EFFECT OF ROCK MASS PROPERTIES ON SKIN FRICTION OF ROCK SOCKET.

YUSLIZA BINTI ALIAS

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF ROCK MASS PROPERTIES ON SKIN FRICTION OF ROCK SOCKET.

YUSLIZA BINTI ALIAS

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil - Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **JUNE 2015**

Specially dedicated to my beloved husband, kids, parents and friends

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah the Almighty for His guidance and help in giving me the strengths to complete this report. In particularly, I would like to express my sincere appreciation to my project report supervisors, Assoc. Prof, Mohd For Mohd Amin and Prof. Ir. Dr Ramli bin Nazir for his encouragement, knowledge, motivation, patience and time in helping me along the preparations of this report. Big appreciation also dedicate to my bosses at Cawangan Kejuruteraan Jalan Dan Geoteknik, Jabatan Kerja Raya which encourage me to further my study especially to Puan Edayu binti Saleh@Aman and late Ir. Ramlee bin Othman and gives permission to used project data for this research.

I am grateful to have families which continues supporting me especially to my lovely husband Radin Herman bin Radin Hamdi, and parents who helping me a lot especially by taking care my kids during pursuing my study. Thank you very much and love you all so much.

Thanks also dedicated to my friends who give their support and help me along in finishing this journey directly or indirectly. Deep thanks also dedicated for lecturers who never give up helping me during continuing my study.

Last but not least, big appreciation for Jabatan Perkhidmatan Awam (JPA) who sponsored me to continue my study. Thanks also to my employer, Public Works Department (JKR) allow me to pursue my master degree.

ABSTRACT

Reliable design of foundation in rock requires an in depth knowledge on its mass properties. Most rock types exhibit high strength and therefore soketed bored pile is often the preferred method for foundation of major structures. However, in situ properties of a rock mass can be so much different from intact rock due to its discontinuous state. In addition, these in situ properties are difficult to determine reliably and this often leads to some degree of uncertainties in the design of the bored Consequently, bearing capacity of the in situ rock is often being pile. underestimated. The underestimation is mainly contributed by application of various reduction factors and correlations in the design process. For example ultimate skin friction (f_s) and rock socket length (L) are determined empirically, which is based on rock mass properties which are indirectly estimated using intact rock properties. This study is to highlight the importance of obtaining reliable properties of the *in situ* rock mass for proper utilisation of the rock mass strength. Data obtained from in situ measurement on rock mass, namely in situ modulus (E_m) and RQD, have been used to obtain a proper estimation of fs. To verify the positive contribution of these mass properties on the performance of bored pile, comparison was made with fs and L estimated using *in situ* measurement and empirical approach. Despite of limited field data, this study does indicate that design using rock mass properties from in situ measurement, gives a more reliable value of fs and L, as compared to the empirical approach. Field measurement such as Pressuremeter test does help in obtaining a reliable rock mass properties consequently, this allows for effective utilisation of the rock mass strength as an effective foundation.

