekatan komputasi pula mengikut proses berstruktur bagi pemilihan campuran bahan api bio dan ini membantu perjalanan eksperimen tertumpu. Kajian ini merekabentuk campuran optimum bahan api bio dan menilai prestasi enjin, penghasilan emisi serta menganalisis pengaliran bendalir di dalam enjin diesel melalui pelbagai jenis pendekatan komputasi yang mengikut satu rangka bersepadu. Pendekatan sistematik berasaskan model diaplikasi bagi merekabentuk campuran optimum bahan api bio yang mengandungi komponenkomponen B5 diesel, butanol, etanol, dan butil levulinat serta mematuhi piawaian Campuran optimum bahan api bio dijana menggunakan Generalized EN590. Algebraic Modelling System dan ciri-ciri khas yang diramal disahkan melalui kaedah eksperimen. Pengaliran bendalir di dalam enjin diesel disimulasi menggunakan program ANSYS Fluent versi 13.0. Prestasi enjin seperti kuasa dan kecekapan haba diramal menggunakan model matematik dan disahkan dengan keputusan eksperimen. Emisi nitrogen oksida, karbon monoksida, hidrokarbon tidak terbakar, dan asap pula diramal melalui korelasi empirikal. Antara lima campuran optimum bahan api bio yang dijana, Campuran 4 mempunyai prestasi enjin yang terbaik dan menghasilkan emisi rendah berbanding B5 diesel walaupun emisi nitrogen oksidanya agak tinggi.

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DECI	LARAT	ION	ii
	DEDI	CATIO	DN	iii
	ACK	NOWL	EDGEMENTS	iv
	ABST	RACT		v
	ABST	RAK		vi
	TABI	LE OF	CONTENTS	vii
	LIST	OF TA	BLES	xi
	LIST	OF FIG	GURES	xiii
	LIST	OF SY	MBOLS	xvi
	LIST	OF AB	BREVIATIONS	xviii
	LIST	OF AP	PENDICES	XX
1	INTR	ODUC	TION	1
	1.1	Backg	round of Study	1
	1.2	Proble	em Statement	3
	1.3	Objec	tives of Study	4
	1.4	Scope	s of Study	5
	1.5	Contri	bution of Study	6
2	LITE	RATU	RE REVIEW	7
	2.1	Bioma	ass as a Source of Biofuel	7
		2.1.1	Biomass Components	8
			2.1.1.1 Cellulose	9
			2.1.1.2 Lipids	9
		2.1.2	Malaysian Scenario	10
	2.2	Biofue	els	12

	2.2.1	Biodiesel	12
		2.2.1.1 Biodiesel Synthesis	14
	2.2.2	Bioalcohols	14
	2.2.3	Levulinate Esters	16
	2.2.4	Tailor Made Biofuels	17
2.3	Diesel	Engine Overview	18
	2.3.1	Internal Combustion Engines	18
	2.3.2	Classification of Diesel Engines	19
		2.3.2.1 Diesel Engine Cycles	20
		2.3.2.2 Diesel Engine Combustion Systems	22
		2.3.2.3 Diesel Engine Cooling Systems	23
2.4	Engin	e Performances and Exhaust Emissions	24
	2.4.1	Engine Performance Parameters	24
		2.4.1.1 Indicated Power	25
		2.4.1.2 Indicated Thermal Efficiency	26
	2.4.2	Diesel Engine Exhaust Emissions	26
		2.4.2.1 Oxides of Nitrogen	27
		2.4.2.2 Oxides of Carbon	27
		2.4.2.3 Unburnt Hydrocarbon	27
	2.4.3	Fuel Properties	28
2.5	Comp	uter Aided Approaches	31
	2.5.1	Systematic Approach for Product Designing	32
	2.5.2	Computational Approaches for Fuel Competency Tests	35
MET	HODO	LOGY	38
3.1	Metho	odology Overview	38
3.2	Syster	natic Methodology for Biofuel Blending	40
	3.2.1	Task 1:Problem Definition	40
		3.2.1.1 Defining Attributes of Interest	40
		3.2.1.2 Defining Target Properties	42
		3.2.1.3 Defining Constraints	43
		3.2.1.4 Selection of Fuel Blend Components	44
	3.2.2	Task 2:Identification of Property Models	45

	3.2.3	Task 3:Generation of Tailor Made Biofuel Blend Formulations	47
		3.2.3.1 Declaring and Defining Input Data	48
		3.2.3.2 Solving Model and Screening Blend Candidates	52
	3.2.4	Task 4:Experimental Validation of Generated Blend Properties	53
3.3	Exper	imental Setup for Engine Testing	54
3.4	In-Cy	linder Fluid Flow Analysis	57
	3.4.1	Step 1:Geometry Modelling	59
		3.4.1.1 Step 1.1:Defining Modelling Goals	59
		3.4.1.2 Step 1.2:Sketch Creation	60
		3.4.1.3 Step 1.3:Geometry Cleanup and Repair	63
	3.4.2	Step 2:Meshing	63
		3.4.2.1 Step 2.1: Identifying Meshing Methods	63
		3.4.2.2 Step 2.2:Specifying Mesh Controls	64
		3.4.2.3 Step 2.3:Mesh Generation	65
		3.4.2.4 Step 2.4: Checking Mesh Quality	66
		3.4.2.5 Step 2.5: Assigning Named Selections	70
	3.4.3	Step 3:Solver Setup	70
		3.4.3.1 Step 3.1:Defining Material Properties	71
		3.4.3.2 Step 3.2:Selection of Physical Models	71
		3.4.3.3 Step 3.3:Prescribing Operating and Boundary Conditions	73
		3.4.3.4 Step 3.4:Setup of Solution Parameters	73
	3.4.4	Step 4:Solution Computation	76
		3.4.4.1 Step 4.1:Solution Initialization	77
		3.4.4.2 Step 4.2:Calculation Activities	77
	3.4.5	Step 5:Results Analysis	78
		3.4.5.1 Step 5.1:Numerical Reporting	78
		3.4.5.2 Step 5.2:Results Visualization	78
3.5	Engin	e Performance Analysis	78
	3.5.1	Indicated Power Model	79
	3.5.2	Indicated Thermal Efficiency Model	79
3.6	Exhau	st Emissions Analysis	79

