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ABSTRACT 

Studies investigating nanostructure on Schottky diode reported that sharp 

edge of nanostructures produces high electric field. It has been suggested that high 

electric field improve gas sensing performance on reverse biased mode. Electric field 

also promotes the ionisation of gas molecule thus improving sensing performance. 

Thus, the author aims to investigate the effect of sharp edges Schottky contacts 

towards electric field and Schottky diode performance. This can be achieved through 

simulation and experiment. COMSOL Multiphysics was used to model Schottky 

contact shape: circular-, hexagon- and star-shape. Star-shape Schottky contact 

produced 2.79 x 10
9
 V/m total electric field followed by hexagon- and circular-

shape. Acute angle of star-shape at 72˚ contributed higher electric field 4 x 10
4
 V/m 

than obtuse angle.  After that, sensing layer of Schottky diode was fabricated by 

using Radio Frequency (RF) magnetron sputtering to deposit Zinc Oxide (ZnO) and 

Titanium dioxide (TiO2). In addition, highly potential material Carbon Nanotubes 

(CNTs) were investigated along these materials, which were sensitive towards gas 

sensing. Platinum was chosen as Schottky contact metal since it is known as a good 

catalytic metal to help absorption of hydrogen gas into the sensing layer. Finally, the 

sharp edges Schottky contacts with nanostructure film devices were characterised. 

Series of current-voltage (I-V) characteristics were recorded using Keithley 2400 

and temperature was varied from room temperature to 200˚C towards 1% hydrogen 

gas in a vacuum chamber. Results show that hexagon-shape Pt/TiO2/Si Schottky 

diode gave better barrier height of 494 meV than circular-shape. Furthermore, the 

response shows that 0.3 mA current changes were observed at star-shape Pt/CNTs/Si 

Schottky diode based sensors in forward biased mode. On the other hand, 0.21 mA 

was observed at hexagon-shape Pt/CNTs/Si Schottky diode based sensor on reverse 

biased mode. This signifies that improvement can be made by tailoring the Schottky 

contact shape to increase the electric field for sensing purposes. 
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ABSTRAK 

Kajian ke atas struktur nano yang dimendap ke atas diod Schottky telah 

menunjukkan bahawa sisi tajam struktur nano menghasilkan medan elektrik yang 

tinggi. Kajian tersebut juga mencadangkan medan elektrik yang tinggi telah 

meningkatkan prestasi penderia gas di bahagian pincang belakang. Maka, penulis 

telah mengkaji kesan sisi tajam elektrod Schottky ke atas medan elektrik dan 

prestasinya sebagai diod Schottky. Ini boleh dicapai melalui simulasi dan 

eksperimen. COMSOL Multiphysics diguna untuk memodelkan tiga bentuk elektrod 

Schottky: bulatan, heksagon dan bintang. Elektrod Schottky berbentuk bintang 

menghasilkan 2.79 x 10
9
 V/m jumlah medan elektrik diikuti dengan bentuk 

heksagon dan bentuk bulatan. Sudut tirus sebanyak 72˚ pada bentuk bintang 

menyumbang medan elektrik tertinggi iaitu 4 x 10
4
 V/m berbanding sudut cakah. 

Kemudian, lapisan penderia diod Schottky difabrikasi dengan menggunakan 

teknologi Radio Frequency (RF)magnetron sputtering untuk mendapan Zink Oksida 

(ZnO) dan Titanium dioksida (TiO2). Selain itu, material berpotensi tinggi Karbon 

Tiub-Nano (CNTs) juga dikaji kerana bahan-bahan ini sensitif sebagai penderia gas. 

Platinum telah dipilih sebagai logam elektrod Schottky kerana dikenali sebagai 

logam pemangkin yang baik untuk membantu penyerapan gas hidrogen ke dalam 

lapisan penderia. Akhir sekali, untuk mengkaji sifat diod Schottky, ciri-ciri arus-

voltan (I-V) telah direkod menggunakan Keithley 2400 di mana suhu telah diubah 

daripada suhu bilik ke 200˚C ke atas 1% gas hidrogen di dalam ruang vakum. 

Keputusan menunjukkan bentuk heksagon Pt/TiO2/Si memberi ketinggian halangan 

yang lebih baik sebanyak 494 meV berbanding bentuk bulatan. Keputusan juga 

menunjukkan perubahan arus sebanyak 0.3 mA diperolehi daripada bentuk bintang 

Pt/CNTs/Si dalam bahagian pincang hadapan. Manakala, 0.21 mA diperolehi 

daripada bentuk heksagon Pt/CNTs/Si pada bahagian pincang belakang. Ini 

menunjukkan bahawa pembaikan boleh dibuat dengan memanipulasikan lapisan 

elektrod Schottky. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 Schottky diode conventionally used either in power or sensor application. 

