MITIGATING INTER-CARRIER INTERFERENCE IN ORTHOGONAL FREQUENCY DIVSION MULTIPLEXING SYSTEM USING SCALED ALPHA PULSE SHAPING TECHNIQUE

NOR ADIBAH BINTI IBRAHIM

UNIVERSITI TEKNOLOGI MALAYSIA

MITIGATING INTER-CARRIER INTERFERENCE IN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SYSTEM USING SCALED ALPHA PULSE SHAPING TECHNIQUE

NOR ADIBAH BINTI IBRAHIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > AUGUST 2015

Dedicated, in thankful appreciation for support, encouragement and understandings to my beloved mother, father, brothers and sisters.

ACKNOWLEDGEMENT

Alhamdulillah....

First and foremost, my undivided gratitude to Allah S.W.T that has given me the blessings and strength in order to complete this meaningful research successfully. Peace and blessing of Allah be upon our prophet Muhammad S.A.W who has given light to mankind. I would like to express my appreciation to those who have contributed to the completion of this work. In particular, I wish to express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Razali Bin Ngah for giving me the trust to carry out my research regarding on this project. Not forgetting for his time, encouragement, guidance, knowledge, support and motivation throughout completing this project. This appreciation is also given to Dr. Hamza M. R. Al-Khafaji and Nor Shazwani Binti Mohd Noor for their guidance and helps. Besides that, I would like to forward my thankfulness to my beloved mother, father, and the rest of my family members for their support, motivation, and love from the day I started the project until it was partially completed for this project part one. I sincerely and almost thanks all of my teachers, lecturers and all of my friends for helping directly or indirectly. Thank you for the knowledge, experiences, kindness, and cooperation from all of them and it would be remembered.

May Allah bless all of you. Ameen Thank you very much.

Nor Adibah Binti Ibrahim adibah_ibrahim19@yahoo.com

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for broadband wireless communication system, especially in fourthgeneration (4G) applications. However, a special problem in OFDM is its vulnerability to frequency offset errors due to which the orthogonality is destroyed that results in Inter-Carrier Interference (ICI). ICI causes power leakage among subcarriers, thus degrading overall system performance. ICI is severe and often difficult to remove because the properties of additive noise vary for different carriers. Pulse shaping is among the techniques used to reduce ICI effect. In this thesis, a new pulse shape namely, Scale Alpha for ICI mitigation in OFDM system is proposed. The pulse is modelled and simulated using Matlab software. The pulse performance in reducing ICI is compared to the Franks pulse which is also known as the best pulse among Nyquist pulses. Impulse response, eye diagram, and ICI power reduction performances have also been carried out. The result shows 76.93 dB of ICI reduction compared to the Franks pulse when alpha is equal to 1. This advantage of new Scale Alpha pulse can be applied in the applications of wireless model system especially in 4G applications.

ABSTRAK

Frekuensi Ortogon Pembahagi Multipleks (OFDM) adalah teknik yang menjaminkan untuk sistem komunikasi tanpa wayar jalur lebar terutama di dalam aplikasi generasi keempat (4G). Walau bagaimanapun, masalah yang khusus di dalam OFDM ialah kerintangannya terhadap kesalahan frekuensi imbangi kerananya yang keortogonan ini hancur akibat campur tangan Gangguan Antara Pembawa (ICI). ICI menyebabkan kebocoran kuasa di kalangan sub-pembawa sehingga menjatuhkan prestasi sistem. ICI adalah tidak bagus dan sukar untuk dibuang kerana sifat-sifat bunyi tambahan bagi pembawa yang berbeza. Pembentukan denyut nadi ini adalah antara teknik yang digunakan untuk mengurangkan kesan ICI. Dalam projek ini, kami mencadangkan satu bentuk denyut nadi baru iaitu skala alpha untuk mengurangkan ICI dalam sistem OFDM. Denyut nadi ini dimodelkan dan diselakukan menggunakan Matlab. Keputusan dan perbincangan dibuat untuk menganalisis bentuk denyut nadi baru dalam pengurangan ICI dengan membandingkannya dengan denyut Franks yang juga dikenali sebagai denyut yang terbaik di antara denyut Nyquist dari segi prestasi balas impuls, gambarajah mata dan pengurangan ICI. Keputusan menunjukkan 76.93dB ICI pengurangan berbanding dengan nadi Frank apabila alpha yang digunakan adalah 1. Kelebihan denyut baru Skala Alfa boleh di aplikasikan dalam sistem tanpa wayar terutamanya dalam generasi keempat (4G).