		3.6.1	Correlation for Nitrogen Oxide Emissions	80
		3.6.2	Correlation for Carbon Monoxide Emissions	s 81
		3.6.3	Correlation for Emissions of Unburnt Hydrocarbon	81
		3.6.4	Correlation for Smoke Opacity	82
4	RESU	JLTS A	ND DISCUSSIONS	83
	4.1	Gener	ated Tailor Made Biofuel Blends	83
	4.2	Valida	tion of Tailor Made Biofuel Blend Properties	85
	4.3	In-Cyl	inder Fluid Flow Profiles	92
		4.3.1	CFD Solution Convergence	92
		4.3.2	Velocity Field	94
		4.3.3	Turbulence Intensity	96
		4.3.4	Total Pressure	98
	4.4	Engine	e Performances	100
		4.4.1	Results for Indicated Power	100
		4.4.2	Results for Indicated Thermal Efficiency	101
	4.5	Exhau	st Emissions	102
		4.5.1	Nitrogen Oxide Emissions	102
		4.5.2	Carbon Monoxide Emissions	103
		4.5.3	Emissions of Unburnt Hydrocarbon	104
		4.5.4	Smoke Opacity	105
5	CON	CLUSI	ON AND RECOMMENDATIONS	107
	5.1	Concl	usion	107
	5.2	Recon	nmendations	109
REFERENC	ES			110
Appendices				120 - 136

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Summary of biomass conversion routes and processing techniques	8
2.2	Fatty acid profiles in palm oil	13
2.3	Summary of differences between diesel and petrol engines	19
2.4	Summary of differences between diesel engine cycles	22
2.5	Summary of studies investigating effects of fuel physiochemical properties towards combustion processes and exhaust emissions	30
2.6a	Summary of studies on systematic approach for product designing	33
2.6b	Summary of studies on systematic approach for product designing (con't)	34
2.7	Summary of studies implementing CFD for in-cylinder fluid flow analysis	36
2.8	Summary of modelling approaches implemented for prediction of diesel engine performances and exhaust emission	s 37
3.1	Fuel properties and limits as stated in EN590 standard	43
3.2	Fuel properties and cost of tailor made biofuel blend components	45
3.3	Mixture property models employed for prediction of tailor made biofuel blend properties	47

3.4	Basic specifications of test engine	54
3.5	Dimensions of the 2D engine geometry model	62
3.6	Global and local mesh control settings	65
3.7	Mesh quality spectrum	67
3.8	Mesh quality and statistics for the 2D combustion chamber model	67
3.9	Material properties of tailor made biofuel blend and B5 diesel as specified in Fluent	74
3.10	Operating and boundary conditions	75
3.11	Summary of solution parameters and physical models defined in Fluent	76
3.12	Range of fuel properties valid for application of emission correlations	80
4.1	Final set of tailor made biofuel blend candidates	84
4.2	Comparison between predicted and actual properties of tailor made biofuel blends	86
4.3	Scaled residuals for measured variables at solution convergence	94
4.4	Mass imbalance report for cold flow simulation of B5 diesel and tailor made biofuel blend	94

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Land use for agricultural purposes in Malaysia	11
2.2	Potential biomass from oil palm industry in Malaysia in 2010	11
2.3	Two-stroke diesel engine cycle	20
2.4	Four-stroke diesel engine cycle	21
3.1	Integrated methodology for design of tailor made biofuel blend	ds 39
3.2	Tasks for designing tailor made biofuel blends through a systematic methodology approach	41
3.3	Attributes of interest in terms of fuel properties for tailor made biofuel blend design	42
3.4	Schematic diagram of engine test bed	56
3.5	General workflow for simulation of in-cylinder fluid flow using ANSYS Fluent software	58
3.6	2D surface sketch of the combustion chamber using Design Modeler	60
3.7	Mesh of the 2D combustion chamber model	66
3.8	Graph of OQ for element distribution in designed 2D model	68
3.9	Graph of skewness for element distribution in designed 2D model	69

4.1	Density of tailor made biofuel blends	87
4.2	Kinematic viscosity of tailor made biofuel blends	88
4.3	Comparison between correlation for kinematic viscosity of tailor made biofuel blends from various studies and actual values	89
4.4	Cetane number of tailor made biofuel blends	90
4.5	Calorific value of tailor made biofuel blends	90
4.6	Distillation temperature of tailor made biofuel blends	91
4.7	Scaled residual graph for convergence monitoring of B5 diesel simulation	93
4.8	Scaled residual graph for convergence monitoring of tailor made biofuel blend simulation	93
4.9	In-cylinder velocity contours for B5 diesel during power stroke	95
4.10	In-cylinder velocity contours for tailor made biofuel blend during power stroke	96
4.11	In-cylinder turbulence intensity contours for B5 diesel during power stroke	97
4.12	In-cylinder turbulence intensity contours for tailor made biofuel blend during power stroke	97
4.13	Contours of in-cylinder total pressure for B5 diesel during power stroke	99
4.14	Contours of in-cylinder total pressure for tailor made biofuel blend during power stroke	99
4.15	Comparison of actual and predicted indicated power for fuel blends	101
4.16	Predicted indicated thermal efficiency for fuel blends	102
4.17	Predicted NO emissions for fuel blends	103

xiv

4.18	Predicted CO emissions for fuel blends	104
4.19	Predicted HC emissions for fuel blends	105
4.20	Predicted smoke opacity for fuel blends	106

