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ABSTRACT 

Heavy metal pollution has always been considered as one of the major threats to 

the environment and human health since these metals can accumulate in the food chain, 

inactivate cellular enzymes and may cause cancer related diseases.  Conventional 

physiochemical methods do not provide economical treatment for the removal of 

heavy metals from heavy metal polluted environment.  An effective and economical 

alternative method that has been widely reported is microbial bioremediation.  In this 

study, the minimal inhibitory concentration (MIC) of Lysinibacillus fusiformis ZB2 for 

selected heavy metals, namely, cadmium (Cd), zinc (Zn), lead (Pb) and chromium 

(Cr(VI)) were determined.  This bacteria was isolated previously from the textile 

effluent.  It was grown in low phosphate medium (LPM) with glucose and tryptone 

as its carbon and nitrogen source respectively.  L. fusiformis ZB2 reached its 

exponential growth within 48 hours of incubation in the LPM.  The MIC of the 

bacteria for Cd, Zn, Pb and Cr(VI) were determined in solid and liquid media.  The 

MIC obtained was relatively higher when using the liquid media. The MIC for Cd, Zn, 

Pb and Cr(VI) were 25, 75, 150, and 3500 ppm, respectively as compared to using the 

solid media MIC for Cd, Zn, Pb and Cr(VI) were 10, 75, 250, 3000 ppm, respectively. 

The order of toxicity of heavy metals towards Lysinibacillus fusiformis ZB2 was 

Cd>Zn>Pb>Cr(VI). The bacteria was found to be tolerant towards Zn, Pb and Cr(VI) 

with maximum tolerance towards Cr(VI).  
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ABSTRAK 

Pencemaran logam berat sentiasa dianggap sebagai satu daripada ancaman utama 

terhadap alam sekitar dan kesihatan manusia kerana logam ini boleh berkumpul dalam 

rantaian makanan, menyahakif enzim sel dan boleh dikaitkan dengan penyakit kanser.  

Kaedah penyingkiran logam berat dari persekitaran yang tercemar dengan logam berat 

menggunakan kaedah fizik kimia konvensional adalah tidak ekonomik.  Satu kaedah 

alternatif yang berkesan dan ekonomik yang telah dilaporkan secara meluas adalah 

bioremediasi mikrob.  Dalam kajian ini, minimal inhibitory concentration (MIC) 

daripada Lysinibacillus fusiformis ZB2 untuk logam berat terpilih, iaitu, kadmium (Cd), 

zink (Zn), plumbum (Pb) dan kromium (Cr(VI)) telah ditentukan.  Bakteria ini telah 

diasingkan sebelum ini dari efluen tekstil. Ia dikultur dalam low phoshate medium 

(LPM) dengan glukosa dan tripton sebagai sumber karbon dan nitrogen masing-

masing.  L. fusiformis ZB2 mencapai pertumbuhan fasa eksponen dalam tempoh 48 

jam pengeraman dalam LPM.  MIC bakteria untuk Cd, Zn, Pb dan Cr(VI) ditentukan 

dalam media pepejal dan cecair.  MIC yang diperolehi adalah lebih tinggi apabila 

menggunakan medium cecair. MIC untuk Cd, Zn, Pb dan Cr(VI) dalam medium cecair 

adalah 25, 75, 150, dan 3500 ppm masing-masing berbanding dengan medium pepejal 

MIC untuk Cd, Zn, Pb dan Cr(VI) adalah 10, 75, 250, 3000 ppm masing-masing. 

Urutan kesan ketoksikan logam berat terhadap Lysinibacillus fusiformis ZB2 adalah 

Cd> Zn> Pb> Cr(VI).  Bakteria ini didapati toleran terhadap Zn, Pb dan Cr(VI) dan 

mempunyai toleransi maksimum terhadap Cr(VI).  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study  

Heavy metals are elements with atomic weight ranging from 63.5 to 200.6 and 

have specific gravity more than 5.0 (Srivastava and Majumder, 2008).  Toxic metals 

such as mercury (Hg), chromium (Cr), lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), 

cadmium (Cd), arsenic (As), cobalt (Co) and tin (Sn); precious metals, such as 

palladium (Pd), platinum (Pt), silver (Ag), gold (Au) and ruthenium (Ru); and 

radionuclides such as uranium (U), radium (Ra) and americium (Am).  These three 

types of heavy metals are rising concerns because of their negative impact towards the 

environment and human health (Wang and Chen, 2006). 

