

IMPLEMENTATION OF UNMANNED AERIAL VEHICLE MOVING OBJECT

DETECTION ALGORITHM ON INTEL ATOM EMBEDDED SYSTEM

CHEONG WEI WEI

UNIVERSITI TEKNOLOGI MALAYSIA

IMPLEMENTATION OF UNMANNED AERIAL VEHICLE MOVING OBJECT

DETECTION ALGORITHM ON INTEL ATOM EMBEDDED SYSTEM

CHEONG WEI WEI

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering

(Electrical - Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2015

iii

Specially dedicated to my beloved family, lecturers and friends

For the guidance, encouragement and inspiration

Throughout my journey of education

iv

ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to express my highest

gratitude to my project supervisor, Dr. Usman Ullah Sheikh for his valuable

guidance and support. Without his highly knowledgeable suggestions, I would not be

able to complete this research.

Secondly, I would like to express my sincere thanks to my manager,

colleagues and friends that have lent their helping hands when I was in trouble. I am

extremely thankful and indebted to them.

Last but not least, I am grateful to have my family’s and partner’s support

along the journey for this research. Their unceasing encouragement and attention

have motivated me whenever I wanted to give up.

v

ABSTRACT

 Unmanned Aerial Vehicles (UAV), which are commonly known as drones,

are aircrafts that have no human pilot on board. A UAV always implements plenty

sophisticated functions such as for military surveillance. Among all these

complicated functions, one common task is normally implemented on a UAV which

is the moving object detection algorithm. There are mainly two ways to implement

this algorithm on a UAV, one is to use ground control station and another way uses

on board processing method. Implementation of an on board processing unit on a

UAV can eliminate the need of video streaming and can implement the computer

vision algorithms on board. On board processing unit has mainly two options in

implementing the moving object detection algorithm: hardware implementation and

software implementation. Hardware implementation means the entire algorithm is

designed and transformed into a hardware circuitry. Hardware implementation

usually provides promising processing speed. However, whenever there is a slight

change in the algorithm, there will be a huge redesign effort and development costs

involved. Therefore, this research wants to prove that software implementation of the

same algorithm by using a low power general purpose processor can achieve the

same processing speed as the hardware implementation. Moreover, the processing

speed of the algorithm can be further improved by applying appropriate code

optimization techniques on the software program of the algorithm. Experimental

results show that software implementation of the UAV moving object detection

algorithm by using low power Intel Atom processor D2700 can achieve 30 frame per

second processing speed. This research also proved that code optimizing techniques

such as loop unrolling and Single Instruction Multiple Data (SIMD) can improve the

processing speed of the algorithm up to 25 percent. In conclusion, software

implementation of the UAV moving object detection algorithm, which requires low

redesign effort and development cost, is capable of achieving the same processing

speed provided by the hardware implementation.

vi

ABSTRAK

 Kenderaan tanpa pemandu udara (UAV), yang dikenali sebagai pesawat

robot, adalah pesawat yang tidak mempunyai juruterbang manusia di atas kapal.

UAV sentiasa melaksanakan banyak fungsi yang canggih seperti pengawasan

tentera. Di antara semua fungsi rumit ini, satu tugas yang biasa dilaksanakan oleh

UAV adalah algoritma pengesanan objek bergerak. Terdapat dua cara utama untuk

melaksanakan algoritma ini pada UAV, salah satu adalah dengan menggunakan

stesen kawalan tanah dan cara kedua adalah menggunakan kaedah pemprosesan atas

kapal. Pelaksanaan unit pemprosesan atas kapal pada UAV boleh menghapuskan

keperluan video aliran dan boleh melaksanakan algoritma penglihatan komputer di

atas kapal. Unit pemprosesan atas kapal boleh dilaksanakan dengan dua pilihan

algoritma pengesanan objek bergerak: pelaksanaan perkakasan dan pelaksanaan

perisian. Pelaksanaan perkakasan bermakna keseluruhan algoritma direka dan diubah

menjadi litar perkakasan. Pelaksanaan perkakasan biasanya memberikan kelajuan

kepada pemprosesan. Walau bagaimanapun, apabila terdapat sedikit perubahan

dalam algoritma, usaha besar reka bentuk semula dan kos pembangunan diperlukan.