LIST OF SYMBOLS

A	-	Area of piston head
Actual	-	Tailor made biofuel blend property from experiment
$BL limit_j$	-	Composition of butyl levulinate in fuel blend mixture j
calf	-	Objective function to maximize calorific value of fuel blend
C_i	-	Raw material cost of fuel blend component <i>i</i>
CN_i	-	Cetane number of fuel blend component <i>i</i>
CN_j	-	Cetane number of fuel blend mixture <i>j</i>
cst	-	Objective function to minimize total fuel blend cost
CV	-	Fuel calorific value
CV_i	-	Calorific value of fuel blend component <i>i</i>
CV_j	-	Calorific value of fuel blend mixture <i>j</i>
$density_j$	-	Density of fuel blend mixture <i>j</i>
d_b	-	Cylinder bore diameter
DT_i	-	Distillation temperature of fuel blend component i
DT_j	-	Distillation temperature of fuel blend mixture j
ethanollimit _j	-	Composition of ethanol in fuel blend mixture j
f _{max}	-	Maximizing function
f_{min}	-	Minimizing function
Ι	-	Turbulence intensity
ip	-	Indicated power
Κ	-	Number of cylinders
k	-	Turbulence kinetic energy
L	-	Length of stroke
L_T	-	Total length of combustion chamber
\dot{m}_{f}	-	Fuel mass flow rate
Ν	-	Engine speed

п	-	Number of power strokes per minute
η_{ith}	-	Indicated thermal efficiency
O_2 content	-	Amount of fuel-bound oxygen
ρ	-	Fuel density
$ ho_i$	-	Density of fuel blend component <i>i</i>
p_{im}	-	Indicated mean effective pressure
Predicted	-	Tailor made biofuel blend property from GAMS
r	-	Compression ratio
S_i	-	Sulphur content of fuel blend component i
S_j	-	Sulphur content of fuel blend mixture <i>j</i>
μ	-	Kinematic viscosity of fuel
μ_i	-	Kinematic viscosity of fuel blend component i
u_{avg}	-	Mean flow velocity
v_i	-	Volume fraction of fuel blend component i
viscosity _j	-	Kinematic viscosity of fuel blend mixture j
V_c	-	Combustion chamber clearance volume
V_s	-	Displacement volume
V_T	-	Total cylinder volume
Z_j	-	Total cost of fuel blend mixture <i>j</i>

Greek Letters

ı
1

Subscripts

i	-	Index for pure fuel blend components
j	-	Index for tailor made biofuel blend mixture

LIST OF ABBREVIATIONS

ABE	-	Acetone-Butanol-Ethanol
ANN	-	Artificial Neural Networks
AP/OA/ER	-	Augmented Penalty-Outer Approximation-Equality Relaxation
APE	-	Absolute Percentage Error
ASF	-	Advanced Sizing Functions
ASTM	-	American Society for Testing and Materials
BARON	-	Branch-And-Reduce Optimization Navigator
BDC	-	Bottom Dead Centre
BL	-	Butyl Levulinate
CFD	-	Computational Fluid Dynamics
CI	-	Compression Ignition
CN	-	Cetane Number
СО	-	Carbon Monoxide
CO_2	-	Carbon Dioxide
DBS	-	Density Based Solver
DI	-	Direct Injection
EN	-	European Standard
FAME	-	Fatty Acid Methyl Ester
GAMS	-	Generalized Algebraic Modelling System
GINO	-	General Interactive Optimizer
НС	-	Unburnt Hydrocarbon
IC	-	Internal Combustion
IDI	-	Indirect Injection
MATLAB	-	Matrix Laboratory
MIXD	-	Mixture Design Routine
NLP	-	Non-Linear Programming

NO	-	Nitrogen Oxide
NO _x	-	Oxides of Nitrogen
OQ	-	Orthogonal Quality
PBS	-	Pressure Based Solver
PCA	-	Principal Component Analysis
PCR	-	Principal Component Regression
POME	-	Oil Palm Mill Effluent
PPD	-	Product-Process Design
rpm	-	Revolutions per Minute
SI	-	Spark Ignition
SIMPLE	-	Semi-Implicit Method for Pressure-Linked Equations
SO_2	-	Sulphur Dioxide
TDC	-	Top Dead Centre

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Publications	120
В	GAMS coding	122
С	Engine test bed and equipment	129
D	Engine geometry design	131
E	Engine performance modelling	133
F	Exhaust emission correlations	135

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Since decades, conventional fossil fuels such as petroleum, natural gas, and coal have played important roles in satisfying the ever increasing world energy demands. Transportation sector alone consumes nearly one third of global energy supplies. However, supply of conventional fossil fuels is finite and are fast depleting. On top of that, increased awareness on environmental issues have caused an outburst of search for alternative vehicular fuel options which are environmentally friendly, renewable, and sustainable. Biofuel has pioneered the alternative fuel sector for some time now owing to studies conducted on tapping potential of biomass as a primary energy source. Biofuels produced from biomass are categorized under second-generation biofuels which evade the fuel versus food controversy.

Amid neighbouring countries such as Thailand, Philippines, and Indonesia promoting the use of second-generation biofuels, Malaysian government introduced its fifth fuel strategy under the Eighth Malaysian Plan (Malaysia, 2001). The fifth fuel strategy promoted use of renewable energy with focus on biomass as an energy source. Malaysia further enhanced her initiatives towards developing renewable energy from biomass resources with implementation of National Biofuel Policy in2006 under the Ninth Malaysian Plan (Malaysia, 2006). The latest instalment was the introduction of National Biomass Strategy 2020 which focuses on fully utilizing all types of biomass feedstock available in the country with emphasis on oil palm biomass. A mandate for blend of five percent palm methyl ester in diesel, commonly known as B5 diesel, was introduced in 2011 parallel to the policy.

Malaysia is the world's second largest producers of palm oil which generates surplus palm biomass waste (Naik *et al.*, 2010; Ng *et al.*, 2012). Biomass is generally composed of lipid and cellulosic materials. Various conversion routes can be used to process biofuels using these components as starting materials. Bioalcohols, biodiesel, bio-oils, bio-ethers, bio-esters, and synthetic hydrocarbons make up basic building blocks for liquid biofuels. Among these, biodiesel and bioalcohols are widely commercialized with bio-esters appearing as attractive new biofuel blend option.

However, vast and infinite possibilities of biofuel blend candidates cause complexity in design. Implementation of biofuel blends as vehicular fuel requires the fuel to meet necessary criteria which will facilitate existing engines to operate on the new fuel blends with little or no modification. Composition of fuel blends gravely influence fuel properties that play significant role in combustion activities, engine performance and exhaust emissions. Experimental methods evaluating competency of biofuel blends consume immense time and resources. Computational approaches adopting a structured candidates selection process saves time and resources through focused experimental work.

