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ABSTRACT 

Aerosol estimation from satellite data is crucial for the air quality assessment, 

visibility estimation, and climate modelling. Numerous retrieval algorithms have 

been developed for aerosol optical thickness estimation but there are still 

uncertainties in estimation due to several factors that need to be addressed for the 

development of an effective retrieval algorithm. Therefore, the main goal of this 

study is to develop an effective aerosol retrieval algorithm using Moderate 

Resolution Imaging Spectroradiometer 500 metre data considering the effects of 

different Radiative Transfer codes, surface reflectance estimation techniques, local 

aerosol models, and atmospheric transmission contributions. The  aerosol estimation 

algorithm has been developed using several processing steps include i) estimation of 

aerosol reflectance from satellite data, ii) local aerosol models characterization using 

aerosol inversion product, iii) estimation of aerosol reflectance as function of aerosol 

optical thickness using different Radiative Transfer codes and direct method, iv) 

retrieval of aerosol optical thickness by comparing the residual of aerosol reflectance 

between satellite data and Radiative Transfer codes using Look-up Tables based on 

optimal spectral shape fitting function, and v) validation of retrieved aerosol optical 

thickness with in-situ ground measurement. Results indicate that aerosol optical 

thickness can be successfully retrieved from the satellite data using Second 

Simulation of a Satellite Signal in the Solar Spectrum vector code, 2-channel of 

Moderate Resolution Imaging Spectroradiometer data, and surface reflectance 

derived from the Radiative Transfer code based atmospheric correction using 

continental and desert aerosol model together. The proposed algorithm is very 

effective and retrieved aerosol optical thickness from Moderate Resolution Imaging 

Spectroradiometer 500 metre data with the accuracy of 96% and low uncertainty for 

the both study sites. This finding highlights the potential of this algorithm to retrieve 

aerosol optical thickness from satellite data with high accuracy and good spatial 

information compared to the 10 kilometres satellite aerosol product. 
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ABSTRAK 

Anggaran aerosol daripada data satelit adalah penting untuk penilaian kualiti 

udara, anggaran kebolehlihatan, dan pemodelan iklim. Pelbagai algoritma penerbitan 

telah dibangunkan untuk anggaran ketebalan optik aerosol tetapi masih terdapat 

keraguan dalam anggaran yang disebabkan oleh beberapa faktor yang perlu diberi 

perhatian untuk pembangunan algoritma penerbitan aerosol yang efektif. Oleh itu, 

tujuan utama bagi kajian ini adalah untuk membangunkan algoritma penerbitan 

aerosol menggunakan data Pengimejan Spektroradiometer Resolusi Sederhana 500 

meter dengan mempertimbangkan kesan-kesan bagi kod Pemindahan Sinaran yang 

berbeza, teknik anggaran kepantulan permukaan, model aerosol tempatan, dan 

penyumbangan penghantaran atmosfera. Algoritma anggaran aerosol telah 

dibangunkan menggunakan beberapa langkah pemprosesan termasuk i) anggaran 

bagi kepantulan aerosol daripada data satelit, ii) pencirian model aerosol tempatan 

menggunakan produk penterbalikkan aerosol, iii) anggaran bagi kepantulan aerosol 

sebagai fungsi ketebalan optik aerosol menggunakan kod Pemindahan Sinaran yang 

berbeza dan kaedah secara langsung, iv) penerbitan ketebalan optik aerosol dengan 

membandingkan nilai perbezaan kepantulan aerosol di antara data satelit dan kod 

Pemindahan Sinaran yang menggunakan Jadual Carian berdasarkan fungsi 

penyesuaian bentuk spektral yang optimal, dan v) pengesahan ketebalan optik 

aerosol yang diterbitkan dengan pengukuran di tanah lapangan. Hasil kajian 

menunjukkan bahawa ketebalan optik aerosol dapat diterbitkan dengan jayanya 

daripada data satelit menggunakan kod vektor Simulasi Kedua bagi Isyarat Satelit di 