ABSTRAK

Kefahaman mengenai sifat-sifat jasad batuan amat penting dalam merekabentuk asas binaan yang melibatkan kekuatan massa batuan. Batuan kebiasaanya mempunyai kekuatan semulajadi yang tinggi, oleh itu cerucuk tergerek yang disoketkan ke dalam jasad batuan merupakan pilih yang lazim bagi asas struktur mega. Walaubagaimanapun perlu diingat bahawa sifat-sifat jasad batuan yang diperoleh dari ujikaji makmal berkemungkinan tidak melambangkan sifat batuan sebenar, berikutan kewujudan satah ketakselarasan di dalam batuan di tapak. Tambahan pula, parameter sebenar yang diperlukan untuk merekabentuk cerucuk adalah sukar untuk diukur secara lansung di tapak dan ianya pula dipengaruhi oleh ketidaktentuan. Akibatnya keupayaan galas sebenar jasad batuan tidak dimanfaatkan secara berkesan. Keadaan ini wujud kerana penggunaan beberapa faktor penurunan dan korelasi semasa proses merekabentuk. Sebagai contoh, geseran muktamad cerucuk (f_s) dan panjang soket (L) direkabentuk menggunakan pendekatan empirikal di mana sifat-sifat jasad batuan dianggarkan secara tidak lansung menggunakan sifatsifat bahan batuan yang sempurna. Kajian ini menekankan tentang kepentingan memperolehi sifat-sifat massa batuan di tapak yang bertepatan bagi membolehkan kekuatan jasad batuan dimanfaatkan sepenuhnya. Data-data pengukuran di tapak seperti modulus perubahan bentuk di tapak (E_m) dan RQD telah digunakan bagi memberikan rekabentuk nilai fs yang lebih baik. Bagi tujuan menilai prestasi cerucuk, perbandingan telah dibuat di antara f_s dan L yang diperolehi menggunakan kaedah empirikal dan kaedah pengukuran di tapak. Walaupun dengan data di tapak yang terhad, kajian ini telah menunjukkan nilai rekabentuk fs dan L yang menggunakan pengukuran parameter di tapak dapat memberikan nilai yang lebih baik berbanding dengan kaedah empirikal. Pengukuran di tapak seperti menggunakan ujian Pressuremeter, dapat membantu untuk memperolehi sifat-sifat jasad batuan sebenar, dan ini secara tidak langsung dapat membantu ke arah memanfaatkan kekuatan semulajadi jasad batuan.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	ix
	LIST OF FIGURES	Х
	LIST OF ABBREVIATION AND SYMBOLS	xii
	LIST OF APPENDICES	xiv
1	INTRODUCTION	
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives	2
	1.4 Research Methodology	3
	1.5 Scope of Study	3
	1.6 Significance of Study	4
2	LITERATURE REVIEW	
	2.1 Introduction	5
	2.2 Rock Mass Properties versus Rock Material	5
	Properties	
	2.3 Relevant Rock Mass an Rock Material with	7

Regards to Bored Piles Performanc	e
-----------------------------------	---

	2.3.1 RQD	8
2.4	In Situ Measurement of Rock Mass Properties.	13
	2.4.1 Pressuremeter Test, PMT	13
2.5	Bored Pile Design Based on Tomlinson, 2001	18
2.6	Instrumented Static Load Test Pile	20

3 METHODOLOGY

3.1	Introduction	23
3.2	General Project Site Condition	24
3.3	Background of Case Study	26
3.4	Data Gathered	27
	3.4.1 Bore Holes Records	27
	3.4.2 Laboratory Test Data	27
	3.4.3 RQD	28
	3.4.4 PMT Data	29
	3.4.5 Instrumented Static Load Test Data	30
3.5	Compilation of Data	31
3.6	Analysis Method	32
3.7	Result Comparison and Findings	32
3.8	Conclusion and Recommendations	33

4

RESULTS AND DISCUSSIONS

4.1	Introduction	34
4.2	Approached in Analysis Data	34
4.3	Approach in Establishing Correlations	35
4.4	Micropiles Static Load Test Interpretation	35
	4.4.1 Trial Micropile TP1	36
	4.4.2 Trial Micropile TP3	36
	4.4.3 Trial Micropile TP4	37
	4.4.4 Trial Micropile TP5	38
4.4	PMT Data	39
4.5	Laboratory Test Data	41

4.6 Relationship Between RQD and f_s	41
4.7 Comparison f_s between β estimated using RQD	44
and mass factor, <i>j</i> .	
4.8 Relationship between j and β	48
4.9 Micropile Socket Length Design using β	52
Estimated from <i>j</i> and RQD.	

5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	55
5.2	Conclusions	56
5.3	Recommendations	57

REFERENCES	58
APPENDICES	61
Appendix A	62
Appendix B	74
Appendix C	79
Appendix D	86

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Rock Quality Designation, RQD conditions (Barton et. al., 1974)	9
2.2	SBP Guidance value based On UCS, RQD and fractures spacing of <i>in situ</i> rock (Waltham, 2009)	10
2.3	Values of Nj (Goel and Singh, 1999)	12
2.4	Several rock socket friction design values, (Jahanmirinezhad, H, 2011)	20
3.1	Equivalent RQD values for comparison purposes in this study	32
4.1	Maximum mobilised fs for each RQD	39
4.2	Summary of PMT results near TP4	40
4.3	Average UCS and young modulus/intact modulus, $E_{\rm i}$ in this study	41
4.4	Calculated empirical f_s and recorded max mobilised f_s	41
4.5	Comparison of f_s obtained from β based E_m/E_i and obtained from β based RQD.	46
4.6	Back Calculations of β values.	50
4.7	Comparison of design length from different way of estimating β	53