TABLES OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF APPENDICES	xvi

1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Problems Statement	2
	1.3 Objectives	3
	1.4 Scope of Work	4
	1.5 Thesis Outline	4
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 OFDM in Telecommunication System	6

	2.2.1 First Generation (1G)	8
	2.2.2 Second Generation (2G)	8
	2.2.3 Third Generation (3G)	9
	2.2.4 Fourth Generation (4G)	11
2.3 0	Orthogonal Frequency Division Multiplexing	12
2.4 I	nter-carrier Interference	18
2.5 I	CI Analysis	19
2.6 I	CI Mitigation Methods	21
2	2.6.1 Maximum Likelihood (ML)	21
2	.6.2 Self Cancellation (SC)	22
2	.6.3 Extended Kalman Filtering (EKF)	22
2	.6.4 Pulse Shaping	23
	2.6.4.1 Franks pulse	23
	2.6.4.2 Better Than Raised Cosine Pulse	24
	2.6.4.3 Second Order Continuous Window	25
	pulse	23
	2.6.4.4 Polynomial pulse	26
	2.6.4.5 Raised Cosine Pulse	26
	2.6.4.6 Double Jump Pulse	27
2.7 F	Related Research	28
2.7	7.1 SNR calculation for OFDM systems	29
2.7	7.2 Effect of Cyclic Prefix on SNR	30
2.7	7.3 SNR Effect on Unused Subcarriers	31
2.7	7.4 Arrangements of Subcarrier	32
2.8 N	Nodel System Pros and Cons	33
2.	8.1 Multipath Delay Spread Tolerance	34
2.3	8.2 Effectiveness Against Channel Distortion	34
2.3	8.3 Throughput Maximasition	35
2.3	8.4 Robustness Against Impulse Noise	36
2.9 S	ummary	36
MET	HODOLOGY	37

3.1	Introduction	37

3.2	Project Methodology	37
3.3	Pulse Shaping Function	42
3.4	OFDM System Simulation	44
3.5	Summary	45
4 RE	SULTS AND DISCUSSIONS	46
4.1	Introduction	46
4.2	Pulse Shaping Function Implementation	46
4.3	Impulse Response Performance	49
4.4	Eye Diagram Performance	56
4.5	ICI Reduction	58
4.6	Summary	61
5 CO	NCLUSION AND FURTHER WORK	62
5.1	Conclusion	62
5.2	Further Work	63

REFERENCES

Appendices A-G	70-86
----------------	-------

65

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	OFDM System Parameters	45
4.1	Comparison value of ICI power reduction for New pulse and Franks pulse	60

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	3G network	10
2.2	Cellular radio standards	11
2.3	OFDM modulation	13
2.4	N-subcarrier OFDM system model	16
2.5	Basic pulse shaping system model	23
2.6	Block diagram of OFDM system with cyclic prefix	28
2.7	Cyclic prefix energy distribution	30
2.8	Assignments of OFDM subcarriers	33
3.1	Overall project flow chart	38
3.2	Gantt Chart of the research	39
3.3	Simulation block diagram of OFDM system	42
3.4	Flowchart of New Scale Alpha pulse modelling	43
4.1	Gaussian pulse	47
4.2	Phi graph plotted against time (t)	48
4.3	Phi, and the new pulse response when α =0.25	
	and 0.5	49
4.4	Phi, and the new pulse response when α =0.3 and 1.0	50
4.5	Phi, and the new pulse response when α =0.5 and 1.0	51
4.6	Impulse response in time domain when α =0.25	52
4.7	Impulse response in frequency domain when α =0.25	52
4.8	Impulse response in time domain when α =0.3	53
4.9	Impulse response in frequency domain when α =0.3.	53
4.10	Impulse response in time domain when α =0.5.	54
4.11	Impulse response in frequency domain when α =0.5	55
4.12	Comparison of impulse response in time domain	
	when $\alpha = 1$.	55