dalam Spektrum Suria, 2-saluran data Pengimejan Spektroradiometer Resolusi 

Sederhana, dan kepantulan permukan diterbitkan daripada kod Pemindahan Sinaran 

berdasarkan pembetulan atmosfera menggunakan model aerosol benua dan padang 

pasir bersama-sama. Algoritma yang dicadangkan adalah sangat efektif dan 

ketebalan optik aerosol yang diterbitkan daripada data Pengimejan 

Spektroradiometer Resolusi Sederhana 500 meter dengan ketepatan sebanyak 96% 

dan ketidakpastian yang rendah bagi kedua-dua kawasan kajian. Penemuan ini 

menekankan keupayaan algoritma ini untuk menerbitkan ketebalan optik aerosol 

daripada data satelit dengan ketepatan yang tinggi dan maklumat ruang yang bagus 

berbanding dengan produk satelit aerosol 10 kilometer. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Atmospheric aerosol, suspension of liquid and solid particles with radii 

varying from a few nanometre (nm) to larger than 100 micrometre (µm), plays an 

important role in solar radiation budget, climate change, hydrology process, air 

quality and visibility through the scattering and absorption of incoming solar energy 

(Levy et al., 2009). Natural aerosol (such as dust, volcanic, sea-salt) and 

anthropogenic aerosol (such as industrial activity, fossil fuel burning) are the two 

main sources of aerosols (Lee and Kim, 2010), however, based on the size 

distribution aerosols can also be classified into two groups i.e. particulate matter 2.5 

(PM 2.5) and particulate matter 10 (PM 10). PM 2.5 is also known as fine mode that 

refers to the particles of aerosol with the diameter of size less than 2.5 µm, while PM 

10 is known as coarse mode which describes particles with the diameter less than 10 

µm.  The particulate matters can be measured as the amount of particles contained in 

a cubic meter of air, expressed as micrograms per cubic meters (µg/m3). 

 

 

Both the PM 2.5 and PM 10 aerosol particles have been known for causing harm 

to human health especially PM 2.5 because of its small particles size that can 
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penetrate through respiratory system and affect the lungs and heart (Brook et al., 

2004). Concentration of aerosol in atmosphere can influence climate directly as well 

as indirectly. Direct effects can be seen as greenhouse effect that producing the 

phenomena of global warming due to the fact that aerosol particles absorb the solar 

radiation from the sun and trap the heat into the atmosphere layer. On the other hand, 

aerosol concentration indirectly altering cloud properties by providing more cloud 

condensation nuclei (CCN) that affect rainfall pattern, radiation balance and 

hydrological balance (De Leeuw et al., 2011). 

 

 

Two main properties of aerosol are optical properties and microphysical 

properties (e.g. aerosol size distribution and refractive index). Aerosol optical 

property consists of several parameters such as aerosol optical thickness (AOT), 

extinction coefficient (Qext), aerosol phase function (𝑝(θ)), single scattering albedo 

(𝜔𝑜), and asymmetry parameters (g) (Levoni et al., 1997). Extinction coefficient 

(Qext), aerosol phase function (𝑝(θ)), single scattering albedo (𝜔𝑜), and asymmetry 

parameters (g) can be derived from microphysical properties using Mie scattering 

calculation (Wiscombe, 1978).  Meanwhile, AOT can be retrieved from direct solar 

radiation measurement by using sun-photometer instrument. However, two key 

parameters for retrieving aerosol from satellite measurement are aerosol optical 

thickness (AOT) and Angstrom exponent coefficient (𝛼). AOT can be described as 

an integral of the aerosol light extinction over vertical path through the atmosphere 

and it is a function of wavelength (Kokhanovsky and de Leeuw, 2009). Whereas, 

Angstrom exponent is related to the spectral dependence of the extinction at two 

different wavelengths. AOT tells us how much direct sunlight is prevented from 

reaching the ground by these aerosol particles. It is a dimensionless number that is 

related to the amount of aerosol in the vertical column of atmosphere over the 

observation location. A value of 0.01 corresponds to an extremely clean atmosphere, 

and a value of 0.4 would correspond to a very hazy condition. 