Oleh itu, kajian ini ingin membuktikan bahawa pelaksanaan perisian algoritma yang

sama dengan menggunakan pemproses kegunaan am kuasa rendah, boleh mencapai

kelajuan pemprosesan yang sama seperti pelaksanaan perkakasan. Selain itu,

kelajuan pemprosesan algoritma boleh dipertingkatkan lagi dengan menggunakan

teknik pengoptimuman kod yang sesuai kepada algoritma program perisian.

Keputusan eksperimen menunjukkan bahawa pelaksanaan perisian daripada

algoritma pengesanan objek UAV bergerak dengan menggunakan kuasa rendah Intel

Atom pemproses D2700 boleh mencapai kelajuan memproses 30 kerangka per saat.

Kajian ini juga membuktikan bahawa teknik kod mengoptimuman seperti “loop

unrolling” dan “Satu Arahan Pelbagai Data (SIMD)” boleh meningkatkan kelajuan

pemprosesan algoritma sehingga 25 peratus. Kesimpulannya, pelaksanaan perisian

daripada algoritma pengesanan objek UAV bergerak, yang memerlukan usaha reka

bentuk semula dan kos pembangunan yang rendah, mampu mencapai kelajuan

pemprosesan yang sama disediakan oleh pelaksanaan perkakasan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiv

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Background of the Problem 2

 1.3 Statement of the Problem 3

 1.4 Objectives of the Study 4

 1.5 Scope of the Study 5

 1.6 Research Contributions 5

 1.7 Thesis Organization 5

2 LITERATURE REVIEW 7

 2.1 UAV Moving Object Detection and Tracking

Algorithm

7

 2.2 General Purpose Processors (GPPs) 12

 2.2.1 Intel Atom Processor 14

 2.2.2 ARM Processor 17

 2.3 Source Code Profiling 20

viii

 2.4 Processor Benchmarking 22

 2.5 Code Optimization 23

 2.5.1 Optimizing Compiler 24

 2.5.2 Loop Transformation 24

 2.5.3 Data Level Parallelism 26

 2.5.4 Thread Level Parallelism 28

3 RESEARCH METHODOLOGY 30

 3.1 Research Design and Procedure 30

 3.2 Video Database 32

 3.3 Benchmarking Program 34

 3.4 Processor Boards/Platforms 35

4 EXPERIMENTAL RESULTS AND DISCUSSION 36

 4.1 Processor Benchmarking 36

 4.2 UAV Moving Object Detection and Tracking

Algorithm Profiling

38

 4.3 Algorithm Profiling Using Intel VTune

Amplifier

43

 4.4 Comparison between Optimizing Compilers 45

 4.5 Algorithm Performance after Applying Single

Instruction Multiple Data

46

 4.6 Algorithm Performance after Applying Loop

Unrolling

47

 4.7 Algorithm Performance after Applying

Multithreading

49

 4.8 Algorithm Performance after combining loop

unrolling and SIMD

51

 4.9 Result Analysis and Discussion 51

5 CONCLUSION AND FUTURE WORK 54

 5.1 Conclusion 54

 5.2 Future Work 55

ix

REFERENCES 56

x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 The description for video frames sets obtained from

[7]

33

3.2 Characteristics for each of processor platforms [27] 35

4.1 Number of frames per video dataset 40

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Moving object detection and locating from video

captured by camera on UAV [1]

2

2.1 Block diagram of overall algorithm for moving

object detection and tracking based on [1].

8

2.2 Extracted template blocks and their predefined

position on a video frame.

9

2.3 Intermediate images produced by each sub module

in the moving object detection algorithm.

12

2.4 Basic architecture for a GPP [28].

13

2.5 Block diagram for Intel Atom Processor

N2000/D2000 series [20]

15

2.6 Intel Atom Microarchitecture Pipeline

16

2.7 Block diagram for Cortex-A8[33]

17

2.8 Block diagram for Cortex-R4 [34]

18

2.9 Block diagram for Cortex-M3 [35]

19

2.10 A list of profiling features for Intel VTune Amplifier

[13]

22

2.11 Original for loop before unrolling

25

2.12 The for loop after unrolling 25

xii

2.13 Generalized loop unrolling technique presented in

[39]

26

2.14 Intel SSE 2 Packed Single-Precision Floating-Point

Operation

27

2.15 Intel SSE 2 execution environment [22]

27

2.16 The syntax for OpenMP directive in C programming

[42]

29

3.1 The overall workflow for research methodology

31

4.1 The benchmarking result for all the processors using

Dhrystone benchmark.