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Rock Mass	6
2.2	Rock Samples (Intact)	6
2.3	Rock Mass Element (Edelbro, 2003)	7
2.4	Core samples obtained for RQD determination	9
2.5	Allowable bearing pressure for a jointed rock mass	11
	(Peck et.al., 1974)	
2.6	Types of PMT available in the market (Clarke, 1995)	14
2.7	Radial deformation of membrane (probe), (Zhang,	15
	2004).	
2.8	Examples of ideal PMT result (Bullock, 2004)	16
2.9	Oyo Elastometer-2 Equipment	16
2.10	Sample graph for Tangent Modulus, E_t and Secant	17
	Modulus, E _s	
2.11	Relation between unconfined compression strength, q_{uc}	19
	and rock socket reduction factor, α (Tomlinson, 2001).	
2.12	Relation mass factor, $j = E_m/E_i$ and rock socket	19
	correction factor, β (Tomlinson, 2001)	
2.13	Proposed Layout of Instrumented Load Test Pile	22
	Layout	
3.1	Flow chart in conducting this study	24
3.2	Geological Formation at Project Site (Geology Map of	25
	Peninsular Malaysia, 1985)	
3.3	Aerial photograph of the project site	26
3.4	Core Sample obtained for RQD determination on site	28
3.5	Carrying out PMT on site	29

FIGURE NO.

TITLE

PAGE

3.6	Instrumented Micropile	30
3.7	Instrumented Static Load Test Carried out on site	31
4.1	Mobilised f_s with respect to load applied at 3^{rd} cycle of	36
	loading for TP1	
4.2	Mobilised f_s with respect to load applied at 3^{rd} cycle of	37
	loading for TP3	
4.3	Mobilised f_s with respect to load applied at 3^{rd} cycle of	38
	loading for TP4	
4.4	Mobilised f_s with respect to load applied at 3^{rd} cycle of	38
	loading for TP4	
4.5	Relationship between RQD and Mass Modulus, E_m	40
4.6	Comparison between max mobilised f_s and f_s calculated	42
	empirically.	
4.7	Comparison between max mobilised f_s and f_s calculated	42
	empirically – without outlier.	
4.8	Idealised presentation of mechanical interlock	44
	development with subject to slip (load) in rock	
	mass.(Littlejohn and Bruce, 1977).	
4.9	Comparison between max mobilised f_s and f_s calculated	45
	empirically.	
4.10	Relation between j and β (Tomlinson, 2001)	48
4.11	Back calculation chart relation between j and β	49
4.12	Back calculation chart relation between j and β - Scale	50
	adjusted to meet established chart Figure 4.10	
4.13	Comparison of designed socket length from different	53
	way of estimating β	

LIST OF ABBREVIATION AND SYMBOLS

А	-	Area of bored pile (skin area)
В	-	Footing Width
CKJG	-	Cawangan Kejuruteraan Jalan Dan Geoteknik
D	-	Diameter of Foundation
E_i	-	Intact Modulus
E_m	-	In situ Modulus
E_s	-	Secant Modulus
E_t	-	Tangent Modulus
FOS	-	Factor of Safety
$\mathbf{f}_{\mathbf{s}}$	-	Ultimate Skin Friction
h	-	Depth of Rock Socket
j	-	Mass factor
JKR	-	Jabatan Kerja Raya
N_d	-	Depth Factor
Nj	-	Empirical Coefficient depending on Spacing Discontinuities
\mathbf{P}_{f}	-	Creep Pressure
P_L	-	Limit Pressure
PMT	-	Pressuremeter Test
q_a	-	Allowable Bearing Pressure
q_c	-	Average laboratory UCS
Qu	-	Ultimate Geotechnical capacity
q_{uc}	-	UCS from intact rock
RMR	-	Rock Mass Rating
RQD	-	Rock Quality Designation
S	-	Spacing of Joint
SBP	-	Safe Bearing Pressure
SRF	-	Strength Reduction Factor

- UCS Unconfined Compression Strength
- UCT Unconfined Compression Test
- VW Vibrating Wire Extensometer
- VWSG- Vibrating Wire Strain Gauge
- α Rock Socket Reduction Factor
- β Rock Socket Correction Factor
- δ Joint Opening

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Bore Holes Results	62
В	Laboratory Test Results	74
С	PMT Results	79
D	Instrumented Static Load Test Results	86

CHAPTER 1

INTRODUCTION

1.1 Introduction

A reliable and design of a structure is certainly expensive particularly if parameters related to its design require detailed and complex investigation as to reduce degree of uncertainty. Disagreement between project owners, contractors and designers are common in the process of achieving the ultimate design state and serviceability of a structure at minimal cost. The client tends to minimize the cost, while the designers prefer to design conservatively as professional obligations.