Mathematical models, empirical correlations, phenomenological models, computational fluid dynamic models, and black-box approaches have been widely used in numerous studies that assess biofuel blends. In this study, combination of several computational approaches were implemented to design and evaluate tailor made biofuel blends that fulfil criteria for use as vehicular fuel in diesel engine.

1.2 Problem Statement

Designing novel biofuel blends is a complex process credits to the infinite possibilities of biofuel blend components. It is a necessity that the tailor made biofuel blend properties conform to fuel regulation standards in order to be functional as vehicular fuel in standard diesel engines. Experimental methods are performed through trial-and-error which is tedious and time consuming due to the wide range of potential biofuel blend candidates. It is also cost ineffective as it consumes huge amount of resources in the course of ensuring fuel properties are in compliance with fuel regulation standards. Therefore, a systematic methodology model-based approach was implemented to minimize the candidates search region and generate tailor made biofuel blends. Resources and time can be saved through focused experimental work.

In-cylinder fluid flow characteristics are very much influenced by fuel properties. It has also been established to control engine performances and exhaust emissions. However, fluid flow in a diesel engine combustion chamber is a challenging area of study due to numerous factors that cause flow variations. Experimental methods are focused on particular parts of the chamber such as at the fuel injector with emphasis being on fuel spray characteristics and valve lift. Mathematical models follow similar approach. Black-box approaches are more versatile but in-cylinder fluid flow profiles cannot be clearly analyzed. Therefore, computational fluid dynamics (CFD) were introduced in this study to model and simulate in-cylinder fluid flow profiles that are affected by fuel blend properties as CFD models can be implemented when fine flow details are not required. In-addition, CFD software is equipped with phenomenological models that are adequate to predict fluid flow motions.

Engine performances and exhaust emissions of tailor made biofuel blends are necessary parameters for competency evaluation. Assessment through experimental tests are again costly and consume resources and time. Furthermore, highly sophisticated test equipments are required for analysis of certain exhaust emissions such as sulphur oxides and particulate matters which may render it unavailable at most engine test beds. Hence in this study, mathematical models based on thermodynamic analysis of an engine cycle was implemented to predict engine performance parameters. Emissions were predicted through semi-empirical correlations designed in a study by Ng *et al.* (2012) with a 85% success rate for tailor made biofuel blends with particular ranges of fuel properties.

Generally, design of novel biofuel blends are segregated and focused on one particular area of interest. Studies will either be conducted on fuel blend properties such as those by Benjumea *et al.* (2008), Jenkins *et al.* (2013), and Al-Hamamre and Al-Salaymeh (2014) or on engine performance and exhaust emissions like those by Yusaf *et al.* (2011), Giakoumis *et al.* (2013), and Atmanli *et al.* (2014) to name a few. On the other hand, studies on in-cylinder fluid flow profiles are totally independent with findings relating only to fuel properties, for instance studies by Battistoni and Grimaldi (2012) and Mohan *et al.* (2014). Therefore, this study introduces an integrated methodology that combines the fore mentioned computational approaches to design tailor made biofuel blends and evaluate engine performances, emissions, and in-cylinder fluid flow profiles for use as vehicular fuel option.

1.3 Objectives of Study

The main objective of this study is to design optimal tailor made biofuel blends as alternative vehicular fuel options for diesel engines in Malaysia. The subobjectives include:

- (i) Development of an integrated framework for biofuel blending design.
- Evaluation of performance and emissions of the designed tailor made biofuel blends.
- (iii) Analysis of in-cylinder fluid flow motion of the designed tailor made biofuel blends.

1.4 Scopes of Study

In order to achieve objectives of this study, scopes of study were identified as the following:

- (i) Identifying and selecting physical properties of biofuel blends that significantly affect in-cylinder fluid flow motion, engine performances, and exhaust emissions of a diesel engine. Density, kinematic viscosity, cetane number, calorific value, and distillation temperature were selected.
- (ii) Generating tailor made biofuel blends through a systematic methodology model-based approach using Generalized Algebraic Modelling System (GAMS). Tailor made biofuel blends were generated to comply with EN590 fuel reference standard. Generated fuel blend properties were validated with experimental tests conducted according to the American Society for Testing and Materials (ASTM) standard.
- (iii) Analyzing effects of fuel blend properties towards in-cylinder fluid flow motion through computational fluid dynamics. YANMAR TF120M diesel engine combustion chamber was modelled and fluid flow motion simulated through implementation of ANSYS Fluent software.
- (iv) Predicting engine performance for tailor made biofuel blends using mathematical models and comparing with B5 diesel. Engine performance parameters predicted were indicated power which was validated with experimental results and indicated thermal efficiency.
- (v) Predicting exhaust emissions for tailor made biofuel blends using semi-empirical correlations designed and implemented in a study by Ng *et al.* (2012). Emissions predicted include nitrogen oxide, carbon monoxide, unburnt hydrocarbon, and smoke opacity.

1.5 Contribution of Study

Key contribution of this study is a new integrated framework applicable for designing tailor made biofuel blends functioning as alternative fuel for diesel engine vehicles in Malaysia. Experimental validation of predicted fuel properties, effects of fuel properties towards in-cylinder fluid flow motion, and evaluation of performance and emissions enable this study to be notable from previous studies that implement existing product design frameworks. Hence, this study is expected to contribute greatly towards future work on designing optimal tailor made biofuel blends for commercial use. Appendix A highlights all publications related to contribution of this study.

