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ABSTRACT

Ankle rehabilitation has always been a gap for rehabilitation sciences. This is
due to the lack of medical instrumentation and research that covers injuries especially
on the supination and pronation effects. Here an extension method for ankle-foot
orthoses with preventive design for pronation and supination with ankle dorsiflexion
and plantar flexion will be utilized. For the dorsiflexion and plantar flexion mechanism,
the proposed system will use the momentum based forward movement with braking
system. While for extension design for pronation and supination will be based on
hybrid passive and active actuator approach. The extension approach is capable
of providing pronation and supination positioning support mechanism. In order to
establish the concrete relationship of ankle’s moment a simulation was performed
accordingly. This research proved a contemporary methodology of ankle-foot orthoses.
It does have significance for ankle rehabilitation sciences.
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ABSTRAK

Latihan pemulihan buku lali sentiasa menjadi jurang untuk sains pemulihan.
Ini adalah kerana kekurangan peralatan perubatan dan penyelidikan yang merangkumi
kecederaan terutama kesan sampingan supination dan pronation. Di sini satu
kaedah lanjutan untuk orthosis buku lali kaki dengan reka bentuk pencegahan bagi
pronation dan supination dengan dorsiflextion dan plantarflextion akan digunakan.
Bagi dorsiflextor dan plantarflextor, sistem mekanisme akan menggunakan momentum
pergerakan dengan sistem brek. Manakala bagi reka bentuk lanjutan untuk
pronation dan supination akan lebih kepada pendekatan penggerak campuran diantara
pasif dan aktif. Pendekatan penambah lanjutan mampu menyediakan sokongan
kepada kedudukan mekanisme pronation dan supination. Usaha untuk membina
hubungan yang kukuh antara masa pergelangan kaki, simulasi telah dilakukan dengan
sewajarnya.. Kajian ini menyediakan satu kaedah baru untuk reka bentuk orthosis buku
lali dan mampu menyelesaikan masalah yang besar untuk pemulihan buku lali semasa
kecederaan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Ankle Foot Orthoses (AFO) is a device to eliminate the impact of impairment
to the lower limb neuromuscular motor system that affects gait. Current technologies
of AFO mostly focus on actuators and can be combination of passive and active
devices with control and modulated damping system. These systems are heavily
being used towards creating an optimal, useful and practical orthoses. The idea is
to make an orthosis that is capable of producing enough torque and power to move
forward with enough propulsive force. However, to achieve the ideal orthosis requires
a demanding design requirement, such as light weight, compact, high efficiency and
low noise. Pronation and supination support is a critical issue towards ankle orthoses
improvement. A device that always monitors and maintains the ankle, by aligning the
tendons, stabilizing the joint and preventing feet from flattening and also uniformly
distributes your weight. This can be archieved by fusing the biomechanics into a more
ameliorate extension design and emphasizing onto shock- absorption with stabilization
of the heel.

1.2 Problem Statement

The demands of designing wearable medical and human assist devices are
pushing the limit of miniaturization. Most of the AFOs are bulky and stationary.
Miniaturization could solve the issues on stationary system and change the perception
of the AFO as an inconvenient system. AFOs are used to improve the impact to
the lower limb neuromuscular motor system that affects pathological gait. Due to
injuries on the lower limb system, the effect eventually creates abnormalities for gait
movement. The AFO eliminates these abnormalities of pathological gait by creating
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a system that solves dorsiflexion and plantar flexion movement with pronation and
supination positioning support system.

Also most AFOs focus on planar and dorsiflexion movement but neglects the
critical issues on the impact of pronation and supination. Current design mostly
focuses on the planar and dorsiflexion movement, as from pathological gait perspective
it contributs most of the person’s movability. Unfortunately that is referring to normal
walking system. During injuries or recovery, the requirement for assisting device that is
capable of executing the reaction of the user without user involving with the movement
is much needed. Untethered system that is capable to perform planar and dorsiflexion
movement with pronation and supination positioning support system will be critical
towards the ankle rehabilitation.

1.3 Objectives

The first objective is to design and simulate the kinematic ankle movement
using MATLAB and find the best optimization for the mechanical design. The
expected result from the mathematical modeling of the system is a dynamic analysis
which can provide data on ankle displacement versus gait cycle , moment (Nm) versus
ankle angle , Force (F) of toe versus gait cycle and stability of the system.

The second objective is to design an embedded control system that will
encounter the supination and pronation. The expected result on this is the time(s)
vs Angle (degree) relationship and the stability of the controller.

The third objective is the integration between the mechanical system and
embedded system. The expected result is the time response of displacement, kinematic
analysis based upon motion and the stability of whole system.

1.4 Contribution

The contribution of this work is a novelty on actuator, controller and structure
implementation. The actuator novelty is the use of active braking with dual acting
passive springs to support pronation and supination motion. The controller is
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designed using a Propotional-Intergration-Derivative (PID) controller. The structure
is developed using 3D printed parts for modularity, which are interchangeable and are
easier to maintain.

1.5 Thesis Organization

This study consists of five chapters. Chapter two provides a comprehensive
literature review on methods from past research works on pronation and supination
support mechanism. Finally, based on the literature review the problems are identified.

Chapter three proposes the methodology. In this chapter, the methods and
the fundamental approach on understanding pronation and supination is given. The
methods consist of the study of muscles and joints that have a direct impact when the
pronation and supination happens. Study on the kinematics of the ankle and will be
used to design the actual hardware to support ankle pronation and supination.

In chapter four the results of the preventive design of pronation and supination
will be provided. Discussions on the result of the project are also included in this
chapter. Last but not least, chapter five concludes this work. Some comments and
suggestions for future improvements are provided.
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