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ABSTRACT 

Object recognition is a process of identifying a specific object in an image or 

video sequence. This task is still a challenge for computer vision systems. Many 

different approaches of object recognition including the traditional classifier or deep 

neural network were proposed. The objective of this thesis is to implement a deep 

convolution neural network for object classification. Different architecture and 

different parameters have been tested in order to improve the classification accuracy. 

This thesis propose a very simple deep learning network for object classification which 

comprises only the basic data processing. In the proposed architecture, deep 

convolution neural network has a total of five hidden layers. After every convolution, 

there is a subsampling layer which consists of a 2×2 kernel to do average pooling. This 

can help to reduce the training time and compute complexity of the network. For 

comparison and better understanding, this work also showed how to fine tune the 

hyper-parameters of the network in order to obtain a higher degree of classification 

accuracy. This work achieved a good performance on Cifar-10 dataset where the 

accuracy is 76.19%. In challenging image databases such as Pascal and ImageNet, this 

network might not be sufficient to handle the variability.  However, deep convolution 

neural network can be a valuable baseline for studying advanced deep learning 

architectures for large-scale image classification tasks. This network can be further 

improved by adding some validation data and dropout to prevent overfitting.  
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ABSTRAK 

Pengenalan objek adalah proses mengenal pasti objek dalam imej atau video. 

Tugas ini masih merupakan satu cabaran untuk sistem penglihatan komputer. Pelbagai 

pendekatan berbeza untuk pengenalan objek termasuk pengelas tradisional atau “deep 

neural network” dibincangkan dalam tesis ini. Objektif projek ini adalah untuk 

melaksanakan “deep convolution neural network” yang digunakan untuk pengelasan 

objek. Selain itu, pelbagai seni bina dan parameter diuji untuk meningkatkan ketepatan 

klasifikasi.  Tesis ini mencadangkan “deep learning network” yang mudah untuk 

pengelasan objek yang terdiri daripada hanya memproses data asas. Dalam seni bina 

yang dicadangkan, konvolusi dalam rangkaian neural mempunyai lima lapisan 

tersembunyi. Selepas setiap konvolusi, terdapat lapisan “subsampling” yang terdiri 

daripada kernel 2×2 untuk melakukan pengumpulan purata. Ini boleh membantu untuk 

mengurangkan masa latihan dan mengira kerumitan rangkaian. Sebagai perbandingan 

dan pemahaman yang lebih baik, projek ini juga menunjukkan bagaimana untuk 

menala parameter-parameter rangkaian untuk mendapatkan ketepatan yang lebih 

tinggi. Kerja ini mencapai prestasi yang baik pada dataset “cifar-10” di mana ketepatan 

yang diperolehi adalah 76.19%. Dalam pangkalan data imej yang mencabar seperti 

“Pascal” dan “ImageNet”, rangkaian ini mungkin tidak mencukupi untuk 

mengendalikan variasi yang terdapat . Walau bagaimanapun, DCNN boleh menjadi 

asas untuk mengkaji “deep neural network” untuk tugas pengelasan imej yang lebih 

besar. Rangkaian ini boleh diperbaiki dengan menambah beberapa data pengesahan 

dan untuk mengelakkan keciciran “overfitting”.  
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

Object recognition is a process of finding and identifying a specific object in a 

digital image or video sequence. Humans can easily recognize an object in an image 

even through the object inside the image may vary somewhat in different sizes or 

scales, different vantage points and even partially obstructed from view. However, 

object recognition from an image or video is still a challenge for computer vision 

systems. Even with the help of smart algorithms and human assistants, a classifier in 

the computer is still unable to catch everything in an image (Sivic and Zisserman, 

2003). Many approaches to the task have been implemented over multiple decades. 

Object recognition task is successful if the network system is able to label the 

object based on models of known objects. For example, given an image containing one 

or more different objects with background, the network system is capable of assigning 

the labels to a set of regions in the image correctly as showed in Figure 1.1. The 

classification accuracy of the network system can be calculated by comparing the 

result with a set of labels corresponding to a set of objects known to the system. The 

object recognition has a very close relationship with segmentation. This is because if 

the network system is unable to recognize an object, segmentation cannot be done 

correctly, and without a good segmentation, object recognition cannot be done as well. 
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Figure 1.1 Object classification (Zhou et al., 2013) 

Machine learning is a set of algorithms that can learn and explore from the 

construction and recognize the patterns or objects from an input data. Therefore, 

machine learning can make accurate predictions for previously unseen data. Hence, 

machine learning can be used as a powerful tool to overcome the challenges in 

computer vision such as object recognition, natural language understanding, medical 

imaging, and web search/information retrieval. In the past few decades, machine 

learning shows that it can be used in many real-world applications and is successful in 

solving many artificial intelligence (AI) problems (Lee, 2010). For example, it has 

been successfully applied in practical speech recognition, effective web search, and 

face detection. 

Machine learning gives a handful of labeled examples and able to do binary 

classification. For example, given ten images, five images of table with the label zero 

and another five images of not table with the label one. The algorithm of the system 

starts to learn and identify images of table. After the training process is done and when 

new images are fed to the network, the network is able to produces the correct label. 

In other words, the network produce output zero if the image contains a table, and 

output one if the image does not contain a table. Recently, deep architectures show a 

good way to do binary representations by extracting the important features and 

characterizing of the input distribution. 