4.13	Comparison of impulse response in frequency	
	domain when $\alpha = 1$	56
4.14	Eye diagram for various alpha, α for new pulse	57
4.15	Eye diagram for various alpha, α for Franks pulse	58
4.16	Comparison for with and without pulse shaping for	
	new and Franks pulse when alpha, α =0.25	59
4.17	Comparison of without and with pulse shaping using	
	Franks and the newly proposed pulse when α =0.5	59
4.18	Comparison of without and with pulse shaping using	
	Franks and the newly proposed pulse when $\alpha = 1.0$	60

LIST OF SYMBOLS

α	-	alpha
Т	-	period
T_u	-	time spacing
П	-	pi
f_c	-	carrier frequency
Ν	-	subcarrier number
1/T	-	frequency spacing
θ	-	phase error
∆f	-	carrier frequency offset
S_m	-	transmitted symbol
f	-	frequency
β	-	beta
Ν	-	number of subcarrier
S	-	scale

LIST OF ABBREVIATIONS

3GPP	-	3 rd Generation Partnership Project
4G	-	Fourth-generation
ADSL	-	Asymmetric Digital Subscriber Line
AMPS	-	Advanced Mobile Phone System
AUC	-	Aunthentication Centre
AWGN	-	Additive White Gaussian Noise
BEM	-	Basic Expansion Model
BER	-	Bit Error Rate
CDMA	-	Code Division Multiple Access
CFO	-	Carrier Frequency Offset
COFDM	-	Coded Orthogonal Frequency Division Multiplexing
СР	-	Cyclic prefix
DAB	-	Digital Audio Broadcasting
DFT	-	Discrete Fourier Transform
DMT	-	Discrete Multi Tone
DVB	-	Digital Video Broadcasting
GSM	-	Global System for Mobile Communication
HFC	-	Hybrid Fiber Control
HiperLAN2	-	High performance Local Area Network
HLR	-	Home Location Register
HSDPA	-	High-speed Downlink Packet Access

ICI	-	Inter-carrier Interference
IEEE 802.11	-	IEEE wireless LAN protocol
IMT-2000	-	International Mobile Telecommunication 2000
Mbps	-	Mega Bit per second
MB	-	Mega Byte
MHz	-	Mega Hertz
MIMO	-	Multiple Input Multiple Output
MSC	-	Mobile Switching Centre
NMT	-	Nordic Mobile Telephone
OFDM	-	Orthogonal Frequency Division Multiplexing
PDC	-	Personal Digital Communication
SFO	-	Sampling Frequency Offset
SIR	-	Signal to Interference ratio
SNR	-	Signal to Noise ratio
TACS	-	Total Access Communication System
UMTS	-	Universal Mobile Telephone System
Wi-Bro	-	Wireless Broadband
Wi-Fi	-	Wireless Fidelity
WiMAX	-	Worldwide Interoperability for Microwave Access

LIST OF APPENDICES

APPENDIX TITLE PAGE 70 А Coding for Es/N0 or Eb/N0 for OFDM system Programming for phi and В 71 new pulse Programming for phi and С 72 new pulse for alpha, α =0.25 and α =0.5 D Impulse response in time 73 and frequency domain for all pulses when $\alpha = 0.1$ Eye diagram for new pulse 75 Е F Programming for with and 81 without pulse shaping for alpha, α =0.3 for new and Franks pulse G List of Publications 86

CHAPTER 1

INTRODUCTION

1.1 Project Background

In the last few years, multicarrier transmission techniques such as orthogonal frequency division multiplexing (OFDM) have emerged as the leading candidate for higher-data-rate transmission. Historically, these techniques have been applied to applications where time-selectivity can be effectively ignored [1]. OFDM applications on multicarrier systems for high speed channels have become increasingly important. Signal transmission is normally accompanied by loss of orthogonality of subcarriers resulting in inter-carrier interference (ICI). When ICI is not present, the channel matrix is diagonal (orthogonal), and hence channel estimation can be achieved by matrix inversion. Under this condition, channel equalization is uncomplicated. In the presence of ICI, the channel is no longer diagonal and channel estimation becomes a severe problem. ICI creates an off-diagonal in the channel coefficient [2], making channel equalization, which is associated with inversion of a channel matrix to be very complex [1].