36

4.2 The benchmarking result for all the processors using

Whetstone benchmark.

37

4.3 The benchmarking result for all the processors using

Linpack benchmark.

37

4.4 Snapshot on the algorithm video output for

EGtTest01

38

4.5 Snapshot on the algorithm video output for

EGtTest02

39

4.6 Snapshot on the algorithm video output for

EGtTest03

39

4.7 Snapshot on the algorithm video output for

EGtTest05

40

4.8 Algorithm execution time breakdown for each sub-

module, video dataset, compiler and processor

platform.

42

4.9 Overall execution time per frame for each video

dataset, compiler, processor platform.

43

4.10 Algorithm Profiling for hotspots in database

EgTest01

44

4.11 Algorithm Profiling for hotspots in database 44

xiii

EgTest02

4.12 Algorithm Profiling for hotspots in database

EgTest03

45

4.13 Algorithm Profiling for hotspots in database

EgTest05

45

4.14 Comparing optimization capability between GCC

and ICC

46

4.15 Performance of the SIMD code optimization

technique on each database

47

4.16 Performance of the loop unrolling applied on

medianfilter function

48

4.17 Performance of the loop unrolling applied on

AffineTransform function

48

4.18 Performance of the loop unrolling applied on

dilation function

49

4.19 Performance of the coding after combined all loop

unrolling optimized functions

49

4.20 Summary on CPU time taken by the coding with

multithreading

50

4.21 Top hotspots found after multithreading is applied to

the coding

50

4.22 Algorithm Performance after combining loop

unrolling and SIMD

51

xiv

LIST OF ABBREVATIONS

ALU - Arithmetic Logic Unit

API - Application Programming Interface

ASIC - Application Specific Integrated Circuit

CCL - Connected Component Labelling

DARPA - Defense Advanced Research Project Agency

DRAM - Dynamic Random Access Memory

FPGA - Field Programmable Gate Array

GCC - GNU Compiler Collection

GPP - General Purpose Processor

ICC - Intel C++ Compiler

IR - Instruction Register

OpenMP - Open Multi Processing

PC - Program Counter

PCI - Peripheral Component Interconnect

RANSAC - Random Sample Consensus

RISC - Reduced Instruction Set Computer

SIMD - Single Instruction Multiple Data

UAS - Unmanned Aerial System

UAV - Unmanned Aerial Vehicle

USB - Universal Serial Bus

CHAPTER 1

INTRODUCTION

1.1 Introduction

Unmanned aerial vehicle, which normally known as UAV, can generally be

defined as an aircraft that has no on-board pilot and it can be either piloted remotely

or flown autonomously. They are often large enough to accommodate sensors,

cameras or other information gathering equipment that can provide low-cost aerial

information such as large scale low altitude imaging [3]. Over the past five years,

UAV is widely used for diverse operations such as military reconnaissance,

intelligence-gathering, public security, law enforcement, border patrol, emergency

services and video surveillance system in this technology advanced world [3] [4].

With its small and light size, UAV can be flown at a very low altitude range in

hazardous area to acquire high resolution images for rescue or other useful purposes.

Among most of the UAV operations, one common basic task, which is

moving object detection process, is often used to locate and track a moving object of

interest in a series of visual images from a bird’s eyes view captured by the camera

on UAV. UAV control unit will then utilize the processed video frames/images to

determine the next operation to be carried out by the UAV. Therefore, the

implementation of vision processing algorithm such as moving object detection

process on UAV has become a preeminent task [1]. Figure 1.1 shows an example of

object tracking snapshot from camera on UAV.

2

Figure 1.1 Moving object detection and locating from video captured by camera on

UAV [1]

1.2 Background of the Problem

Although the UAV technology holds considerable advantages in the video

surveillance system, there are still some limitations faced by this technology.