 

 

Retrieval of AOT is a complex process and can be carried out from ground 

measurement and airborne measurement. Ground measurement has been used over 

100 years for measuring air pollution in the atmosphere (Brimblecombe, 1987) using 
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hand held, ship-based, and ground based network measurement based on sun 

photometer instrument. The most widely used ground based measurement instrument 

for aerosol retrieval over land with high spatial and temporal resolution is 

AERONET (Aerosol Robotic Network) which provides direct Sun algorithm 

measurement (e.g. AOT value and precipitable water) and inversion of sky radiance 

measurement (e.g. microphysical properties) from visible to near infrared spectrum 

(Aube et al., 2000). On the other hand, airborne measurement such as air balloon, 

aircraft, and remote sensing satellite can be used to retrieve aerosol in directly or 

indirectly with high spatial and wide areas coverage of aerosol information (Aube et 

al., 2000). Moreover, remote sensing satellites are increasingly being used for 

retrieving information on aerosol properties includes optical properties and 

microphysical properties because remote sensing satellite has capability to retrieve 

AOT information at good spatial resolution, high temporal resolution, and wide 

coverage (Kokhanovsky and de Leeuw, 2009). However, it is important to note that 

AOT retrieval requires satellite data with high spatial and temporal resolution 

because of the short life span of aerosol (7 to 10 days) (Zubko et al., 2007). 

 

 

The first operational aerosol product was retrieved from satellite 

measurement using Advance High Resolution Radiometer (AVHRR) sensor on-

board the Television and Infrared Observation Satellite (TIROS) platform launched 

in 19 October 1978 (Stowe et al., 2002). However, there are many satellite sensors 

available now a days with different capabilities to retrieve AOT such as i) Multiangle 

Imaging SpectroRadiometer (MISR), ii) Polarization and Directionality of the 

Earth’s Reflectance (POLDER), iii) Lidar In-Space Technology Experiment (LITE), 

iv) Geoscience Laser Altimeter System (GLAS) and v) Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO). Apart from these sensors, 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor has showed 

excellent capabilities for measuring aerosol due to high spatial resolution (compare 

to others of aerosol remote sensing sensors), wide spectral range and high temporal 

resolution (Levy et al., 2003).  
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Although many satellite sensors can be used for the estimation of AOT, 

retrieval of AOT directly from satellite estimation is rarely possible without an 

effective algorithm. Numerous aerosol retrieval approaches are available based on 

the characteristics of satellite data as retrieval algorithms are varied due to different 

properties of sensors such as spectral, spatial, view angles, polarizations, and so on. 

Aerosol retrieval algorithm over land using remote sensing techniques is more 

complicated compared to the aerosol retrieval over ocean because of the 

heterogeneous land features (Kokhanovsky and de Leeuw, 2009). However, aerosol 

retrieval over land can be simplified by decomposing the Top of Atmosphere (TOA) 

reflectance from surface reflectance and the Rayleigh reflectance in order to retrieve 

aerosol reflectance. The key factor on the aerosol retrieval algorithm is to estimate 

surface reflectance which attempts to differentiate the aerosol signal from surface 

(Kaufman et al., 1997b).  

 

 

The most common estimation of surface reflectance over land uses dark 

surface assumption techniques by retrieving surface reflectance at dark pixels using 

shorter wavelength (near ultraviolet and UV) (von Hoyningen-Huene et al., 2003; 

Hsu et al., 2004, 2006; von Hoyningen-Huene et al., 2006). Over vegetation areas, 

Kaufman et al. (1997) was firstly proposed the dark dense vegetation (DDV) 

technique for estimating surface reflectance using the multi-wavelength algorithm on 

the MODIS images. Thus, Levy et al. (2009) has developed an algorithm for 

estimating surface reflectance over dark target based on empirical surface reflectance 

relationship using Normalized Difference Vegetation Index (NDVI). However, apart 

from the DDV algorithm, many other techniques can also be used to estimate surface 

reflectance over land such as empirical relationship between short-wave infrared and 

visible channel (Levy et al., 2007; Vermote and Saleous, 2006) and Minimum 

Reflectance Technique (MRT) (Wong et al., 2011).  