The unique configuration of Schottky diode (metal-semiconductor) compared to 

normal diode(semiconductor-semiconductor) enable it to switch faster than normal 

diode does and the usage of metal as contact is beneficial especially for gas sensing 

application. The fabrication process of Schottky diode is very simple, which 

facilitates the research and development of these types of sensors. Schottky diode 

based sensors have been fabricated employing a number of different 

inorganic/organic semiconductors together with thin catalytic metal layers (generally 

group VIII transition metals such as Pt or Pd) that acts as both a Schottky contact 

and a catalyst for gas adsorption [6]. The catalytic metal and semiconductor form a 

Schottky barrier, which varies as the device is exposed to different gas species and 

determines how sensitive the device can be towards target gas. The type of 

semiconducting material, its structure and the formation of the junction barrier 

between the metal and the semiconductor can be controlled and varied to sense 

different types of particular gases. 

 

  However, many of these studies usually used a typical circular shape of 

Schottky contact [3, 7-10] and to the author knowledge none reported the 

investigations on effect of varying the shape towards gas sensing performance. It is 

known that electric field can be enhanced by increasing the edges around the contact 

[11]. The focus in this research is to study the variation of the Schottky contact 
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shape. Investigation on the factor responsible for the enhancement of electric fields 

and the effect of the different geometries of Schottky contact are conducted in order 

to enhance the sensitivity of Schottky diode based sensors. Then, the fabricated 

Schottky diode based sensor is tested for gas applications. 

1.2 Problem Statement  

Conventional semiconductor sensor such as FET usually have complicated 

structure for fabrication. On the other hand, Schottky diode is known for its 

simplicity in term of fabrication process. It consist layered of Schottky contact, metal 

oxide thin film, semiconductor substrate and ohmic contact. Several researchers [3] 

prove that by applying sharp edges nanostructure metal oxide thin film in Schottky 

diode enhanced the performance of gas sensor. Incidentally, Schottky contact is main 

part of Schottky diode which function as an electrode as well as catalytic layer. In 

power diode application, it is known that sharp edges Schottky contact produces 

leakage current. However, sharp edges produce larger electric field which will help 

to promote gas ionization. Hence there is need to study on the electric field 

enhancement at Schottky contact and various geometries of Schottky contact.  

1.3 Research Objectives 

The objectives of this research are: 

i. To obtain in detail the basic behaviour (such as electric field and I-V reverse 

and forward biased) of Schottky diode based sensor using various 

nanostructures morphology and Schottky contact shape.  

ii. To identify a series of relationships between the different nanostructures 

morphology and Schottky contact shape  

iii. To verify that the obtained geometries of nanostructure and different 

Schottky contact shape will able to perform better than conventional circular- 

shape Schottky contact 
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1.4 Research Motivation 

Schottky diode is used either in power or sensing applications. The existence 

of Schottky contact metal in configuration of Schottky diode differentiate it with the 

normal diodes. It is generally known that sharp edges Schottky contact is avoided in 

power application as it produced leakage current which is not favourable in power 

application. However, this disadvantage is beneficial for gas sensor as it enhanced 

the local electric field. This enhancement of electric field helps the ionisation of gas 

molecule into atoms and consequently improve the gas adsorption. 

 

In state-of-the-art technologies, the interest on nanotechnology integrated 

with solid state sensor has became a trend of research. This includes investigations 

of increasing the electric field [12] via sharp edges nanostructure on Schottky diode 

gas sensor. It is believed that by increasing the electric field, it will lead to increased 

sensitivity of a sensor.  

 

Hence, in this research Schottky diode was investigated by employing the 

effect of sharp edges at metal contact through varying the Schottky contact shapes. 

The output of this research will be focused mainly as hydrogen gas sensing 

application. 

1.5 Expected Findings  

It is expected at the end of this project it will  

i. Provide  new knowledge on the findings of factors for electric field 

enhancement and the effects of the different geometries of Schottky 

contact for Schottky diode based sensor. 

ii. Show performance improvement as a gas sensor compared to 

conventional circular-shape Schottky contact diode. 
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1.6 Structure of Thesis 

This thesis is divided into several topics to present the main objective of 

characterisation on sharp edges of Schottky contact with nanostructure thin film. The 

topics were arranged as follows; 

 

 Chapter 2 presents literature review on state-of-the-art research and 

findings which related to the Schottky diode with nanostructure film 

including the materials and nanotechnology used. 

 Chapter 3 presents on the theoretical study related to the fundamental 

of Schottky diode and the explanation of its mechanism in sensing. 

 Chapter 4 demonstrates the fabrication process conducted step by 

step in order to obtain the final device. This chapter also presents the 

synthesis and deposition of the nanostructure materials. 

 Chapter 5 discusses the characterisation conducted to study the 

materials and morphologies of the nanostructure deposited as the 

sensing layer. 

 Chapter 6 discusses the measurement conducted and performance of 

the hydrogen sensor towards hydrogen gas by analysing the current-

voltage (I-V) characteristic and Schottky barrier height. 

 Chapter 7 concludes this thesis and presents the contribution of study 

with suggestion for future work. 
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