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ABSTRACT 

 

 

 

 

 Unmanned Aerial Vehicles (UAV), which are commonly known as drones, 

are aircrafts that have no human pilot on board. A UAV always implements plenty 

sophisticated functions such as for military surveillance. Among all these 

complicated functions, one common task is normally implemented on a UAV which 

is the moving object detection algorithm. There are mainly two ways to implement 

this algorithm on a UAV, one is to use ground control station and another way uses 

on board processing method. Implementation of an on board processing unit on a 

UAV can eliminate the need of video streaming and can implement the computer 

vision algorithms on board. On board processing unit has mainly two options in 

implementing the moving object detection algorithm: hardware implementation and 

software implementation. Hardware implementation means the entire algorithm is 

designed and transformed into a hardware circuitry. Hardware implementation 

usually provides promising processing speed. However, whenever there is a slight 

change in the algorithm, there will be a huge redesign effort and development costs 

involved. Therefore, this research wants to prove that software implementation of the 

same algorithm by using a low power general purpose processor can achieve the 

same processing speed as the hardware implementation. Moreover, the processing 

speed of the algorithm can be further improved by applying appropriate code 

optimization techniques on the software program of the algorithm. Experimental 

results show that software implementation of the UAV moving object detection 

algorithm by using low power Intel Atom processor D2700 can achieve 30 frame per 

second processing speed. This research also proved that code optimizing techniques 

such as loop unrolling and Single Instruction Multiple Data (SIMD) can improve the 

processing speed of the algorithm up to 25 percent. In conclusion, software 

implementation of the UAV moving object detection algorithm, which requires low 

redesign effort and development cost, is capable of achieving the same processing 

speed provided by the hardware implementation.   
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ABSTRAK 

 

 

 

 

 Kenderaan tanpa pemandu udara (UAV), yang dikenali sebagai pesawat 

robot, adalah pesawat yang tidak mempunyai juruterbang manusia di atas kapal. 

UAV sentiasa melaksanakan banyak fungsi yang canggih seperti pengawasan 

tentera. Di antara semua fungsi rumit ini, satu tugas yang biasa dilaksanakan oleh 

UAV adalah algoritma pengesanan objek bergerak. Terdapat dua cara utama untuk 

melaksanakan algoritma ini pada UAV, salah satu adalah dengan menggunakan 

stesen kawalan tanah dan cara kedua adalah menggunakan kaedah pemprosesan atas 

kapal. Pelaksanaan unit pemprosesan atas kapal pada UAV boleh menghapuskan 

keperluan video aliran dan boleh melaksanakan algoritma penglihatan komputer di 

atas kapal. Unit pemprosesan atas kapal boleh dilaksanakan dengan dua pilihan 

algoritma pengesanan objek bergerak: pelaksanaan perkakasan dan pelaksanaan 

perisian. Pelaksanaan perkakasan bermakna keseluruhan algoritma direka dan diubah 

menjadi litar perkakasan. Pelaksanaan perkakasan biasanya memberikan kelajuan 

kepada pemprosesan. Walau bagaimanapun, apabila terdapat sedikit perubahan 

dalam algoritma, usaha besar reka bentuk semula dan kos pembangunan diperlukan. 

Oleh itu, kajian ini ingin membuktikan bahawa pelaksanaan perisian algoritma yang 

sama dengan menggunakan pemproses kegunaan am kuasa rendah, boleh mencapai 

kelajuan pemprosesan yang sama seperti pelaksanaan perkakasan. Selain itu, 

kelajuan pemprosesan algoritma boleh dipertingkatkan lagi dengan menggunakan 

teknik pengoptimuman kod yang sesuai kepada algoritma program perisian. 

Keputusan eksperimen menunjukkan bahawa pelaksanaan perisian daripada 

algoritma pengesanan objek UAV bergerak dengan menggunakan kuasa rendah Intel 

Atom pemproses D2700 boleh mencapai kelajuan memproses 30 kerangka per saat. 

Kajian ini juga membuktikan bahawa teknik kod mengoptimuman seperti “loop 

unrolling” dan “Satu Arahan Pelbagai Data (SIMD)” boleh meningkatkan kelajuan 

pemprosesan algoritma sehingga 25 peratus. Kesimpulannya, pelaksanaan perisian 

daripada algoritma pengesanan objek UAV bergerak, yang memerlukan usaha reka 

bentuk semula dan kos pembangunan yang rendah, mampu mencapai kelajuan 

pemprosesan yang sama disediakan oleh pelaksanaan perkakasan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Unmanned aerial vehicle, which normally known as UAV, can generally be 

defined as an aircraft that has no on-board pilot and it can be either piloted remotely 

or flown autonomously. They are often large enough to accommodate sensors, 

cameras or other information gathering equipment that can provide low-cost aerial 

information such as large scale low altitude imaging [3]. Over the past five years, 

UAV is widely used for diverse operations such as military reconnaissance, 

intelligence-gathering, public security, law enforcement, border patrol, emergency 

services and video surveillance system in this technology advanced world [3] [4]. 

With its small and light size, UAV can be flown at a very low altitude range in 

hazardous area to acquire high resolution images for rescue or other useful purposes. 

 

 

Among most of the UAV operations, one common basic task, which is 

moving object detection process, is often used to locate and track a moving object of 

interest in a series of visual images from a bird’s eyes view captured by the camera 

on UAV. UAV control unit will then utilize the processed video frames/images to 

determine the next operation to be carried out by the UAV. Therefore, the 

implementation of vision processing algorithm such as moving object detection 

process on UAV has become a preeminent task [1]. Figure 1.1 shows an example of 

object tracking snapshot from camera on UAV.  
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Figure 1.1 Moving object detection and locating from video captured by camera on 

UAV [1] 

 

 

 

 

1.2 Background of the Problem 

 

 

Although the UAV technology holds considerable advantages in the video 

surveillance system, there are still some limitations faced by this technology. 