 

 

Another important part of aerosol retrieval process is that a Radiative 

Transfer Model (RTM) is required in the aerosol retrieval method for accounting 

molecular effects (molecular scattering and absorption) by constructing look-up 

tables (LUTs) for a set of geometries, wavelengths, and aerosol models in order to 
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obtain aerosol reflectance as a function of AOT values (Kokhanovsky and de Leeuw, 

2009). Several radiative transfer (RT) codes are available that can be used to 

construct LUTs such as Low Resolution Transmittance (LOWTRAN) code, 

Moderate Resolution Transmittance (MODTRAN) code, Second Simulation of a 

Satellite Signal in the Solar Spectrum (6S) code, Santa Barbara DISORT 

Atmospheric Radiative Transfer (SBDART) code, and so on although all RT codes 

are equally effective for aerosol retrieval. For aerosol retrieval, all RT codes require 

an accurate estimation of the optical aerosol properties such as extinction efficiency, 

single scattering albedo, asymmetry parameter, etc. (von Hoyningen-Huene et al., 

2003). Although in past the RT code was difficult to use because of the generation of 

the code in operation environment, recently lots of improvement for RTM have been 

done to make user-friendly interfaces for RTM code (Ricchiazzi et al., 1998). 

 

 

Development of AOT model from satellite data over high population density 

areas such as in Hong Kong region is important because of intensive economic 

activities that produce aerosol which can affect air quality, local climate as well as 

human health. Several studies have already been conducted for the retrieval of AOT 

in Hong Kong  region using MODIS data at 500 m to 1 km spatial resolution with 

different approaches and techniques (Li et al., 2005; Wong et al., 2008, 2010; Bilal 

et al., 2013). The outcome of their results showed that a good agreement (R>0.9) can 

be achieved between AOT derived from MODIS (500 m or 1 km) and AOT from 

AERONET measurement. However, there are several shortcoming of the existing 

MODIS aerosol retrieval algorithms which can be seen in context of spatial 

resolution of data, retrieval/use of land surface reflectance, correction technique of 

atmospheric transmission, selection of aerosol model, and the selection of RT code 

for the aerosol retrieval. Therefore, there is still plenty of scope to improve the AOT 

retrieval procedure by incorporating robust RT code, accurate land surface 

reflectance, appropriate aerosol model, and gasses correction method. 
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1.2 Problem Statement 

 

 

The increasing amount of tropospheric aerosol in the atmosphere due to 

anthropogenic activities can cause harm to human health as well as premature deaths. 

World Health Organization (WHO) has recorded 3.7 million of premature deaths due 

to air pollution that occurs in the cities and rural areas for worldwide in 2012. The 

greatest number of premature deaths (88%) caused by air pollution occurs in the low 

and medium income countries such as Western Pacific and South-East Asia. Effect 

of premature deaths from air pollution (fine particles) contributes to chronic diseases 

such as heart disease and stroke (80% of premature deaths), chronic obstructive 

pulmonary disease (14% of premature deaths) and lung cancer (6% of premature 

deaths). Exposure to fine particle more risky to elderly, patients with pre-existing 

heart and lung disease, children, and asthmatic (U.S EPA, 1997). Indeed, a detailed 

measurement of aerosol over urban region is required in order to prevent these 

problems from become worse. 

 

 

Aerosol measurement from ground-based sun-photometer instruments (e.g. 

AERONET and shipboard measurement) have provides high accuracy of AOT 

retrieval over land and ocean (Porter et al., 2001; Mishchenko et al., 2007). 

However, ground-based measurements have disadvantage on spatial information 

(narrow coverage) due to point based measurement technique. Moreover, it’s 

impossible to obtain aerosol information over whole region (global coverage) 

especially in remote areas. Therefore, to overcome these limitations, remote sensing 

satellite has become powerful scientific tools to retrieve aerosol information in the 

Earth’s atmosphere from space. Besides, it can provide AOT distribution at local and 

global scale, good spatial resolution, and high temporal resolution. 

 

 

Numerous aerosol products at global scale have been generated from 

different types of satellite data such as AVHRR, Sea-Viewing Wide Field-of-View 

Sensor (SeaWiFS), MODIS, MISR and Total Ozone Mapping Spectrometer (TOMS) 

(Li et al., 2009). The global aerosol product can be used to understand global aerosol 
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distributions for long-term effects in climate studies, but, the problems of global 

aerosol product are; 

 

 

(i) Aerosol product derived from satellite data has offers aerosol information at 

low spatial resolution. For example, MOD04 L2 C005 has provides aerosol 

product at 10 km spatial resolution in order to monitor aerosol distribution at 

global scale. However at local scale, low spatial resolution could not be able 

to give good spatial information to monitor aerosol sources from 

anthropogenic activities. With the low spatial resolution of MODIS aerosol 

product, only few pixels can be covered for urban, industrial, and rural areas. 

