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ABSTRACT 

 

 

 

The failure behaviour of the shallow foundation under centric and eccentric 

loading has been studied extensively. Bearing capacity and settlement are two limits 

of foundation design. The studies on the effect of eccentricity on bearing capacity are 

abundant, while the study about the effect of eccentricity on settlement is very rare. 

The aim of this study is to investigate the effect of eccentricity on settlement of 

sandy soil. The objectives of this research involve the evaluating the ultimate and 

allowable bearing capacity and verifying bearing capacity factor (Nγ), determination 

of settlement of sandy soil under different eccentricity ratio (e/B), analysing the 

failure mechanism of strip footing on cohesionless soil by close range 

photogrammetry and particle image velocimetry (PIV) methods, and verifying the 

laboratory results with theory or analytical analysis for centrally loaded strip footing. 

This research mainly concentrates on the laboratory tests. Several tests were 

conducted which consist of physical property tests and small scale physical 

modelling test. A model of medium sand with 50% relative density was prepared, 

strip footing was replicated using a rigid plate and loaded with different eccentricity. 

Moreover, close range photogrammetry and PIV technique were used to observe the 

failure pattern, contour of displacement, and shear strain under strip footing. It was 

found that the settlement increases with increasing eccentricity. 
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ABSTRAK 

 

 

 

Tingkah laku kegagalan asas cetek dibawah pemberat “centric” dan 

“eccentric” telah dikaji. Keupayaan galas dan enapan adalah dua had kepada rekaan 

asas. Kajian impak “eccentricity” terhadap keupayaan galas telah banyak dilakukan 

manakala kajian impak “eccentricity” terhadap enapan adalah jarang. Tujuan utama 

kajian ini adalah untuk menyelidik impak “eccentricity” kepada enapan tanah 

berpasir. Objektif kajian ini melibatkan penilaian keupayaan galas muktamad dan 

dibenarkan dan juga mengesahkan faktor keupayaan galas (Nγ), penentuan enapan 

tanah berpasir dibawah purata “eccentricity” berlainan (e/B), penganalisaan 

mekanisme kegagalan jalur asas  pada tanah jeleket dengan fotogrametri jarak dekat 

dan kaedah imej partikel velosimetri (PIV) dan mengesahkan keputusan makmal 

dengan teori dan analisis analitikal untuk beban berpusat jalur asas. Kajian ini 

memfokuskan kepada ujian makmal. Beberapa ujian telah dijalankan antaranya ujian 

fizikal properti dan ujian fizikal model berskala kecil. Plat akan digunakan untuk 

mereplika asas dan dimuatkan dengan “eccentricity” berlainan. Selain itu, 

fotogrametri jarak dekat dan teknik PIV telah digunakan untuk memerhatikan corak 

kegagalan dan kontour sesaran dibawah jalur asas.Kajian telah menunjukan enapan 

meningkat dengan peningkatan “eccentricity”. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of research  

Structures have often been supported by footings in a soil which is adequately 

strong to serve as bearing layer (Junhwan and Rodrigo, 2002). Settlements above 

tolerable limit under working loads generally impair serviceability and function of 

both foundation and the superstructure which ultimately leads to failure of 

infrastructures (Junhwan and Rodrigo, 2002).  Thus, structures need to be supported 

by foundation such that settlement at the footing is kept within bearable limits. 

Therefore, it is imperative to estimate potential settlement to critically assess soil 

bearing capacity during the design of foundation such that settlement under working 

load is within the tolerable range. Basically settlement of foundation consists of two 

components which are the elastic and consolidation settlements (Braja et al, 2009). 

Thus, elastic settlement is common is sandy soil material.  And is estimated based on 

linear elastic approach. However, foundation induced stress-strain in the soil is 

usually in the form of elasto-plastic range (Lee and Selgado, 2002). Granular soil 

material has been modeled by number of researchers in which deformations of sandy 

soil and bearing capacity factors under different loading situations such as centrally 

inclined, eccentrically inclined, eccentrically vertical, centrally vertical (Meyerhof, 

1953; Meyerhof, 1963;  Loukidis et al, 2008). 