Heavy metal pollution is known as a critical environmental problem as a result 

of the metals toxic effect and their accumulation throughout the food chain can cause 

severe problems to the ecology and human health (Malik, 2004). Wastewater 

containing heavy metals are discharged directly and indirectly into the environment 

particularly in developing countries (Fu and Wang, 2011).  Coal, natural gas, paper 

and chlor-alkali, metal plating, mining, fertilizer, tanneries, batteries and pesticides 

industries are known to be the source for heavy metal pollution (Matlock et al., 2002; 

Fu and Wang, 2011). 
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Growing interests among researchers in bioremediation of heavy metals by 

microorganisms in recent years are possibly due to its potential application in industry 

and scientific novelty of the microorganism (Singh et al., 2013).  Metal ions can be 

readily adsorbed and accumulated by bacteria, algae and fungi (Abbott et al., 2005; 

Volesky and Holan, 1995).  In the study for the heavy metal tolerance, the medium 

composition affects interactions between metal ions and microbes in terms of 

bioavailability due to accumulation and precipitation of metal ions (Kumar et al., 

2013).  As a result of low carbon source and negligible phosphate, low phosphate 

medium (LPM) provide more reliable results as compared to complex medium such 

as the Mueller-Hinton (MH) medium (Kumar et al., 2013).  Minimal medium also 

provide conditions that is more similar to those found in the environmental sample 

compared to that of rich medium (Karelova et al., 2011). 

Heavy metals are often used in textile processes (Rybicki et al., 2004) and 

eventually found in the textile wastewater in the form of free ionic metals or complex 

metals (Hill et al., 1993).  Heavy metals such as lead (Pb), cadmium (Cd), chromium 

(Cr), zinc (Zn), copper (Cu) and iron (Fe) are present in the textile dye of the textile 

effluent (Halimoon and Goh, 2010; Siddiqui et al., 2011).  In previous study by Kee 

et al. (2015), Lysinibacillus fusiformis strain ZB2 together with Bacillus pumilus strain 

ZK1, Bacillus cereus strain ZK2, Brevibacillus panacihumi strain ZB1 was used to 

treat real textile wastewater successfully for decolourization purpose and L. fusiformis 

ZB2 was identified as the dominant species in the mature granules.   

Bacterial strains are potential candidates for simultaneous removal of metals 

from wastes as they have high tolerance to different metals (Malik, 2004).  Since 

heavy metal pollution is becoming one of the major threats to the environment and 

possess many health hazards, bioremediation potential of bacterial isolates should be 

assessed by preliminary study in terms of their resistance level and the minimal 

inhibitory concentrations (MICs).  This is fundamental in order to check for the 

tolerance of the bacterial strains towards different heavy metals to develop suitable 

heavy metal waste remediation. 
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1.2 Problem Statement 

Heavy metal tolerance test of bacteria in complex medium results in higher 

tolerance behavior by the bacteria.  This is because the metals chelate with 

constituents of the complex medium resulting in metal precipitation and non-uniform 

availability of metals in the medium.  Low phosphate medium (LPM) is preferred 

over complex medium as the metal’s precipitation is reduced due to negligible 

phosphate and low carbon source, thus, more metal ions are available to the bacteria 

(Kumar et al., 2013).  However, the suitability of LPM as Lysinibacillus fusiformis 

ZB2 growth medium is still yet to be tested. 

In the last few decades, the river water and sediments are receiving increasing 

concentration of heavy metals.  Although industrialization has long been accepted as 

a hallmark of civilization, it is undeniable that industrial discharges have been causing 

negative impacts to the environment.  Mining, milling, surface finishing industries 

are the main sources of heavy metal pollution that discharge a variety of toxic metals 

such as Cd, Co, Cu, Ni, Pb and Zn into the environment.  The toxics and heavy metals 

in the industrial effluents are often discharged into the river which might be a source 

of drinking water for another town downstream (Moore, 1990; Ewan and Pamphlett, 

1996).  According to Barakat (2011), heavy metals are hazardous to human health as 

they may inhibit growth and development, cause organ damage and cancer, damage to 

nervous system and in extreme cases, death. 