Conventionally, an Unmanned Aerial System (UAS) consists of a UAV, a ground 

control station and a communications data link for UAV command and control sent 

from ground control station [4]. Computer vision processing applications is usually 

compute expensive process that requires large amount of computing power. 

Previously, this high processing power requirement could be achieved on bulky 

processing units which can be carried only by large and high cost UAVs.  

 

 

A typical attempt to enable vision processing unit is to include a ground 

control station whereby the video frames/images captured by the on board camera 
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are fed back to station and the processed results and control instructions are sent back 

to the UAV [5]. However this approach is not practical and with limited success due 

to the delays and interferences imposed to the system by the imperfection of the 

communications data link between the ground control station and the UAV. Blurred 

images and videos with degraded quality received will result in inaccurate object 

detection and tracking.  

 

 

Rather than using a ground control station as the processing and control unit 

for the UAV system, another approach will be implementing an on-board processing 

unit on the UAV so that UAV can perform computer vision processing itself and 

eliminate the need to stream the video captured through communication link. 

However, driven by the intense development of actuators and sensors, unmanned 

aerial vehicle are getting lighter, smaller and less expensive but with more 

sophisticated capabilities. This factor introduces several constraints such as weight, 

size and power constraints in selecting the on-board embedded system that has 

processing capabilities required by the computer vision applications. In short, a low 

power consumption, light weight, small size and high performance embedded system 

would be the best solution for the on-board processing unit on the UAV [1] [5] [6].  

 

 

 

 

1.3 Statement of the Problem 

 

 

 Realization of the on-board computer vision processing algorithm on UAV 

can be achieved with two different methods which are the hardware implementation 

on programmable hardware components such as Field Programmable Gate Array 

(FPGA) or Application Specific Integrated Circuit (ASIC) and the software 

implementation on the programmable platform such as a General Purpose Processor 

(GPP) [9]. Due to the high cost of developing ASICs, FPGA circuits are now 

considered as appealing devices for hardware implementation. The promising 

performance and power efficiency make FPGA an attractive platform for 

implementing computer vision applications. However, the design and redesign 

(maintenance) effort for FPGA remains a significant barrier. FPGA-based design 
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often requires developing time an order of magnitude more than pure software 

implementation [8]. Furthermore, hardware design expertise is rare as compared with 

software design expertise is also one of the drawbacks in FPGA design.  

 

 

Although software implementations require less development infrastructure, 

skill level and design time, it has the performance gap and power efficiency issues to 

cater on. This study believes that appropriate code restructuring and optimization can 

close the performance gap and achieve better processing speed with software 

implementation. Moreover, with intense improvement achieved by the general 

purpose processors recently, low power consumption processor with high processing 

speed, light weight and small size are highly available in the market nowadays with 

reasonable pricing. Therefore, now is the right timing to evaluate the software 

implementation on the on-board vision processing algorithm. 

 

 

 

 

1.4 Objectives of the Study 

 

 

 The objectives of this study are listed as the following: 

1. To implement a UAV moving object detection algorithm on a low power 

processor. The study is focused on implementing the algorithm mentioned on 

embedded system with Intel Atom Processor as of now. 

2. To perform profiling on the UAV moving object detection algorithm. 

3. To perform benchmarking on the Intel Atom processor. 

4. To perform code optimization on the UAV moving object detection 

algorithm. 

5. The ultimate goal of this study is to implement a real time embedded system 

with the Intel Atom processor that can process 30 frames per second 

processing speed using the UAV moving object detection algorithm. 
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1.5 Scope of Work 

 

 

 The scopes of this study are as follows: 

1. The UAV moving object detection algorithm used in this study is an existing 

algorithm based on [1]. 

2. The only embedded programming language used in this study is C 

Programming. 

3. The embedded system to be used in this study is targeted on embedded 

system with Intel x86 architecture processor. The study is focused on 

embedded system with Intel Atom Processor as of now. 

4. Pre-capture video files and existing image database are used in verifying the 

performance of the algorithm and embedded system. The current database 

selected is Video Verification of Identity (VIVID) database [7] provided by 

Defense Advanced Research Project Agency (DARPA).  

 

 

 

 

1.6 Research Contributions 

 

 

 This research contributes in several areas as follows: 

1. A software implementation of low cost, high performance moving object 

detection algorithm on a low power embedded system. 

2. Several code optimization techniques that are capable to improve the 

computer vision processing algorithm. 

 

 

 

 

1.7 Thesis Organization 

 

 

 This thesis is subdivided into 5 chapters: 

1. Chapter 1 : Introduction 
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This chapter outlines the basic understanding on the problem background, 

objectives, scope and contributions of this research. 

 

2. Chapter 2 : Literature Review 

This chapter includes in-depth literature review on all the related fields such 

as the algorithm of UAV moving object detection, processor architectures, 

code profiling methods, processor benchmarking techniques and code 

optimization techniques. 

 

3. Chapter 3 : Research Methodology 

This chapter describes the flow and methodology used in conducting the 

entire research. Information such as processor board, benchmarking codes, 

video database and profiling tool being used can be found in this chapter. 

 

4. Chapter 4 : Experimental Results and Discussion 

This chapters consists of all the results, graphs of data and corresponding 

discussion on the results for all the experiments conducted in this research. 

 

5. Chapter 5 : Conclusion and Future Work 

This chapter concludes all the findings and achievements obtained in this 

research and suggests several enhancements can be done in future. 
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