Conventionally, an Unmanned Aerial System (UAS) consists of a UAV, a ground

control station and a communications data link for UAV command and control sent

from ground control station [4]. Computer vision processing applications is usually

compute expensive process that requires large amount of computing power.

Previously, this high processing power requirement could be achieved on bulky

processing units which can be carried only by large and high cost UAVs.

A typical attempt to enable vision processing unit is to include a ground

control station whereby the video frames/images captured by the on board camera

3

are fed back to station and the processed results and control instructions are sent back

to the UAV [5]. However this approach is not practical and with limited success due

to the delays and interferences imposed to the system by the imperfection of the

communications data link between the ground control station and the UAV. Blurred

images and videos with degraded quality received will result in inaccurate object

detection and tracking.

Rather than using a ground control station as the processing and control unit

for the UAV system, another approach will be implementing an on-board processing

unit on the UAV so that UAV can perform computer vision processing itself and

eliminate the need to stream the video captured through communication link.

However, driven by the intense development of actuators and sensors, unmanned

aerial vehicle are getting lighter, smaller and less expensive but with more

sophisticated capabilities. This factor introduces several constraints such as weight,

size and power constraints in selecting the on-board embedded system that has

processing capabilities required by the computer vision applications. In short, a low

power consumption, light weight, small size and high performance embedded system

would be the best solution for the on-board processing unit on the UAV [1] [5] [6].

1.3 Statement of the Problem

 Realization of the on-board computer vision processing algorithm on UAV

can be achieved with two different methods which are the hardware implementation

on programmable hardware components such as Field Programmable Gate Array

(FPGA) or Application Specific Integrated Circuit (ASIC) and the software

implementation on the programmable platform such as a General Purpose Processor

(GPP) [9]. Due to the high cost of developing ASICs, FPGA circuits are now

considered as appealing devices for hardware implementation. The promising

performance and power efficiency make FPGA an attractive platform for

implementing computer vision applications. However, the design and redesign

(maintenance) effort for FPGA remains a significant barrier. FPGA-based design

4

often requires developing time an order of magnitude more than pure software

implementation [8]. Furthermore, hardware design expertise is rare as compared with

software design expertise is also one of the drawbacks in FPGA design.

Although software implementations require less development infrastructure,

skill level and design time, it has the performance gap and power efficiency issues to

cater on. This study believes that appropriate code restructuring and optimization can

close the performance gap and achieve better processing speed with software

implementation. Moreover, with intense improvement achieved by the general

purpose processors recently, low power consumption processor with high processing

speed, light weight and small size are highly available in the market nowadays with

reasonable pricing. Therefore, now is the right timing to evaluate the software

implementation on the on-board vision processing algorithm.

1.4 Objectives of the Study

 The objectives of this study are listed as the following:

1. To implement a UAV moving object detection algorithm on a low power

processor. The study is focused on implementing the algorithm mentioned on

embedded system with Intel Atom Processor as of now.

2. To perform profiling on the UAV moving object detection algorithm.

3. To perform benchmarking on the Intel Atom processor.

4. To perform code optimization on the UAV moving object detection

algorithm.

5. The ultimate goal of this study is to implement a real time embedded system

with the Intel Atom processor that can process 30 frames per second

processing speed using the UAV moving object detection algorithm.

5

1.5 Scope of Work

 The scopes of this study are as follows:

1. The UAV moving object detection algorithm used in this study is an existing

algorithm based on [1].

2. The only embedded programming language used in this study is C

Programming.

3. The embedded system to be used in this study is targeted on embedded

system with Intel x86 architecture processor. The study is focused on

embedded system with Intel Atom Processor as of now.

4. Pre-capture video files and existing image database are used in verifying the

performance of the algorithm and embedded system. The current database

selected is Video Verification of Identity (VIVID) database [7] provided by

Defense Advanced Research Project Agency (DARPA).

1.6 Research Contributions

 This research contributes in several areas as follows:

1. A software implementation of low cost, high performance moving object

detection algorithm on a low power embedded system.

2. Several code optimization techniques that are capable to improve the

computer vision processing algorithm.

1.7 Thesis Organization

 This thesis is subdivided into 5 chapters:

1. Chapter 1 : Introduction

6

This chapter outlines the basic understanding on the problem background,

objectives, scope and contributions of this research.