OFDM techniques have been applied to situations where time-selectivity can be effectively ignored. However, the need for high speed transmission has made it critical to overcome the loss of orthogonality in OFDM subcarriers in order to reduce ICI which creates an off-diagonal channel matrix. In this way, the accuracy of channel estimation and equalization can be enhanced. ICI can be reduced using methods such as complexity reduction and basis expansion model (BEM). A direct method of eliminating ICI is through the use of pulse shaping to reduce out-of-band emissions and to minimize the sensitivity of the transmitted signal to interference and synchronization errors. This implies a process of identifying transmit and receive pulses, which have values close to eigen functions of the channel and thus approximately diagonalizing the channel matrix.

In order to identify such pulses, one needs to know the relationship between the channel spread and the pulse parameters. This information can be obtained if the channel is assumed to introduce some uncertainty (randomness) to the transmitted pulses. Conventional Heisenberg uncertainty principle defines Gaussian pulse as optimal. This study proposes a method of overcoming ICI in OFDM system using a novel eigen structure based on the uncertainty principle of affine groups. The eigen function of the derived eigen structure can provide approximate eigen pulses for very dispersive channel and can be used to eliminate off-diagonal elements of the channel matrix. This idea can also provide an insight to the way in which appropriate BEM can be used for ICI suppression. Multiple input multiple output (MIMO) OFDM requires training before optimal ICI estimation and equalization. Training process is an issue which will be defined and discussed in subsequent sections.

1.2 Problem Statement

ICI creates an off-diagonal channel matrix which is not desired as it affects the accuracy of channel estimation and equalization. To solve this problem, methods such as complexity reduction and the use of basis expansion model (BEM) have been considered. However, a direct method of eliminating ICI would be the use of pulse shaping on the transmitted signal to reduce emissions from adjacent bands and interference due to synchronization errors. The pulse shaping process provides a way of finding transmit and receive pulses, which can closely approximate the channel eigen functions so that the channel matrix can be altered to a form which can be considered diagonal.

Implementation of OFDM experiences several problems. These problems are (a) difficulties in synchronization, (b) interference due to phase noise. For proper synchronization, correct sampling of the incoming received signal is important. Without correct sampling of the incoming received signal, it will not be possible for the fast Fourier transform process at the receiver to recover the received data from the carriers correctly. Interference due to phase noise is normally caused by the receiver local oscillator which introduces phase noise to OFDM received signal. Common Phase Error (CPE) and ICI are two unwanted effects of the phase noise. CPE is a result of the rotation of the signal constellation while ICI introduces problems akin to additive Gaussian noise. ICI is severe and often difficult to remove because the properties of additive noise vary for different carriers.

1.3 Objectives

The objectives of this research are:

- To propose a new pulse shaping method named scale alpha for wireless OFDM system.
- To model the mathematical expression of the proposed pulse shaping method in Matlab environment.
- iii) To analyze the proposed scale alpha pulse has an optimum shape (having clear eye diagrams) which reduces ICI and enhances the performance of OFDM system.

The scopes of work are listed as follows:

- Matlab software is used to model the mathematical expression for new pulse shaping technique called the scale alpha pulse.
- ii) The optimum value of alpha will be determined to reduce inter-carrier interference (ICI) of OFDM signal.
- iii) The new pulse impulse response performance is compared to Franks, Raised Cosine and Double Jump pulse.
- Performance analysis of the new pulse shape, particularly regarding two parameters that are inter-carrier interference (ICI) power reduction and eye diagrams are carried out.

1.5 Thesis Outlines

The thesis consists of five chapters. The background and objectives of the project are presented in Chapter 1 and will be used to address all the research questions.

Chapter 2 presents the basic principle of OFDM used in fourth generation (4G) wireless system. In this chapter a proposed modified version of OFDM is also reviewed and described. A comparison is made between the proposed method of overcoming ICI with those which have been suggested by previous researchers. In this chapter, various methods of improving the performance of the OFDM are suggested after viewing the system model pros and cons. It is also felt necessary to discuss an overview of the wireless telecommunication systems, especially 1G, 2G, 3G and 4G to assist in the understanding of problems associated with the implementation of OFDM for wireless system.