REFERENCES

- Agbontalor, E. A. (2007). Overview of Various Biomass Energy Conversion Routes. American-Eurasian Journal of Agricultural & Environmental Sciences. 2 (6), 662-671.
- Agensi Inovasi Malaysia. National Biomass Strategy 2020: New Wealth Creation for Malaysia's Biomass Industry Version 2.0. Kuala Lumpur, Malaysia. 2013.
- Ahmad, M., Khan, M. A., Zafar, M., and Sultana, S. (2013). Practical Handbook on Biodiesel Production and Properties. Florida, U. S.: CRC Press.
- Al-Hamamre, Z., and Al-Salaymeh, A. (2014). Physical Properties of (Jojoba Oil + Biodiesel), (Jojoba Oil + Diesel) and (Biodiesel + Diesel) Blends. *Fuel*. 123, 175-188.
- Al-Hassan, M., Mujafet, H., and Al-Shannag, M. (2012). An Experimental Study on the Solubility of a Diesel-Ethanol Blend and on the Performance of a Diesel Engine Fueled with Diesel-Biodiesel-Ethanol Blends. *Jordan Journal of Mechanical and Industrial Engineering*. 6(2), 147-153.
- Al-Shemmeri, T. T., and Oberweis, S. (2011). Correlation of the NO_x Emission and Exhaust Gas Temperature for Biodiesel. *Applied Thermal Engineering*. 31, 1682-1688.
- Alptekin, E., and Canakci, M. (2009). Characterization of the Key Fuel Properties of Methyl Ester-Diesel Fuel Blends. *Fuel*. 88, 75-80.
- Anderson, J. J. D. (2009a). Basic Philosophy of CFD. In Wendt, J. F. (Ed.). Computational Fluid Dynamics. (1-14). Berlin: Springer-Verlag.
- Anderson, J. J. D. (2009b). Governing Equations of Fluid Dynamics. In Wendt, J. F.(Ed.). Computational Fluid Dynamics. (15-51). Berlin: Springer-Verlag.
- ANSYS Inc. ANSYS Training Manual. ANSYS Inc: Commercial Training Manual Supplied by CAD-IT Consultancy Firm. 2012.

- Asprion, J., Chinellato, O., and Guzzella, L. (2013). A Fast and Accurate Physics-Based Model for The NO_x Emissions of Diesel Engines. *Applied Energy*. 103, 221-233.
- Atmanli, A., Ileri, E., and Yuksel, B. (2014). Experimental Investigation of Engine Performance and Exhaust Emissions of a Diesel Engine Fueled with Diesel*n*-Butanol-Vegetable Oil Blends. *Energy Conversion and Management*. 81, 312-321.
- Aziz, A. A., Loh, S. K., Lim, W. S., and Choo, Y. M. (2011). Business Opportunities in Palm Biomass for SMEs. *International Palm Oil Congress*. 15-17 November. Kuala Lumpur Convention Centre, Malaysia.
- Basha, S. A., and Gopal, K. R. (2009). In-Cylinder Fluid Flow, Turbulence and Spray Models - A Review. *Renewable and Sustainable Energy Reviews*. 13, 1620-1627.
- Battistoni, M., and Grimaldi, C. N. (2012). Numerical Analysis of Injector Flow and Spray Characteristics from Diesel Injectors using Fossil and Biodiesel Fuels. *Applied Energy*. 97, 656-666.
- Benjumea, P., Agudelo, J., and Agudelo, A. (2008). Basic Properties of Palm Oil Biodiesel-Diesel Blends. *Fuel.* 87, 2069-2075.
- Bosch, R. G. (Ed.) (2005). *Diesel-Engine Management*. (4th ed.) West Sussex, England: John Wiley & Sons Ltd.
- Canakci, M., and Gerpen, J. V. (2001). Biodiesel Production from Oils and Fats with High Free Fatty Acids. *Transactions of the American Society of Agricultural Engineers*. 44 (6), 1429-1436.
- Champagne, P. (2008). *Biomass*. In Letcher, T. M. (Ed.). *Future Energy: Improved, Sustainable and Clean Options for our Planet*. (151-169). South Africa: Elsevier.
- Cheng, Y. S., Lam, K. W., Ng, K. M., Ko, R. K. M., and Wibowo, C. (2009). An Integrative Approach to Product Development - A Skin-Care Cream. *Computers and Chemical Engineering*. 33, 1097-1113.
- Christensen, E., Williams, A., Paul, S., Burton, S., and McCormick, R. L. (2011). Properties and Performance of Levulinate Esters as Diesel Blend Components. *Energy and Fuels*. 25, 5422-5428.
- Chuck, C. J., and Donnelly, J. (2014). The Compatibility of Potential Bioderived Fuels with Jet A-1 Aviation Kerosene. *Applied Energy*. 118, 83-91.

- Churi, N., and Achenie, L. E. K. (1997). The Optimal Design of Refrigerant Mixtures for a Two-Evaporator Refrigeration System. *Computers and Chemical Engineering*. 21, 349-354.
- Conte, E., and Gani, R. (2011). Chemicals-Based Formulation Design: Virtual Experimentations. 21st European Symposium on Computer Aided Process Engineering - ESCAPE 21. 29 May - 1 June. Chalkidiki, Greece. 1588-1592.
- Denoga, G. J. C., and Quiros, E. N. (2004). Comparing Diesel Fuels at Various T₉₀
 Distillation Temperatures: Engine Performance, Vibration and Emissions.
 Philippine Engineering Journal. 25(2), 23-34.
- Dernotte, J., Hespel, C., Foucher, F., Houille, S., and Mounaim-Rousselle, C. (2012). Influence of Physical Fuel Properties on the Injection Rate in a Diesel Injector. *Fuel.* 96, 153-160.
- Dharne, S., and Bokade, V. V. (2011). Esterification of Levulinic Acid to n-Butyl Levulinate over Heteropolyacid Supported on Acid-Treated Clay. Journal of Natural Gas Chemistry. 20, 18-24.
- Dogan, O. (2011). The Influence of *n*-Butanol/Diesel Fuel Blends Utilization on a Small Diesel Engine Performance and Emissions. *Fuel.* 90, 2467-2472.
- Dufreche, S., Zappi, M., Bajpai, R., Benson, B., and Guillory, J. (2012). Today's Lipid to Renewable Diesel Fuel Market. *International Journal of Advanced Science and Technology*. 39, 49-66.
- Edreder, E. A., and Mezughi, K. M. (2014). Prediction of the Kinematic Viscosity of Some Libyan Petroleum Fractions at Different Temperatures. *International Conference on Artificial Intelligence, Energy and Manufacturing Engineering - ICAEME*'2014. 9-10 June. Kuala Lumpur, Malaysia. 46-50.
- Encyclopaedia Britannica. *Two-Stroke and Four-Stroke Diesel Engine Cycles*. Encyclopaedia Britannica Online Academic Edition: Commercial Catalogue from http://www.britannica.com/gallery. 2014.
- Enffue: Carotino. *B5 Blend Diesel Specifications*. Enffue: Commercial Catalogue from http://www.carotino.com/enffue/specifications. 2007.
- Ganesan, V. (2013). *Internal Combustion Engines*. (4th ed.) New Delhi, India: McGraw Hill Education (India) Private Limited.
- Gani, R. (2004). Computer-Aided Methods and Tools for Chemical Product Design. *Chemical Engineering Research and Design.* 82, 1494-1504.