2. Chapter 2 : Literature Review

This chapter includes in-depth literature review on all the related fields such

as the algorithm of UAV moving object detection, processor architectures,

code profiling methods, processor benchmarking techniques and code

optimization techniques.

3. Chapter 3 : Research Methodology

This chapter describes the flow and methodology used in conducting the

entire research. Information such as processor board, benchmarking codes,

video database and profiling tool being used can be found in this chapter.

4. Chapter 4 : Experimental Results and Discussion

This chapters consists of all the results, graphs of data and corresponding

discussion on the results for all the experiments conducted in this research.

5. Chapter 5 : Conclusion and Future Work

This chapter concludes all the findings and achievements obtained in this

research and suggests several enhancements can be done in future.

56

REFERENCES

1. J. W. Tang, "Moving Object Detection For Unmanned Aerial Vehicle Using

Field Programmable Gate Array," Masters Thesis, 2014.

2. A. Price, J. Pyke, D. Ashiri, and T. Cornall, "Real Time Object Detection

for an Unmanned Aerial Vehicle using an FPGA based Vision System,"

2006 IEEE International Conference on Robotics and Automation, p. 6,

May 2006.

3. McCormack, Edward D., "The Use of Small Unmanned Aircraft by the

Washington State Department of Transportation," University of

Washington, Washington, June 2008.

4. Colomina, P. Molina, "Unmanned aerial systems for photogrammetry and

remote sensing: A review," ISPRS Journal of Photogrammetry and Remote

Sensing, p. 19, 2014.

5. S. K. Phang, J. J. Ong, Ronald T. C. Yeo, Ben M. Chen, and T. H. Lee,

"Autonomous Mini-UAV for Indoor Flight with Embedded On-board

Vision Processing as Navigation System," Computational Technologies in

Electrical and Electronics Engineering (SIBIRCON), p. 6, 2010.

6. Fowers, S.G., Lee, Dah-Jye, Ventura, D.A. and Archibald, J.K., "The

Nature-Inspired BASIS Feature Descriptor for UAV Imagery and Its

Hardware Implementation," Circuits and Systems for Video Technology, p.

13, 2013.

7. R. T. Collins, "VIVID Tracking Evaluation Web Site," School of Computer

Science, Carnegie Mellon University., [Online]. Available:

http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html. [Accessed

12 2014].

8. J. Bodily, B. Nelson, ZY. Wei, DJ. Lee, and J. Chase, "A Comparison

57

Study on Implementing Optical Flow and Digital Communications on

FPGAs and GPUs," ACM Transactions on Reconfigurable Technology and

Systems, p. 22, 2009.

9. N. Lukić, I. Papp, Z. Marčeta and M. Temerinac, "Software Based Video

Improvement Implementation," Engineering of Computer Based Systems,

2009. ECBS-EERC '09, p. 6, 2009.

10. John L. Hennessy, David A. Patterson, Computer Architecture: A

Quantitative Approach, Waltham, 2012.

11. J. Tong and M. Khalid, "Profiling CAD tools: A proposed classification,"

Microelectronics, 2007, p. 4, 2007.

12. E. Moorits and G. Jervan, "Profiling in deeply embedded systems,"

Electronics Conference (BEC), 2012 13th Biennial Baltic, p. 4, 2012.

13. "Details about Intel Vtune Amplifier 2015," INTEL, 2014. [Online].

Available: https://software.intel.com/en-us/intel-vtune-amplifier-xe.

[Accessed Dec 2014].

14. Weicker, Reinhold P., "DHRYSTONE: A SYNTHETIC SYSTEMS

PROGRAMMING BENCHMARK," Communications of the ACM, vol.

27, no. 10, p. 18, 1984.

15. Z. Wang, T. Wild, S. R and B. Lippmann, "Benchmarking Domain Specific

Processors: A Case Study of Evaluating A Smart Card Processor Design,"

Symposium on VLSI, p. 6, 2008.

16. Weiss, and Alan R., "Dhrystone Benchmark," The EEMBC Certification

Laboratories, LLC (ECL), 2002.