Deep learning also known as deep machine learning, deep structural learning 

or hierarchical learning is extension algorithms of machine learning that attempts to 



3 
 

 
 

model higher level of abstractions in data by using complex architectures. The deep 

learning structural composed of multiple layers and multiple non-linear 

transformations is used for hierarchical feature (Schmidhuber, 2014). The neural 

network is shallow if the number of layers of units, regardless of their types, is usually 

at most two. A deep neural network is deep if it has multiple, usually more than three 

layers of units. In essence, a neural network is deep when the following two conditions 

are met. The first condition is the network can be extended by adding layers consisting 

of multiple units and second condition is the parameters of each layer are trainable 

(Bengio and LeCun, 2007). From these conditions, it should be understood that there 

is no absolute number of layers that distinguishes deep neural networks from shallow 

ones. Rather, the depth of a deep neural network grows by a generic procedure of 

adding and training one or more layers, until it can properly perform a target task with 

a given dataset. In other words, the data decide how many layers a deep neural network 

needs (Cho, Raiko, and Ihler, 2011).  

Deep learning tries to move in this direction by capturing a good representation 

of input data by using compositions of non-linear transformations. A good 

representation can be defined as one that disentangles underlying factors of variation 

for input data. It turns out that deep learning approaches can find useful abstract 

representations of data across many domains (Ainsworth, 2006). Facebook is also 

planning on using deep learning approaches to understand its users. Deep learning has 

been so impactful in industry that MIT Technology Review named it as a top-10 

breakthrough technology of 2013. 

1.2 Problem Statement 

Recently, AI has become one of the most important domain in computer 

science. Companies like Google, Facebook and Microsoft have also started to form 

their own research teams and making some impressive acquisitions. The goal of 

machine learning is to develop algorithms that can learn and recognize patterns or 

objects from complex data and make accurate predictions for previously unseen data 

(Lee, 2010). However, machine learning is not perfect yet and have some limitations.  
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First and foremost, the success of machine learning systems often requires a 

preprocessing of labeled data into a usable form before going through training phase. 

This allows the machine learning algorithm of choice to make sense of the incoming 

data. However, it is expensive to preprocess a large amount of data since it often 

requires significant human labour. Besides that, the performance of current machine 

learning algorithms depends heavily on the particular features of the data chosen as 

inputs. Furthermore, many real-world machine learning applications require a good 

feature representation to be successful. In contrast, deep learning always can perform 

well without having the need for preprocessing of input image.  

Many existing machine learning algorithms using shallow architecture like 

support vector machines (SVM) which only have one hidden layer. Therefore, the 

internal representations learned by such shallow architecture are unable to extract 

some types of complex structure from input image because such system are simple 

(Bengio and LeCun, 2007). By contrast, deep learning architecture is able to extract 

these complex features and therefore object recognition by using deep learning with 

multi-layers of nonlinear processing are more efficient. 

Lastly, deep learning method often require long training time as it consists of 

multi-layers with more than 1000 parameters in order to classify object with high 

degree of accuracy. Hence, difference approach like max-pooling is used to reduce the 

size of the feature maps in order to reduce the compute complexity and eventually 

reduce the training time. The high accuracy of classification is needed so that it can be 

used for application. 

1.3 Objectives 

First and foremost, the objective of this project is to train the multi-layer deep 

convolution neural network (DCNN) by using hierarchical features learning from 

labeled inputs without the need to preprocess the input image. Next, the purpose of the 

project is to classify an object with higher degree of accuracy by fine tuning the 

hyperparameters of the network. The last objective is to reduce the training time and 
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compute complexity of the network by adding a subsampling layer after each 

convolution layer.  

1.4 Scope 

This research mainly focuses on how to train a DCNN system and then classify 

different objects into different classes correctly. In this work, each individual image 

inside the dataset contains only one object. Besides that, this study is limited to the 

software implementation using Matrix laboratory (MATLAB) and does not involved 

any hardware implementation. Next, the scope of this project is also limited to a still 

image. The segmentation and bounding box training are not covered in this research.  

1.5 Contributions 

The majority of this work shows how to implement a DCNN which is capable 

of extracting feature representations from a large amount of labeled data. Next, this 

work shows how neural network uses binary representation to classify an object into 

separate classes. Additionally, an attempt is made to optimize the hyperparameter of 

the DCNN to improve the performance. The DCNN model presented in this thesis is 

a very simple deep learning network which effectively extracts useful information for 

object classification. Adding average pooling to the network helps to simplify further 

on the calculation and reduces the training time. This proposed network structure can 

be a valuable baseline for the study of a more advanced deep learning architectures 

and be used for large-scale image classification tasks. Competitive results are also 

achieved on the Cifar-10 dataset. This constitutes an important generalization of deep 

learning to structured prediction and makes these models suitable for application. 



6 
 

 
 

1.6 Thesis Organization 

This project report consists of six chapters. The first chapter reviews the 

introduction, problem statement, objectives, scope, and contribution of the project. The 

second chapter will discuss on related works. Chapter three will discuss the theories 

of neural network and some background on deep learning. Chapter four discusses the 

method and tool used in this project and how to implement a DCNN. Results and 

discussion will be discussed in chapter five and lastly chapter six includes the 

conclusion, future works and recommendations of this work.  
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