Chapter 3 describes the methodology of system model design. The model system flow would be explained in this chapter. It would explain the design process (via simulation coding) adhered to from start to finish. Through system simulation, the transmission and receiving process of the proposed OFDM (from input data until the measurement component) is explained step by step. Design of system model has been implemented using Matlab software. Matlab software used in the simulation of the overall project is explained. The parameter provided by this software is revealed.

The results and discussions are presented in Chapter 4. This chapter discusses design, simulation and analysis of data. This is the most crucial chapter in this thesis, because from there it is possible to predict and determine through analytical calculations, which of the model systems is more accurate and gives the desired advantages. Analysis of data and creation of graphs illustrates three parameters, which are ICI power reduction, impulse response performance and eye diagrams.

Chapter 5 presents the conclusions derived from the overall project. This final chapter answers whether the project has successfully accomplished the project objectives spelt out. This chapter briefly suggests further research works which can be carried out with the hope that further improvement can be suggested for the proposed system model.

References

- [1] P. Schniter, "Low-complexity equalization of OFDM in doubly selective channels," *IEEE Trans.Sig.Proc.*, vol. 52, no. 4, pp.1002-1011, April 2004.
- [2] L. Rugini, P. Banelli, and G. Leus, "Simple equalization of time-varying channels for OFDM," *IEEE Comm. Letters*, vol. 9, pp.619-621, July 2005.
- [3] S. Tomasin, A. Gorokhov, H. Yang, and J. P. Linnartz, "Iterative interference cancellation and channel estimation for mobile OFDM," *IEEE Trans.Wireless Comm.*, vol.4, pp.238-245, Jan. 2005.
- [4] M. K. Tsatsanis, and G. B. Giannakis, "Modelling and equalization of rapidly fading channels," *Int. J. Adaptive Control and Sig.Proc*, vol. 10, pp.159-176, March 1996.
- [5] D. Schafhuber, G. Matz, and F.Hlawatsch, "Pulse-shaping OFDM/BFDM systems for time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation," *in Proc. IEEE PIMRC-02*, pp.1012-1016, Lisbon, Portugal, Sept.2002.
- [6] W. Kozek, and A. F. Molisch, "Nonorthogonal pulse shapes for multicarrier communications in doubly dispersive channels," *IEEE J.Sel.Areas Comm.*, vol.16, pp.1579-1589, October1998.
- [7] K. Chandrasekharan, "Classical Fourier Transforms", Berlin:Springer-Verlag, 1989.
- [8] K. Grochenig, "Uncertainty Principles for Time-frequency Representations," *in Advances in Gabor Analysis*, H. G. Feichtinger, and T. Strohmer, (Ed)., pp.11-30, Boston, Birkhauser, 2003.
- [9] A. Stamoulis, S. N. Diggavi, and N. Al-Dhahir, "Intercarrier interference in MIMO-OFDM," *IEEE Trans.Sig.Proc.*, vol. 50, no. 10, pp.2451-2464, October 2002.
- [10] "Building future network with MIMO and OFDM." (Sep 19, 2005).