17. H. J. Curnow and B. A. Wichmann, "A synthetic benchmark," Computer

Journal, vol. 19, p. 16, 1976.

18. A. González, F. Latorre and G. Magklis, Processor Microarchitecture: An

Implementation Perspective, Morgan & Claypool, 2011.

19. INTEL, "Intel® Atom™ Processor N2000/D2000 Series, NM10 Chipset,"

INTEL, [Online]. Available:

http://www.intel.com/content/www/us/en/intelligent-systems/cedar-

trail/atom-n2000-d2000-ibd.html.

58

20. J. Turley, "Introduction to Intel® Architecture," INTEL.

21. INTEL, Intel® 64 and IA-32 Architectures Optimization Reference

Manual, 2014.

22. INTEL, Intel® 64 and IA-32 Architectures Software Developer’s Manual,

2014.

23. J. Buss, "VINTAGE DEC PAGES," [Online]. Available:

http://www.xanthos.se/~joachim/dhrystone-src.tar.gz. [Accessed December

2014].

24. "Netlib Repository: Whetstone benchmark," [Online]. Available:

http://netlib.org/benchmark/whetstone.c. [Accessed December 2014].

25. "Netlib Repository: Linpack Benchmark," [Online]. Available:

http://www.netlib.org/benchmark/linpackc.new. [Accessed December

2014].

26. INTEL, "ARK | Your Source for Intel® Product Information," INTEL,

[Online]. Available: http://ark.intel.com/. [Accessed December 2014].

27. F. Vahid, and Tony D. Givargis, Embedded System Design: A Unified

Hardware/Software Introduction, Wiley, 2001.

28. Johnson, Neil E., "Code size optimization for embedded processors,"

University of Cambridge, 2004.

29. R. Leupers, Code Optimization Techniques for Embedded Processors,

2002.

30. A. Kejariwal, A. Veidenbaum, A. Nicolau, X. Tian, M. Girkar, H. Saito and

U. Banerjee, "Comparative architectural characterization of SPEC

CPU2000 and CPU2006 benchmarks on the intel® Core™ 2 Duo

processor," Embedded Computer Systems: Architectures, Modeling, and

Simulation, 2008, p. 10, 2008.

31. S. Liao, S. Devadas, K. Keutzer, S. Tjiang and A. Wang, "Code

Optimization Techniques for Embedded DSP Microprocessors," Design

Automation, 1995, p. 6, 1995.

32. N. Zingirian and M. Maresca, "On the efficiency of image and video

processing programs on instruction level parallel processors," IEEE, vol.

59

90, no. 7, p. 14, 2002.

33. ARM, "Cortex-A Series - ARM," ARM, [Online]. Available:

http://www.arm.com/products/processors/cortex-a/index.php. [Accessed

December 2014].

34. ARM, "Cortex-R Series - ARM," ARM, [Online]. Available:

http://www.arm.com/products/processors/cortex-r/index.php. [Accessed

December 2014].

35. ARM, "Cortex-M Series - ARM," ARM, [Online]. Available:

http://www.arm.com/products/processors/cortex-m/index.php. [Accessed

December 2014].

36. ARM, ARM Architecture Reference Manual, ARM, 2005.

37. M. Booshehri, A. Malekpour, and P. Luksch, "An improving method for

loop unrolling," vol. 11, 2013.

38. Huang, J.C., and Leng, T., "Generalized loop-unrolling: a method for

program speedup," pp. 244 - 248.

39. L. Baumstark, Jr. and L. Wills, "Exposing Data-Level Parallelism in

Sequential Image Processing Algorithms," 2002.

40. Kadidlo, J., and Strey, A., "Exploiting Data- and Thread-Level Parallelism

for Image Correlation," pp. 407 - 413, 2008.

41. J. Reinders, Intel Threading Building Blocks, O'Reilly Media, Inc., 2007.

42. G. Slabaugh, R. Boyes, and XY. Yang, "Multicore Image Processing with

OpenMP [Applications Corner]," vol. 27, no. 2, pp. 134 - 138, 2010.

	CheongWeiWeiMFKE2015ABS
	CheongWeiWeiMFKE2015TOC
	CheongWeiWeiMFKE2015CHAP1
	CheongWeiWeiMFKE2015REF