In Malaysia, foundation design for mega structures is one of the problems faced by key players in construction industry. In particular, difficulties are arise in estimating and evaluating rock mass properties and strengths that are relevant for design of bored pile socketed in rock. Some of the rock mass properties require direct measurements (*in situ* tests) on the rock body for reliability of data. However these *in situ* tests are complex and costly, consequently, the design of the socket length for the bored pile is often based on empirical approach. The empirical approach is based on past experience and as such, may not be that reliable for rock masses which are known to vary significantly with respect to locality and prevailing geological environment.

Difficulties in determining *in situ* properties and strength of rock mass often lead some degree of uncertainties in the design of bored pile socket length. Consequently, bearing capacity of the *in situ* rock is often being underestimated or over-designed of the rock socket length. The underestimation is mainly contributed by application of various reduction factors and factor of safety in the design process. For example, ultimate skin friction (f_s) determined using empirical is based on rock mass properties which are indirectly estimated from its intact properties. Accuracy of such estimation therefore subjected to uncertainties and leads to over-designed.

In practice, bored piles with diameter less than 300mm are called as micropiles due to the difficulties in boring small shaft diameter size and using grout instead of concrete to form the pile shaft.

1.2 Problem Statement

Design of effective bored pile requires reliable input parameters, especially the mass properties of the in situ rock mass. These properties include *in situ* modulus and Rock Quality Designation (RQD). Use of these actual rock mass properties will ensure the utilisation of full strength rock capabilities where the bored pile is to be socketed. Although to acquire these *in situ* properties is expensive and time consuming, however it gives the advantage that the pile is not over designed.

1.3 Objectives

The objectives of this research are:-

- To understand the strength and properties of rock mass which are essential for design of socket for bore piles in limestone.
- ii) To collect secondary data on rock mass properties and bore pile tests, and to evaluate bore pile performance (f_s) based on measured rock mass properties and empirical approach.

iii) To proof that design of rock socket length using data from actual measurement on *in situ* rock mass gives a more reliable design of f_s as compared to empirical approach.

1.4 Research Methodology

Methodology is framed to meets the objectives, the raft methodology in carrying out this study are stated below. Details research methodology will be explained in chapter 3.

- To search and review (i.e from books, journals, technical reports) the strength and properties of rock mass which are essential for design of socket for bore piles in limestone.
- ii) To collect secondary data from relevant authority; Jabatan Kerja Raya (JKR), pressure meter test (PMT) specialist on rock mass properties and bore pile tests, and for bore pile performance (f_s) evaluation based on measured rock mass properties and empirical approach.
- iii) To analyse and to verify that design of rock socket length using data from actual measurement on *in situ* rock mass gives a more reliable design as compared to empirical approach.

1.5 Scope of Study

This study is aimed at looking into the effect of mass properties of limestone on socket length of bored pile and its f_s . Specifically, the study compares the resulting socket length, for a given load on pile, using rock mass properties derived from *in situ* measurement and those properties derived by empirical approach. The interest mass properties of limestone are RQD and *in situ* modulus (E_m) of limestone where the bored pile is to be socketed. Effect of weathering on rock and structural capacity of bored will not be considered in this research.

1.6 Significance of Study.

Reliable and representative properties of *in situ* rock mass are essential for proper design of cast in situ bored pile socket length and f_s . Such approach also enables for proper utilisation of strength of the *in situ* rock, which may not possible in empirical approach. *In situ* measurement of rock mass parameters such as E_m and RQD using specific field test are among the procedures being recommended.