Therefore, it is insufficient to show aerosol variation due to inherent aerosol 

variability over heterogeneous land surface (Li et al., 2005). 

 

 

(ii) It uses global aerosol model for retrieving aerosol product at global scale. 

Global aerosol model has provides aerosol model based on aerosol properties 

at global scale. However, aerosol properties are varied depending on local 

area circumstances such as sources, emission rate, and removal mechanism 

(Omar et al., 2005). Therefore, by using global aerosol model to estimate 

aerosol at local scale can cause uncertainty to the radiative forcing (Li et al., 

2005). Zhao et al., 2008 have performed sensitivity study about the influence 

of aerosol model selection on the AOT retrieved from AVHRR with fixed 

aerosol model and found that wrong selection of aerosol model can give false 

result to AOT long-term trend on the regional scale. Furthermore, 

investigation from the studies (Mishchenko et al., 1999; Jeong, 2005) also 

indicated that there is an impact of the differences in size distribution 

function and the refractive index on the AOT retrieval, and improper of size 

distribution can produce large AOT discrepancies which normally can be 

occurred in case of global aerosol model. Therefore, monitoring of local 

aerosol characterization is not suitable with global aerosol product because 

monitoring of AOT at local scale requires several local aerosol models to be 

investigated. 
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Many studies actually have been carried out using data from different satellite 

sensors and diverse aerosol retrieval algorithms based on Look-up tables (LUTs) 

from Radiative Transfer Model (RTM) (Lee et al., 2007; Levy et al., 2009; 

Kokhanovsky et al., 2010). AOT retrieved from satellite data by constructing LUTs 

using Radiative Transfer (RT) code shows a good agreement against AOT from 

AERONET measurement (von Hoyningen-Huene et al., 2003; Lee et al., 2007; 

Wong et al., 2010). But, the construction of LUTs for set of geometry angles, aerosol 

models, and so on using RT code are complex and difficult. The LUTs construction 

process require lots of parameters in order to do computation and simulation  which 

is not easy to carry out within a short period because LUTs is based on huge bulk of 

pre-computed data which needs to be recomputed every time as the atmospheric 

model changes (Katsev et al., 2010). Instead of constructing LUTs, AOT can also be 

retrieved using direct computation without RT codes (Bilal et al., 2013) but this 

technique has several limitations i.e. i) computation is too simple without accounting 

properly molecular effects, ii) require to make several of assumptions  and iii) can 

only be operated under condition of  atmospheric optical thickness value is less and 

equal than 0.01 (Kokhanovsky, 2008). 

 

 

However, apart from the complexity of LUTs construction, selection of RT 

code, selection of appropriate local aerosol model and selection of suitable satellite 

data, the most challenging part of aerosol estimation over bright surfaces is to 

retrieve surface reflectance information due to bidirectional effect and adjacency 

effect from heterogeneous surface though the estimation of surface reflectance over 

ocean (homogeneous surface) can be retrieved easily using dark ratio technique. 

Although estimation of surface reflectance is challenging part for aerosol retrieval 

over land, the measurement of accurate surface reflectance over land is necessary in 

order to monitor the sources of aerosol over land, and an error of 0.01 for surface 

reflectance estimation results in an uncertainty of 10% in AOT estimation (Kaufman 

et al., 1997). 

 

 

Previously, the dark surface approach was applied using near-UV and UV 

channels in order to estimate surface reflectance over bright surface but this 
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assumption is not effective at longer wavelengths (Kokhanovsky and de Leeuw, 

2009). Therefore, the Dark Dense Vegetation (DDV) techniques was introduced to 

estimate surface reflectance based on empirical relationship between surface 

reflectance at shortwave infrared channel and surface reflectance at visible channel, 

and the DDV technique has been used for retrieving MODIS aerosol product 

(MOD04 L2 C004) over land region (Kaufman et al., 1997c). However, this 

algorithm works only on vegetation areas with coverage larger than 60% where the 

surface reflectance are very low, and because of this assumption DDV algorithm 

can't be used effectively for aerosol estimation over bright surface such as deserts 

and urban. Thus, in the MODIS collection 005, the improvement has been made by 

developing algorithm from empirical relationship between shortwave infrared and 

visible channel based on NDVI values. Although, this algorithm is more reliable 

compared to previous algorithm, however, AOT value over urban region (bright 

surfaces) show bias (<2 %)  (Levy et al., 2010). 