- Gautam, A., and Agarwal, A. K. (2014). Determination of Important Biodiesel Properties based on Fuel Temperature Correlations for Application in a Locomotive Engine. *Fuel*. 142, 289-302.
- Geng, P. Y., Buczynsky, A. E., and Konzack, A. (2009). US and EU Market Biodiesel Blends Quality Review - An OEM Perspective. SAE International Journal of Fuels and Lubricants. 2(1), 860-869.
- Ghobadian, B., Rahimi, H., Nikbakht, A. M., Najafi, G., and Yusaf, T. F. (2009). Diesel Engine Performance and Exhaust Emission Analysis using Waste Cooking Biodiesel Fuel with an Artificial Neural Network. *Renewable Energy*. 34, 976-982.
- Giakoumis, E. G., Rakopoulos, C. D., Dimaratos, A. M., and Rakopoulos, D. C. (2013). Exhaust Emissions with Ethanol or *n*-Butanol Diesel Fuel Blends during Transient Operation: A Review. *Renewable and Sustainable Energy Reviews*. 17, 170-190.
- Gogoi, T. K., and Baruah, D. C. (2010). A Cycle Simulation Model for Predicting the Performance of A Diesel Engine Fuelled by Diesel and Biodiesel Blends. *Energy*. 35, 1317-1323.
- Hada, S., Solvason, C. C., and Eden, M. R. (2011). Molecular Design of Biofuel Additives for Optimization of Fuel Characteristics. 21st European Symposium on Computer Aided Process Engineering - ESCAPE 21. 29 May -1 June. Chalkidiki, Greece. 1633-1637.
- Haddad, S. D., and Watson, N. (Eds.) (1984). *Design and Applications in Diesel Engineering*. West Sussex, England.: Ellis Horwood Limited.
- Hajba, L., Eller, Z., Nagy, E., and Hancsok, J. (2011). Properties of Diesel-Alcohol Blends. *Hungarian Journal of Industrial Chemistry*. 39(3), 349-352.
- Hamdan, M. A., and Khalil, R. H. (2010). Simulation of Compression Engine Powered by Biofuels. *Energy Conversion and Management*. 51, 1714-1718.
- Hansen, A. C., Zhang, Q., and Lyne, P. W. L. (2005). Ethanol-Diesel Fuel Blends -A Review. *Bioresource Technology*. 96, 277-285.
- Harwardt, A., Kraemer, K., Rungeler, B., and Marquardt, W. (2011). Conceptual Design of a Butyl-Levulinate Reactive Distillation Process by Incremental Refinement. *Chinese Journal of Chemical Engineering*. 19(3), 371-379.
- Heywood, J. B. (1988). Internal Combustion Engine Fundamentals. New York, U.S.A.: McGraw-Hills, Inc.

- Howarth, M. H. (1966). *The Design of High Speed Diesel Engines*. London, England.: Constable and Company Ltd.
- Hsu, B. D. (2002). *Practical Diesel-Engine Combustion Analysis*. Warrendale, P. A.: Society of Automotive Engineers, Inc.
- Hussan, M. J., Hassan, M. H., Kalam, M. A., and Memon, L. A. (2013). Tailoring Key Fuel Properties of Diesel-Biodiesel-Ethanol Blends for Diesel Engine. *Journal of Cleaner Production*. 51, 118-125.
- I-Chem Solution Sdn. Bhd. *Price Quotation*. Johor, Malaysia: Purchase of 99% Pure Ethanol and 99% Pure Butanol. 2013.
- International Energy Agency. Key World Energy Statistics. Paris, France. 2013.
- Ismail, H. M., Ng, H. K., and Gan, S. (2012). Evaluation of Non-Premixed Combustion and Fuel Spray Models for In-Cylinder Diesel Engine Simulation. *Applied Energy*. 90, 271-279.
- Janssen, A., Pischinger, S., and Muether, M. (2010). Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion. SAE International Journal of Fuels and Lubricants. 3(1), 70-84.
- Jayed, M. H., Masjuki, H. H., Kalam, M. A., Mahlia, T. M. I., Husnawan, M., and Liaquat, A. M. (2011). Prospects of Dedicated Biodiesel Engine Vehicles in Malaysia and Indonesia. *Renewable and Sustainable Energy Reviews*. 15, 220-235.
- Jemni, M. A., Kantchev, G., and Abid, M. S. (2011). Influence of Intake Manifold Design on In-Cylinder Flow and Engine Performances in a Bus Diesel Engine Converted to LPG Gas Fuelled using CFD Analyses and Experimental Investigations. *Energy*. 36, 2701-2715.
- Jenkins, R. W., Munro, M., Nash, S., and Chuck, C. J. (2013). Potential Renewable Oxygenated Biofuels for the Aviation and Road Transport Sectors. *Fuel*. 103, 593-599.
- Kaminski, W., Tomczak, E., and Gorak, A. (2011). Biobutanol Production and Purification Methods. *Ecological Chemistry and Engineering S.* 18(1), 31-37.
- Kashinath, S. A. A., Manan, Z. A., Hashim, H., and Alwi, S. R. W. (2012). Design of Green Diesel from Biofuels using Computer Aided Technique. *Computers* and Chemical Engineering. 41, 88-92.