Furthermore, there is an increasing demand to shift to cleaner production 

methods in different industries and develop environmental friendly, economical and 

efficient treatment technique for metal contaminated effluent as many industries have 

adhered to more stringent environmental regulations (Malik, 2004; Fu and Wang, 

2011).  A variety of methods are employed for the removal of heavy metal ions such 

as chemical precipitation, ion-exchange, adsorption, membrane filtration, 

electrochemical treatment technologies, etc. (Fu and Wang, 2011).  However, these 

methods have their disadvantages as they are expensive, not environmental friendly 
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and involve complex processes (Karman et al., 2015).  Also, remediation of heavy 

metal contaminated sites are unfeasible as heavy metals may disperse both horizontally 

and vertically as they migrate (Nikolaidis et al., 1999). 

Since heavy metals are the environmental priority pollutants and cause one of 

the most serious environmental problems, removal of these toxic heavy metals is 

essential in order to protect the people and environment (Fu and Wang, 2011).  In the 

past few decades, microbial mediated detoxification technologies are still being valued 

over physicochemical ones.  Biological remediation is receiving more attention as 

they are more economic and have long lasting nature (Ali et al., 2009).  Interactions 

of microbes and metals have significant environmental implications and monitoring as 

the microbes have adapted to resist the presence of metals or utilizes the metals for 

their growth.  One of the useful environmental implications is the use of bacteria to 

clean up metal polluted areas (Nithya et al., 2011). 

Thus, in this study, the low phosphate medium (LPM) with different 

combinations of carbon and nitrogen source was used to grow Lysinibacillus fusiformis 

ZB2 in order to test the suitability of this medium as the growth medium for the 

bacteria and subsequent heavy metal testing.  Furthermore, this bacteria was used to 

screen for its heavy metal tolerance and determine its minimal inhibitory concentration 

(MIC) to selected heavy metals which are Cd, Zn, Pb and Cr(VI) since these heavy 

metals are present mostly in the industrial effluents such as textile effluents. 
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1.3 Research Objectives 

There are three objectives for this study: 

i. To determine suitable carbon and nitrogen co-substrate for growth of 

Lysinibacillus fusiformis ZB2 in low phosphate medium (LPM) 

 

 

ii. To screen resistance of L. fusiformis ZB2 to selected heavy metals 

 

 

iii. To determine minimal inhibitory concentration (MIC) of L. fusiformis 

ZB2 to selected heavy metals 

 

 

 

 

1.4 Research Significance 

Heavy metals are used in many industries and this causes a lot of concerns as 

they are not biodegradable and can remain the environment for a long period of time.  

It causes harm to both environment and human health.  Conventional physico-

chemical methods are employed for the removal of the metals from heavy metal 

polluted sites, however, it has several disadvantages making remediation of heavy 

metal pollution a challenging task to achieve.  With the emergence of biotechnology, 

microorganisms such as bacteria, algae and fungi are studied and are found to be 

capable of tolerating with heavy metals.  In order to explore more potential microbe 

candidates for the remediation of heavy metal and overcome the limitation of physico-

chemical methods, more bacteria can be studied for their heavy metal tolerance.  

Therefore, in this study Lysinibacillus fusiformis ZB2 isolated previously from textile 

effluent was used to test for its heavy metal tolerance. 
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1.5 Scope of Research 

This study was mainly focused on heavy metal tolerance or resistance of 

Lysinibacillus fusiformis ZB2 in four selected heavy metals, namely, cadmium (Cd), 

zinc (Zn), lead (Pb), and chromium (Cr(VI)).  Cd, Zn, Pb, and Cr(VI) are usually 

present in many industrial effluent and cause hazardous effect to the environment and 

living organisms.  Therefore, these heavy metals were chosen for this study.  L. 

fusiformis ZB2 was previously isolated from the textile effluent.  The bacteria was 

grown in low phosphate medium (LPM) with optimisation of carbon and nitrogen 

source and the exponential growth phase in the best LPM was determined.  The heavy 

metal resistance of L. fusiformis ZB2 was tested by spot inoculation on low phosphate 

agar (LPA) and by growing the bacteria in LPM supplemented with different 

concentrations of heavy metals.  In general, the heavy metal resistance was 

determined in terms of minimal inhibitory concentration (MIC), which is the 

concentration of heavy metal that inhibit the bacteria growth in LPA and LPM.  The 

MIC and percentage of tolerance were investigated by evaluating growth in LPA and 

measurement of bacteria concentration at OD600 nm when the bacteria was grown in 

LPM incorporated with different concentrations of heavy metals.  
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