 

 

However, it is worthwhile to state again that accurate estimation of AOT is 

essential for many purposes such as air quality, human health, climate modelling and 

so on but the estimation process of AOT is not straightforward especially AOT 

retrieval over land surface due to several factors stated above. Despite the 

difficulties, several studies have been conducted for the development of AOT 

retrieval algorithm using different types of data and processing techniques but there 

are still research gaps which can be identified in context of use of RT codes, 

selection of local aerosol model, selection of suitable satellite data, correction of 

gasses effect, and retrieval of land surface reflectance. A comprehensive AOT 

retrieval model is still absent in the literature, therefore, this study is going to 

develop an effective aerosol retrieval algorithm using MODIS 500 m data by 

exploring the potential of several RT codes, land surface retrieval techniques and 

gasses effect correction method, and expected that this study would make a 

significant contribution in the field of AOT retrieval process not only for Hong Kong 

but also for other urban areas. Moreover, the high resolution of MODIS data (500 m) 

planned to be used in this study would provide spatial distribution of AOT value in 

detail at urban region compared to spatial distribution of AOT from MODIS aerosol 

product (10 km).  
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1.3 Objectives of the Study 

 

 

The main objective of this study is to develop an effective aerosol optical 

thickness (AOT) retrieval algorithm over land using 500 m spatial resolution MODIS 

data. There are several specific objectives that need to be addressed in order to 

achieve the main objective:  

 

 

(i) to evaluate the potential of MODIS 500 m data for the retrieval of AOT using 

different retrieval algorithms, 

 

 

(ii) to investigate the effect of surface reflectance estimated/obtained using 

different techniques, 

 

 

(iii) to validate AOT retrieved from MODIS 500 m with the AOT from 

AERONET data and AOT from MODIS aerosol product (10 km), and 

 

 

(iv) to propose an effective AOT retrieval algorithm using MODIS 500 m data 

considering accuracy and errors with respect to ground based AERONET 

data and MODIS aerosol product. 

 

 

 

 

1.4 Scope of the Study 

 

 

The study focused on the aerosol estimation in Hong Kong (HK) region by 

using MODIS 500 m data. Hong Kong region was selected in this study due to 

several reasons, which are; i) Hong Kong is one of the most populated urban areas in 
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the world where air pollution is a very frequent incident due to different 

anthropogenic activities in and around the city, ii) the availability of long-term 

ground data measurement (AERONET data) from the two AERONET stations (one 

is located in city center and the other is located in rural area) which is very important 

in order to develop an effective aerosol retrieval algorithm, iii) the availability of 

MODIS data due to less cloud cover in several months in a year, and iv) several 

studies were carried out in this study area which is crucial to understand the 

effectiveness of the proposed algorithm.  

 

 

In this study, data from MODIS Terra satellite was used to retrieve aerosol 

reflectance at 0.466 µm, 0.553 µm, 0.646 µm and 2.119 µm wavelength by 

categorizing it into three primary data, which include i) MOD02HKM (MODIS 

calibrated radiance at 500 m), ii) MOD03 (MODIS geolocation data) and iii) 

MOD09GA (MODIS land surface reflectance product). Besides that, total ozone 

content (MODIS atmospheric product, MOD07), total water vapour content (MODIS 

precipitable water product, MOD05) and cirrus cloud data (MODIS calibrated 

radiance at 1 km, MOD021KM) were used in retrieval computation to reduce 

uncertainty due to the cloud and gas effect. However, for the ground measurement, 

AERONET data from HK Poly-U site (2006-2011) and HK Hok Tsui (2007-2009) 

site were used to validate AOT retrieved from MODIS 500 m data. Moreover, a set 

of parameter from AERONET inversion product level 2 data were taken in order to 

classify local aerosol model into several types. Additionally, MOD04 L2 C005 

(MODIS aerosol product level 2 collection 005) was used to make a comparison with 

AOT retrieved from MODIS 500 m data.  