- Knothe, G., Matheaus, A. C., and Ryan-III, T. W. (2003). Cetane Numbers of Branched and Straight-Chain Fatty Esters Determined in an Ignition Quality Tester. *Fuel.* 82, 971-975.
- Koudous, I., Both, S., Gudi, G., Schulz, H., and Strube, J. (2014). Process Design based on Physicochemical Properties for the Example of Obtaining Valuable Products from Plant-Based Extracts. *Comptes Rendus Chimie*. 17, 218-231.
- Krisnangkura, K., Yimsuwan, T., and Pairintra, R. (2006). An Empirical Approach in Predicting Biodiesel Viscosity at Various Temperatures. *Fuel.* 85(1), 107-113.
- Lakshman, A., Karthikeyan, C. P., and Padmanabhan, R. (2013). 3D In-Cylinder Cold Flow Simulation Studies in an IC Engine using CFD. *International Journal of Research in Mechanical Engineering*. 1(1), 64-69.
- Lapuerta, M., Rodriguez-Fernandez, J., Garcia-Contreras, R., and Bogarra, M. (2015). Molecular Interactions in Blend of Alcohols with Diesel Fuels: Effect on Stability and Distillation. *Fuel.* 139, 171-179.
- Lee, A., Chaibakhsh, N., Rahman, M. B. A., Basri, M., and Tejo, B. A. (2010). Optimized Enzymatic Synthesis of Levulinate Ester in Solvent-Free System. *Industrial Crops and Products*. 32, 246-251.
- Li, D., Zhen, H., Xingcai, L., Wu-gao, Z., and Jian-guang, Y. (2005). Physico-Chemical Properties of Ethanol-Diesel Blend Fuel and its Effect on Performance and Emissions of Diesel Engines. *Renewable Energy*. 30, 967-976.
- Mabanaft Limited. Sulphur Free Diesel. London, BS EN 590:2009. 2011.
- Maghbouli, A., Yang, W., An, H., Li, J., and Shafee, S. (2015). Effects of Injection Strategies and Fuel Injector Configuration on Combustion and Emission Characteristics of A D.I. Diesel Engine Fueled by Bio-Diesel. *Renewable Energy*. 76, 687-698.
- Malaysia (2001). Eighth Malaysia Plan 2001-2005.
- Malaysia (2006). Ninth Malaysia Plan 2006-2010.
- Mangal, N. K. (1987). *Diesel Engine Mechanics*. New Delhi, India.: Tata McGraw-Hill Publishing Company Limited.
- Maria, A. (1997). Introduction to Modeling and Simulation. *Proceedings of the 1997Winter Simulation Conference*. 9-12 December. Washington D. C., U. S. A.

- Martin, M., and Martinez, A. (2013). A Methodology for Simultaneous Process and Product Design in the Formulated Consumer Products Industry: The Case Study of the Detergent Business. *Chemical Engineering Research and Design.* 91, 795-809.
- Mascal, M., and Nikitin, E. B. (2010). High-Yield Conversion of Plant Biomass into the Key Value-Added Feedstocks 5-(Hydroxymethyl)Furfural, Levulinic Acid, and Levulinic Esters via 5-(Chloromethyl)Furfural. *Green Chemistry*. 12, 370-373.
- Mattei, M., Kontogeorgis, G. M., and Gani, R. (2014). A Comprehensive Framework for Surfactant Selection and Design for Emulsion based Chemical Product Design. *Fluid Phase Equilibria*. 362, 288-299.
- Mohan, B., Yang, W., and Yu, W. (2014). Effect of Internal Nozzle Flow and Thermo-Physical Properties on Spray Characteristics of Methyl Esters. *Applied Energy*. 129, 123-134.
- Naik, S. N., Goud, V. V., Rout, P. K., and Dalai, A. K. (2010). Production of First and Second Generation Biofuels: A Comprehensive Review. *Renewable and Sustainable Energy Reviews*. 14, 578-597.
- Ng, H. K., Gan, S., Ng, J., and Pang, K. M. (2013). Simulation of Biodiesel Combustion in a Light-Duty Diesel Engine using Integrated Compact Biodiesel-Diesel Reaction Mechanism. *Applied Energy*. 102, 1275-1287.
- Ng, J. H., Ng, H. K., and Gan, S. (2012). Development of Emissions Predictor Equations for a Light-Duty Diesel Engine using Biodiesel Fuel Properties. *Fuel*. 95, 544-552.
- Ng, W. P. Q., Lam, H. L., Ng, F. Y., Kamal, M., and Lim, J. H. E. (2012). Waste-to-Wealth: Green Potential from Palm Biomass in Malaysia. *Journal of Cleaner Production.* 34, 57-65.
- Pandey, R. K., Rehman, A., and Sarviya, R. M. (2012). Impact of Alternative Fuel Properties on Fuel Spray Behavior and Atomization. *Renewable and Sustainable Energy Reviews*. 16, 1762-1778.
- Pang, K. M., Ng, H. K., and Gan, S. (2012). Investigation of Fuel Injection Pattern on Soot Formation and Oxidation Processes in a Light-Duty Diesel Engine using Integrated CFD-Reduced Chemistry. *Fuel*. 96, 404-418.