This has been confirmed by other researchers (Erol et al, 2009). It has been 

established that lateral forces due to water, earthquake and wind can subject 
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foundations to moments. Eccentricity in strip footing is defined as the ratio of 

moment (M) to vertical load (Q). As the eccentricity increases, ultimate load 

decreases usually. This leads to the formation of failure surface of eccentric footing 

largely at one side of the footing, as against nearly symmetrical failure surface for 

centric footing. (Meyerhof, 1953; Prakash and Saran, 1971; Uzuner, 1975; Moroglu 

et al, 2005) have all observed this type of failure mechanism for eccentric footing. 

Accordingly, it causes less failure compared to the same centric footing 

Meyerhof (1953) effective width concept and conventional methods were 

used for calculating the ultimate load (Qu) of the eccentrically loaded foundation. 

Meyerhof (1953) considered the ultimate load of eccentrically loaded strip footing 

equal to that of centrally loaded strip footing but with a reduced footing width, B. 

Linear stress distribution, vertical equilibrium for all forces, moment equilibrium 

were the assumptions made in the determination of normal base pressure distribution 

under an eccentrically loaded foundation using customary analysis. These 

assumptions were further confirmed (Uzuner, 1975). 

The amount of settlement superstructure can tolerate and determines the 

design of foundation on sandy soil (Nova and Montrasio, 1991). Hadi and Ali (2010) 

have confirmed that excessive settlement causes structural damages due to loss of 

bearing capacity of the underlying soil. Thus, Shahriar (2012) suggested that 

foundations on cohesionless soil should be designed such that settlement is within 

tolerable limits. Otherwise, excessive vertical deformation will occur (Díaz and 

Tomas, 2014). Other effects of settlements were the distortion of structural geometry 

due to tilting and angular distortion of superstructure (Saurabh et al, 2014). This 

further leads to cracks due to induced tensile stresses more that of the carrying 

capacity of the structure. Structural instability can also be generated due to formation 

of sudden joint as a results of large size cracks.  
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1.2 Problem Statement 

It has been established that settlement of foundation beyond tolerable limits 

impairs the functionality and serviceability of superstructure. Thus, excessive 

settlement is caused by loss of soil bearing capacity underneath the footings. 

Consequently, leads to structural damages. Also settlements were known to cause the 

distortion of structural geometry due to tilting and angular distortion of 

superstructure. Eccentric loading, however, subjects the foundation to moments. 

Thus, leads to the formation of failure surface largely to one side of the footing. 

Therefore, this study will give an insight on the effects of eccentric loading induced 

settlement. 

 

1.3 Aim and Objectives  

The aim of this study is to observe the settlement behaviour of eccentrically 

loaded surface strip footing on a sandy soil. 

The objectives of the study are as follows: 

1. To evaluate the ultimate and allowable bearing capacity and verifying bearing 

capacity factor Nᵧ of sand under different eccentricity.  

2. To determine the settlement of sandy soil under strip footing with different 

eccentricity ratio (e/B).  

3. To analyse the failure mechanism of strip footing on cohesionless soil by 

Close Range Photogrammetry and Particle Image Velocimetry (PIV) 

methods.  

4. To verify the laboratory results with theory/analytical analysis for centrally 

loaded strip footing. 
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1.4 Scope and limitation of the research  

In this research, physical properties tests and major physical chamber test 

were be conducted. Physical properties tests include sieve analysis, specific gravity, 

relative index, and Shear Box tests. Shear Box Test was used to obtain angle of 

internal friction of the soil. The material used in this research is sand with 50% 

relative density (medium packed sand). Then, from main chamber physical test, a 

strain controller was used to carry out the Bearing capacity test and determine the 

Bearing capacity factor Nγ and dead load system was used to measure settlement of 

strip footing on a sandy soil with both centric and eccentric loading conditions 

respectively.  Linear vertical displacement transducer (LVDT) and load cell were 

used to record displacements and stresses during loading. Close Range 

Photogrammetry and Particle image velocimetry (PIV) were utilized to reveal the 

failure surface pattern under strip footing. 

 

1.5 Significance of research  

The significance of this study is to investigate the behavior of granular soil, to 

observe the failure pattern and determination of bearing capacity factor under 

different eccentricity. The failure pattern under strip footing was revealed by particle 

image velocimetry. 
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