 

 

Several RT codes are available for AOT retrieval and previous studies used 

these RT codes different ways. However, considering the potential of these RT codes 

and the outcome of the previous studies, this study has focused on aerosol estimation 

using three different techniques, which included i) AOT retrieval using LUTs 

generated from SBDART code, ii) AOT retrieval using LUTs generated from 6SV 

code and, iii) AOT retrieval using direct analytical equation (no LUTs was required). 

It is worthwhile to mention that land surface reflectance is an important part of the 
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AOT retrieval algorithm, therefore, surface reflectance from three techniques were 

used to investigate the effect of surface reflectance on AOT retrieval process that are 

i) taking directly from MOD09GA, ii) extracting from Dark Dense Vegetation 

(DDV) technique and iii) deriving using atmospheric correction based on 6SV code 

(ATCOR-6SV).  

 

 

In this study, aerosol optical and microphysical properties obtained from 

AERONET inversion product level-2 data were used to develop local aerosol models 

using K-mean clustering analysis. All the developed aerosol models were tested in 

the RT code and an effective aerosol retrieval model was chosen based on the high 

accuracy obtained through validation with AERONET measurement. There are 

several software i.e. remote sensing (such as ENVI) and programming (Matlab, IDL, 

Python) were used for the overall processing of AOT retrieval. 

 

 

 

 

1.5 Study Area 

 

 

The study area of this research is Hong Kong (Figure 1.1a), which is located 

on China's south coast that close to the Pearl River Delta and South China Sea. It has 

been recognized as one of the densely populated areas of over seven million people 

living in 1104 km2 of land areas. The topography of Hong Kong is covered by 

natural terrain (60%) and the developed areas (40%). The natural terrain is quite 

rigorous in the New Territories where highest peak of 957 m and 12 other peaks over 

500 m  height makes the terrain very complex (Li et al., 2005). However, most of the 

developed areas is located over flat terrain and extends as far as sloped that are too 

steep to develop. The climate of Hong Kong is sub-tropical with distinct seasons and 

influenced by Asian monsoons. There are four seasons in Hong Kong such as a cool 

and dry winter, unstable and wet spring, hot and humid summer, and warm and 

pleasant autumn. Commonly, wind comes from the north and northeast in winter, 

east in spring and autumn, and south and southwest during the summer (Guo et al., 
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2007). The mostly cloudy weather occurs in January and February with prevailed by 

dry northerly winds. Then, high humidity with fog and drizzle happens in March and 

April and most of the rainfall occurs between May and September. While in 

November and December, the weather is sunny with pleasant breezes and 

comfortable temperatures (HKO, 2003).  

 

 

The major economic activity in Hong Kong is service sector such as trade, 

financial services, tourism, retail, and real estate. The industrial activity in Hong 

Kong is very minimal as most of the industrial plants were relocated to the neighbour 

by region. However, since Hong Kong is close to the Pearl River Delta region (big 

industrial activities); it has given big impact in worsening air quality of Hong Kong 

due to the high emission of aerosols from industrial activities at Pearl River Delta 

region. Furthermore, Hong Kong city is densely populated and its massive urban 

infrastructures contribute to increase aerosol emission from the various 

anthropogenic activities (e.g. transportation and construction activity).  

 

 

There are two AERONET sites in Hong Kong region that located in two 

different areas i.e. Hong Kong Polytechnic-University (Poly-U) located at center of 

the Kowloon city (22° 18’ 10” N, 114° 10’ 48” E) (Figure 1.1b) and Hok Tsui (22° 

12’ 36” N, 114° 15’ 28” E) located at rural areas (Figure 1.1c). The ground data 

measurement (AERONET station) is available in the long term since 2003 for HK 

Poly-U site and 2007-2009 for HK Hok Tsui.  
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Figure 1.1 (a) Study area of Hong Kong, (b) AERONET station at Hong Kong 

Polytechnic-University site and (c) AERONET station at Hong Kong Hok Tsui site  

 

 

 

 

 

(a) 

(b) (c) 
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1.6 Significance of the Study 

 

 

The importance of air quality estimation is well-known since air quality has 

obviously an impact on human health, economic activities, the environment, and 

climate change. However, although the accurate estimation of air quality can be 

obtained from the point-based ground measurement, the lacking of such information 

over a larger area or a remote area is created a demand to use satellite data for 

estimating air quality over larger area though the process of air quality estimation is 

very complex.  