- Panwar, N. L., Kothari, R., and Tyagi, V. V. (2012). Thermo Chemical Conversion of Biomass-Eco Friendly Energy Routes. *Renewable and Sustainable Energy Reviews*. 16, 1801-1816.
- Papagiannakis, R. G., Kotsiopoulos, P. N., Zannis, T. C., Yfantis, E. A., Hountalas, D. T., and Rakopoulos, C. D. (2010). Theoretical Study of The Effects of Engine Parameters on Performance and Emissions of A Pilot Ignited Natural Gas Diesel Engine. *Energy*. 35, 1129-1138.
- Payri, F., Benajes, J., Margot, X., and Gil, A. (2004). CFD Modeling of the In-Cylinder Flow in Direct-Injection Diesel Engines. *Computers and Fluids*. 33, 995-1021.
- Peng, L., Lin, L., Li, H., and Yang, Q. (2011). Conversion of Carbohydrates Biomass into Levulinate Esters using Heterogeneous Catalysts. *Applied Energy*. 88, 4590-4596.
- Petrus, L., and Noordermeer, M. A. (2006). Biomass to Biofuels: A Chemical Perspective. *Green Chemistry*. 8 (10), 861-867.
- Pulkrabek, W. W. (2004). Engineering Fundamentals of the Internal Combustion Engine. (2nd ed.). Upper Saddle River, N. J.: Prentice Hall.
- Qi, K., Feng, L., Leng, X., Du, B., and Long, W. (2011). Simulation of Quasi-Dimensional Combustion Model for Predicting Diesel Engine Performance. *Applied Mathematical Modelling*. 35, 930-940.
- Rakopoulos, D. C., Rakopoulos, C. D., Hountalas, D. T., Kakaras, E. C., Giakoumis,
 E. G., and Papagiannakis, R. G. (2010). Investigation of the Performance and
 Emissions of Bus Engine Operating on Butanol/Diesel Fuel Blends. *Fuel.* 89, 2781-2790.
- Reeves, M., Towers, D. P., Tavender, B, and Buckberry, C. H. (1999). A High-Speed All-Digital Technique for Cycle-Resolved 2D Flow Measurement and Flow Visualization within SI Engine Cylinders. *Optics and Lasers in Engineering*. 31, 247-261.
- Shah, Y. R., and Sen, D. J. (2011). Bioalcohol as Green Energy A Review. International Journal of Current Scientific Research. 1(2), 57-62.
- Shahir, S. A., Masjuki, H. H., Kalam, M. A., Imran, A., Fattah, I. M. R., and Sanjid,A. (2014). Feasibility of Diesel-Biodiesel-Ethanol/Bioethanol Blend asExisting CI Engine Fuel: An Assessment of Properties, Material

Compatibility, Safety and Combustion. *Renewable and Sustainable Energy Reviews*. 32, 379-395.

- Sigma-Aldrich (M) Sdn. Bhd. *Price Quotation*. Selangor, Malaysia: Purchase of 98% Pure Butyl Levulinate. 2013.
- Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., and Boosroh, M. H. (2013). Overview Properties of Biodiesel Diesel Blends from Edible and Non-Edible Feedstock. *Renewable and Sustainable Energy Reviews*. 22, 346-360.
- Simasatitkul, L., Arpornwichanop, A., and Gani, R. (2013). Design Methodology for Bio-based Processing: Biodiesel and Fatty Alcohol Production. *Computers* and Chemical Engineering. 57, 48-62.
- Singh, N. R. (2011). Biofuels. In Speight, J. G. (Ed.). The Biofuels Handbook. (160 -198). The Royal Society of Chemistry.
- Stone, R. (1985). Introduction to Internal Combustion Engines. Hampshire, London.: Macmillan Publishers Ltd.
- Tan, P., Hu, Z., and Lou, D. (2009). Regulated and Unregulated Emissions from a Light-Duty Diesel Engine with Different Sulfur Content Fuels. *Fuel.* 88, 1086-1091.
- Tan, P., Zhao, J., Hu, Z., Lou, D., and Du, A. (2013). Effects of Fuel Properties on Exhaust Emissions from Diesel Engines. *Journal of Fuel Chemistry and Technology*. 41(3), 347-355.
- Tesfa, B., Mishra, R., Gu, F., and Powles, N. (2010). Prediction Model for Density and Viscosity of Biodiesel and their Effects on Fuel Supply System in CI Engines. *Renewable Energy*. 35, 2752-2760.
- Vaidyanathan, R., and El-Halwagi, M. (1996). Computer-Aided Synthesis of Polymers and Blends with Target Properties. *Industrial and Engineering Chemistry Research*. 35(2), 627-634.
- Vaidyanathan, R., Gowayed, Y., and El-Halwagi, M. (1998). Computer-Aided Design of Fiber Reinforced Polymer Composite Products. *Computers and Chemical Engineering*. 22(6), 801-808.
- Varatharajan, K., and Cheralathan, M. (2012). Influence of Fuel Properties and Composition on NO_x Emissions from Biodiesel Powered Diesel Engines: A Review. *Renewable and Sustainable Energy Reviews*. 16, 3702-3710.

- Villeda, J. J. V., Dahmen, M., Hechinger, M., Voll, A., and Marquardt, W. (2012). Towards Model-Based Design of Biofuel Value Chains. *Current Opinion in Chemical Engineering*. 1, 466-471.
- Wade, L. G. (2006). *Organic Chemistry*. (6th ed.) Upper Saddle River, N. J.: Prentice Hall.
- Wong, L. C. Y. (2007). Development of Malaysia's Agricultural Sector: Agriculture as an Engine of Growth. *Conference on the Malaysian Economy: Development and Challenges*. 25-26 January. Institute of Southeast Asian Studies, Singapore.
- Yasin, M. H. M., Mamat, R., Yusop, A. F., Rahim, R., Aziz, A., and Shah, L. A. (2013). Fuel Physical Characteristics of Biodiesel Blend Fuels with Alcohol as Additives. *Procedia Engineering*. 53, 701-706.
- Yee, K. F., and Lee, K. T. (2008). Palm Oil as Feedstocks for Biodiesel Production via Heterogeneous Transesterification: Optimization Study. *International Conference on Environment 2008*. 15-17 December. Penang, Malaysia.
- Yoshimoto, Y., Kinoshita, E., Shanbu, L., and Ohmura, T. (2013). Influence of 1-Butanol Addition on Diesel Combustion with Palm Oil Methyl Ester/Gas Oil Blends. *Energy*. 61, 44-51.
- Yunus, N. A., Gernaey, K. V., Woodley, J. M., and Gani, R. (2014). A Systematic Methodology for Design of Tailor-Made Blended Products. *Computers and Chemical Engineering*. 66, 201-213.
- Yusaf, T. F., Yousif, B. F., and Elawad, M. M. (2011). Crude Palm Oil Fuel for Diesel-Engines: Experimental and ANN Simulation Approaches. *Energy*. 36, 4871-4878.
- Yusoff, M. H. M., Abdullah, A. Z., Sultana, S., and Ahmad, M. (2013). Prospects and Current Status of B5 Biodiesel Implementation in Malaysia. *Energy Policy*. 62, 456-462.