REFERENCES

- Barton, N., Lien, R., & Lunde, J. (1974), *Engineering classification of rock masses* for the design of tunnel support, Rock Mechanics, V.6, No.4, pp.189-236.
- Bullock, P.J. (2004), In situ rock modulus apparatus, *Final Report Contract No. BC354 RPWO No. 13*, Department of Civil & Coastal Engineering University of Florida, Clarke, B.G. (1995). *Pressuremeter in Geotechnical Design.* (1st ed.). Great Britain:
- University Press, CambridgeEdelbro, C. (2003), Rock Mass Strength A Review, Technical Report, Department of Civil Engineering, Rock Mechanics Div., Lulea University of Technology,ISSN 1402-1536-ISRN
- Hudson, J.A. (1989). Rock Mechanics Principles in Engineering Practice. *CIRIA*. Butterworth & Co, London.
- Failmezger, R.A., Zdinak, A.L., Darden, J.N. & Fahs, R. (2005), Use of
 Pressuremeter for Deep Foundation Design, *50 ans de pressiometres*. Vol. 1.
 Gambin, Magnan et Mestat (ed.), Presses de I'ENPC/LCPC, Paris.
- ISRM (1981), Rock characterisation tesing and monitoring, Int. Society of Rock Mechanics suggested methods, Pergamon Press, Oxford
- Jahanmirinezhad, H (2011), Prediction of Bearing Capacity of Bored Pile Socketted in Limestone Of Varying Rock Quality Designation, Master Thesis, Universiti Teknologi Malaysia.
- Jabatan Kerja Raya (2009) Laporan Penyiasatan Tanah. Projek PenyesuaianLalulintas Di Persimpangan Bertingkat, Pandan Indah, MRRII, Kuala Lumpur, *Report submitted by Kumpulan IKRAM Sdn. Bhd.*, Kajang Selangor, 31 Julai 2009.
- Neoh, C.A. (1998), Design & construction of pile foundation in limestone foundation, *Journal of Institution of Engineers*, Malaysia, Vol. 59, No. 1, pp. 23-29

- Panji Bersatu Sdn. Bhd. (2010a). Report on Pressuremeter Test in Limestone (for PMT Test1 to Test 6) - Projek Penyuraian Lalulintas Di Persimpangan Pandan Indah, MRRII, Kuala Lumpur. Report prepared for Jabatan Kerja Raya (Bahagian Jalan), November 2010.
- Panji Bersatu Sdn. Bhd. (2010b). Report on Static Axial Compression Load Tests on Instrumented Micropile (for TP1). Projek Penyuraian Lalulintas Di Persimpangan Pandan Indah, MRRII, Kuala Lumpur. Report prepared for Jabatan Kerja Raya (Bahagian Jalan), 18 Jun 2010.
- Panji Bersatu Sdn. Bhd. (2010b). Report on Static Axial Compression Load Tests on Instrumented Micropile (for TP3). Projek Penyuraian Lalulintas Di Persimpangan Pandan Indah, MRRII, Kuala Lumpur. Report prepared for Jabatan Kerja Raya (Bahagian Jalan), 18 Jun 2010.
- Panji Bersatu Sdn. Bhd. (2010b). Report on Static Axial Compression Load Tests on Instrumented Micropile (for TP4). Projek Penyuraian Lalulintas Di Persimpangan Pandan Indah, MRRII, Kuala Lumpur. Report prepared for Jabatan Kerja Raya (Bahagian Jalan), 18 Jun 2010.
- Panji Bersatu Sdn. Bhd. (2010b). Report on Static Axial Compression Load Tests on Instrumented Micropile (for TP5) – Projek Penyuraian Lalulintas Di Persimpangan Pandan Indah, MRRII, Kuala Lumpur. Report prepared for Jabatan Kerja Raya (Bahagian Jalan), 18 Jun 2010.
- Peck, R.B., Hanson, W.E & Thornburn, T.H (1974), *Foundation Engineering*, 2nd
 ed., John Wiley & Sons, Inc.
- Stacey T.R. and Page C.H. (1986), *Practical Handbook for Underground Rock Mechanics*, Trans Tech Publ., Germany.
- Singh, B. and Goel, R.K., (1999), Rock Mass Classification, A Practical Approach in Civil Engineering. 1st edn., Elsevier Science Ltd., Oxford.
- Tomlinson, M.J. (2001), *Foundation Design and Construction*, 7th ed., Pearson Education Ltd.

Wyllie, D.C. (1991), Foundation on Rock (1st edtn), E and FN Spon

- Waltham, T. (2009). Foundations of Engineering Geology, 3rd, Spon Press, London & New York.
- Weltman, A. J and Head J.M., (1983), Site Investigation Manual, Contruction Industry Research And Information Association, London.

Zhang, 2004, *Pressuremeter Test, An Hong Kong Case* by Fugro Geotechnical Services (HK) Ltd