  

 

However, the main problem to obtain high accuracy aerosol information from 

satellite data is that which algorithms/techniques are going to be used to estimate 

AOT over land by minimum retrieval error since several complex processing steps 

are involved, thus, not so much studies have been carried out to estimate AOT over 

land from the satellite data. Therefore, the proposed AOT retrieval algorithm using 

MODIS 500 m data has an immense significant in the field of air quality estimation 

as it has a potential to obtain aerosol information with good accuracy and minimum 

retrieval error. Nevertheless, the specific contributions of this study can be described 

as follows: 

 

 

(i) It determines which RT codes that can be used to obtained high accuracy 

against AOT from AERONET measurement. 

 

 

(ii) Investigate whether AOT retrieved using direct analytical equation can 

produce better accuracy than AOT retrieved using LUTs generated from RT 

code.   

 

 

(iii) Able to show the influence of channel selection from MODIS data on the 

AOT value. 
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(iv) Promote new accurate surface reflectance estimation technique that can solve 

significant bias over bright surface. 

 

 

(v) It can show how far the accuracy of AOT retrieved from MODIS 500 m can 

be achieved against AOT retrieved from AERONET data.  

 

 

Indeed, the high resolution of MODIS data (500 m) planned to be used in this 

study would provide spatial distribution of AOT value in detailed in urban region 

compared to spatial distribution of AOT from MODIS aerosol product (10 km). The 

necessaries of high spatial resolution to estimate aerosol over urban region due to this 

region are the sources of anthropogenic aerosol. Therefore, AOT value at 500 m 

spatial resolution could provide good spatial distribution with high accuracies level 

that could be used over urban region. Furthermore, the local aerosol model used 

instead of global aerosol model could increase the accuracies level due to the 

characteristic of aerosol model, based on its usage on local areas. The research would 

also be significant for obtaining AOT value at near real time acquisition due to 

MODIS aerosol product that does not provide data at near real time. Thus, with the 

achieved AOT data at near real time, the spatial distribution and concentration of 

aerosol could be monitored quickly. 

 

 

 

 

1.7 Outline of the Thesis 

 

 

This thesis comprises of six chapters. Chapter 1 is the introduction and 

consists of six sections that are; background of the study, problem statement, 

objectives, scope of the study, study area, and significant of the study. The 

background of the study briefly describes about the atmospheric aerosol, aerosol 

retrieval techniques from satellite data and overview of previous research. The 

problem statement highlights several problems of the research approach. The main 
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objective was provided and the specific objectives to achieve the main objective 

were stated. The scope, study areas, and significant of the study were discussed in 

details in this chapter.  

 

 

In Chapter 2,  the overview of aerosol background including types, sources, 

parameters and properties, effects, measurement techniques, and algorithm were 

described in detailed. In this chapter, previous studies of aerosol retrieval techniques 

using satellite data were analysed in order to develop an effective technique/approach 

to retrieve aerosol information. A detail clarification of Radiative Transfer Model 

(RTM) were described and several radiative transfer (RT) codes were listed and 

discussed.  

 

 

Chapter 3 provides a comprehensive methodology for retrieving aerosol 

optical thickness (AOT) from MODIS 500 m data using different techniques. It 

consists of data preparation, data pre-processing, aerosol reflectance estimation, local 

aerosol model characterization, AOT retrieval, and validation and comparison of 

AOT retrieved.  

 

 

Chapter 4 presents and analyses results which obtained from different 

processing algorithms. A detail description of the outcome of the local aerosol model 

characterization, surface reflectance estimation, validation of MODIS AOT 500 m 

using AOT from AERONET, comparison of accuracy of different AOT retrieval 

models, comparison between AOT from MODIS 500 m and AOT from MODIS 

product, and spatial distribution of MODIS 500 m AOT were presented. 

 

 

In Chapter 5, research findings were discussed with supporting arguments 

from the other studies. At last, the final chapter, Chapter 6 presents the research 

achievements and conclusive remarks which include recommendations for further 

research. 
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