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ABSTRACT

In the construction of post-tensioned segmental crosshead, the stresses in the
crosshead vary in every stage of the construction as the addition of new segment
increases the bending moment while post-tensioning of tendon reduces it.
Furthermore, the bending moment in the crosshead during construction is not
balanced as new segment are added at one side of the cantilever at a time together
with other construction load that operates on the same side of the new segment. In
this paper, a study was conducted with finite element method to investigate the
response of various parameters and effect of construction sequences on a segmental
crosshead erected by balanced cantilever method. For this operation, a segmental
crosshead model was generated using a finite element sofiware and it was analyzed
with various construction sequence. The rate of changes in stresses in each stages of
construction was investigated and it was found that the stresses were over the limit
when construction stage analysis was performed. In addition to that, it was also
found that the maximum design moment for pier design can only be obtained by a

more rigorous construction stage analysis.
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ABSTRAK

Dalam pembinaan 'crosshead' jenis konkrit pra-tegasan, nilai tegasan adalah
berbeza di  setiap peringkat pembinaan. Penambahan segmen baru akan
meningkatkan momen lentur manakala penegasan tendon akan mengurangkannya.
Tambahan pula, momen lentur semasa pembinaan adalah tidak seimbang kerana
segmen baru ditambah di sebelah pada satu masa berserta beban pembinaan yang
dikenakan pada segmen tersebut. Oleh itu, respon struktur semasa fasa pembinaan
perlu dikaji selidik. Untuk penyelidikan ini, model struktur telah dibina
menggunakan perisian unsur terhingga dan ia dianalisa dengan pelbagai urutan
pembinaan. Kadar perubahan tegasan setiap peringkat pembinaan telah diselidik dan
didapati bahawa tegasan telah melebihi had apabila analisa pembinaan dijalankan.
Selain itu, juga didapati bahawa momen lentur maksimum bagi reka bentuk tetiang

hanya boleh diperolehi dengan analisa peringkat pembinaan yang lebih terperinci.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

The first precast segmental concrete box girder bridge in Malaysia is the
Batang Kemena Bridge on the Bintulu-Tatau road, which is part of Pan Borneo
Highway. This bridge consists of 11 spans with total length of 457m and was
completed in 1983 (Low Keng Kok er «l, 2004). It was precursor for the various
segmental constructions of precast segmental box girder concrete bridges in
Malaysia. Example of segmental box girders launched using launching gantries are
STAR LRT and PUTRA LRT in 1997, the Malaysia-Singapore Second Link and the
Ampang-Kuala Lumpur Elevated Highway. In year 1998, the first match cast
concrete segmental box girder launched without travelling gantries was mtroduced
for the Besraya Highway viaduct over the KIL.-Seremban Highway in Kuala Lumpur.
The match casting techniques was further developed and pioneered by the earlier
Besraya viaduct contractor to be used in other bridge elements such as the segmental
pier cross head construction in New Pantai Expressway. This new technique enables
piers for viaducts built over existing roads to be constructed economically without
partial closing of the road below as compared with the traditional cast in situ portals

or the hammerhead piers.



Construction of bridges is associated with high uncertainties. The stochastic
nature of the operation makes computer simulation an appropriate tool to model the
construction of a bridge. Abraham and Halpin (1998), developed a simulation model
for the construction of cable-stayed bridges. The developed model accounts for
different scenarios and resources of the construction operation and estimates the
duration for each case. Yamin-Lopez (2000), utilized a computer simulation to
evaluate the feasibility of three different construction proposals for the construction
of the Alamillo Bridge in Seville. Huang et al. (1994), used a general purpose
simulation language (DISCQO) to model the construction of cable-stayed bridges.
Marzouk et al. (2007), developed a special purpose simulation model, devoted to the

planning of incremental launched bridges.

This master project present a finite element model of the segmental crosshead
and analyses each construction stage to study the response of various parameters in

segmental crosshead.

1.2 Statement of the Problem

The resistance and stability of segmental crosshead during construction stage
should be given concern as the structure is uncompleted and have not reach the full
resistance as designed. Thus consideration of construction loads and stresses during
construction is as important as permanent load on final structure. Construction loads
can be due to temporary loads caused by the sequence of construction stages,
forming, falsework, construction equipment, and action of lifting and placing of
precast members. In crosshead construction, the segments were added at one side of
the cantilever at a time, and due to this construction sequence, the selfweight of the
structure is unbalanced and this instability is further amplified by construction loads
which operate on the same side of the new segments. Therefore it is essential to
understand the response of the structure during construction stage as to ensure ample

safety factor against failure.



1.3 Objectives of the Study

The objectives of this study are as follows:

(1) To perform construction stage analysis on selected finite element model of
precast segmental crosshead.

(2) To determine response of various parameters in segmental crosshead at each
stage of construction.

(3) To determine the effect of construction sequences on a segmental crosshead

erected by balanced cantilever method.

1.4 Scope of Study

The scope of study will focus on a precast segmental crosshead as per
Appendix A. The crosshead spans 26.54m with a height of 11m and consist of 6
segments. A finite element model is constructed and analyzed according to
predetermined construction stages. The extreme fibre stress, bending moment, and

displacement is studied.

1.3 Significance of the Study

It 1s necessary to know about the structure behavior in regards with changes
in geometry, boundary conditions, internal forces as well as the material properties
and other structural details in segmental construction process in order to control the
deformation and stress state throughout the process. Temporary construction loads
and changing of boundary conditions during construction, depending on the method
and sequence of erection can produce considerable stresses in the uncompleted
structure. A simulation of the construction process according to cach stages of
construction is investigated to determine the state of stress and deformation of each

stage of the construction process.
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