- [11] A. Revitej, "Inter Carrier Interference Cancellation in OFDM systems," National Institute of Technology Rourkela, Thesis Mtech, 29 May 2009.
- [12] R. Kumar, and Dr. S. Malarizhi, "Reduction of Intercarrier Interference in OFDM Systems," *Department of Electronics Communication Engineering, SRM University, Chennai India*
- [13] K. Sankar, "Inter Carrier Interference (ICI) in OFDM due to frequency offset," DSP LOG signal processing for communication, 8 August 2009.
- Y. Wu, and W. Y. Zhou, "Orthogonal Frequency Division Multiplexing: A Multi-Carrier Modulation Scheme," *IEEE Transaction on Consumer Electronics*, vol. 41, no. 3, 3 August 1995.
- [15] M. Litwin, "Orthogonal Frequency division Multiplexing (OFDM) Transceiver", *The Engineering Division of The Graduate School of Cornell* University, August 2010
- [16] M. N. Khan "OFDM with 64 QAM," *Matlab Central*, 27 October 2007.
- [17] Christian Obeli and Martin Gracia "Intercarrier Interference in OFDM: A General Model for Transmissions in Mobile Environments with Imperfect Synchronization", *eurasip jurnal on wireless communications and networking*, 9 Nov 2009
- [18] F. Horlin, S. De. Rore, E. Lopez-Estraviz, F. Naessens, L. van der Perre, Impact of frequency offsets and IQ imbalance on MC-CDMA reception based on channel tracking. *Proceedings of the 8th International Symposium on Wireless Personal Multimedia Communications (WPMC '05)*, Aalborg, Denmark, September 2005.
- [19] C. Oberli, "ML-based tracking algorithms for MIMO-OFDM", *IEEE Transactions on Wireless Communications* **6**(7), pp. 2630–2639, 2007.
- [20] J. Li, M. Kavehrad, "Effects of time selective multipath fading on OFDM systems for broadband mobile applications", *IEEE Communications Letters* 3(12), pp. 332–334, 1999.
- [21] P. Tan, N. C. Beaulieu, "Analysis of the effect of Nyquist pulse-shaping on the performance of OFDM system with carrier frequency offset," *Eur.Trans.Telecomms*, pp.9-22, July 2008.
- [22] S. Kim, and G. J. Pottie, "Robust ODFM in Fast Fading Channels," *Department of Electrical Engineering, University of California, Los Angeles*, 2003.

- [24] R. Kumar, and Dr. S. Malarvizhi, "Reduction of intercarrier interference in OFDM system," *Ubiquitous Computing and Communication Journal*, pp.87-92, vol. 3, no. 2.
- [25] G. Matz, and F. Hlawatsch, "Time-varying Communication Channels: Fundamentals, Recent Development, and Open Problems," *Invited paper in Proc. EUSIPCO-06, Florence, Italy,* September 2006.
- [26] N. C. Beaulieu, and P. Tan, "Transmitter Nyquist Shaping for ICI Reduction in OFDM Systems with Carrier Frequency Offset," *IEEE*, 2005.
- [27] N. C. Beaulieu, C. C. Tan, M. O Damen "A "Better Than" Nyquist Pulse," *IEEE communications Letters*, vol.5, No. 9, september 2001.
- [28] Krishna Sankar, "Eye digram for raised cosine filtering", DSP Log Signal processing for communication, 1st May 2008,
- [29] Mathuranathan "Simulation of OFDM system in Matlab BER Vs Eb/N0 for OFDM in AWGN channel", Gaussian waves signal processing simplified, 8 july 2011
- [30] "Advantages and disadvantages of OFDM", retrieved at http://sna.csie.ndhu.edu.tw/~cnyang/MCCDMA/tsld021.htm
- [31] S. Mohanty, and S. Das, "A Comparative study of pulse shaping function for ICI power reduction in OFDM system," *Department of Electrical Engineering, National Institute of Technology, Rourkela,* 2008.
- [32] B. R. Ballal, A. Chada, and N. Satam "Orhogonal Frequency Division Multiplexing and its Application", *International Journal of Science and Research (IJSR), India Online*, Vol.2, Issue 1, January 2013.
- [33] L.S.Ashiho, "Mobile technology: evolution from 1G to 4G" *Electronics for you*, June 2003
- [34] Srinivasan Grajendran "The Generations 1G, 2G, 3G, 4G" Creativenteheno, January, 3 2012
- [35] School of medicine university of Miami, "Mobile phones: 1G 2G 3G 4G information technology", 1997-2008

- [37] D. Houcque, "Introduction to MATLAB for Engineering Students," *Northwestern University*, version 1.2, August 2015.
- [38] P. Tan, N. C. Beaulieu, "Reduced ICI in OFDM systems using the better than raised cosine pulse,"*IEEE Commun. Lett.*, vol. 8, no. 3, pp. 135–137, Mar. 2004.
- [39] H. M. Mourad, "Reducing ICI in OFDM systems using a proposed pulse shape", *Wireless Person. Commun.*, vol. 40, pp. 41–48, 2006.
- [40] V. Kumbasar, and O. Kucur, "ICI reduction in OFDM systems by using improved sinc power pulse," Digital Signal Processing, vol. 17, Issue 6, pp. 997-1006, Nov. 2007.
- [41] Y. Zhao, and S. G. Haggman, "Intercarrier interference compression in OFDM communication systems by using correlative coding," *IEEE Commun. Lett.*, vol. 2, pp. 214-216, Aug. 1998.
- [42] K. A. Seaton, and J. Armstrong, "Polynomial cancellation coding and finite differences," *IEEE Trans. Inf. Theory*, vol. 46, pp. 311-313, Jan. 2000.
- [43] J. Armstrong, "Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM," *IEEE Trans. Commun.*, vol. 47, pp. 365-369, Mar. 1999.
- [44] T. Strohmer, and S. Beaver, "Optimal OFDM design for time-frequency dispersive channels," *IEEE Trans. Commun.*, vol. 51, pp. 1111-1122, July 2003.
- [45] H. Yu, M. S. Kim, and S. K. Lee, "Channel estimation and equalization for high speed mobile OFDM systems", *Conf. Record of the Thirty-Seventh Asilomar Conf. on Signals, Systems and Computers*, vol. 1, pp. 693 – 697, Nov. 2003.
- [46] Y. H. Yeh and S. G. Chen, "Reduction of Doppler-induced ICI by interference prediction", *Proc. IEEE International Symposium on Personal*, *Indoor and Mobile Radio Commun.*, vol. 1, pp. 653-657, Jan. 2004.
- [47] TLT-5400/5406 DIGITAL TRANSMISSION, 1st Matlab-Exercise retrieved at http://www.cs.tut.fi/kurssit/TLT-5400/matlab_tehtavat/TLT5400_M1.pdf
- [48] "4G wireless standard", IEEE Personal Communications Magazine, October 2001.

- [49] Agilent Technologies, "How do I measure Bit Error Rate (BER) to a given confidence level on N490xA/B Serial BERTs?" KEYSIGHT technologies, 2015.
- [50] A. Salah, "LTE Parameter Tuning", Wray Castle Limited Bridge Mills Stramongate Kendal LA9 4UB UK, 2010
- [51] D. Gandhi, S. Gupta, and U. Dalal, "Implementation of Pulse Shaping Techniques in OFDM System," International Journal of Computer Applications, vol. 68, no. 10, pp. 19-23, April 2013.
- [52] N.M. Moghaddam, and M. Mohebbi, "ICI Reduction Methods in OFDM Systems," Recent Advance in wireless Communication and Networks, pp. 42-58, 2011.
- [53] P. Tan, and N.C. Beaulieu, "Analysis of the effects of Nyquist pulseshaping on the performance of OFDM systems with carrier frequency offset," European Transactions on Telecommunications, vol. 20, pp. 9-22, July 2008.
- [54] M. A. Mohamed, A. S. Samarah, M. I. Fath Allah, "Study of performance parameter Effect on OFDM Systems", IJCSI International Journal of Computer Science Issue, vol. 6, issue 3, No.2, May 2012
- [55] K. N. Le, "Pulse Shaping of OFDM Systems in AWGN Channel", The Hong Kong Institution of Engineers Transactions, Vol. 15, no. 4, pp. 29-34
- [56] W. G. Jeon, K. H. Chang and Y.S. Cho, "An equalization technique for Orthogonal Frequency Division Multiplexing Systems in time-variant Multipath channels", IEEE Transactions on Communications, Vol. 47, No.1, January 1999.
- [57] H. Xie, X. Wang, A. Wang, B. Qin, H. Chen, Y. Zhou, and B. Zhao, "A Varying Pulse Width Second Order Derivative Gaussian Pulse Generator for UWB Transceivers in CMOS", Circuits and Systems ISCAS, IEEE International Symposium, pp. 2794-2797, May 2007.
- [58] M. Zoltowski, "Equations for the Raised Cosine and Square-Root Raised Cosine Shapes", TSK04 lectures retrieve at http://www.commsys.isy.liu.se/TSKS04/lectures/3/MichaelZoltowski_Square RootRaisedCosine.pdf