LIFE CYCLE ASSESSMENT OF GLOBAL WARMING POTENTIAL IN PRECAST BUILDING COMPONENT

WAN ZULIYANA BINTI W ZULKIFFLE

A project report submitted in fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2015

Special for

My Beloved Parents W Zulkiffle Bin Wan Long

Rohaya Binti Ghazali

Siblings

Wan Zuhaili Wan Zulaikha Wan Zuhayra Siti Sarah Roas Aira Marissa

My Future Husband

Azman Bin Arbangi

ACKNOWLEDGEMENTS

"In the Mighty Name of Allah, The Most Beneficent, The Most Merciful"

Firstly, I would like to express my sincere gratitude and love to my dearly beloved parents, and my whole family for the consistent love, continuous support and non–stop guidance that were shown to me during the course of my study. To my fiancé, thank you for all the love, peace and serenity that you've brought into my life.

Secondly, my warm and deepest appreciation goes to my supervisor Dr Khairulzan Bin Yahya from whom I received the necessary guidance throughout my project study. With much valuable suggestion contributed lead me to achieving the set aims of the study. Patience however on his part and unfailing support leads to the successful complete of my study. Thank you very much.

Lastly to all my dear friends and lecturers whom I am lucky to have, thanks for all your contributions and support, both directly and indirectly towards by project study and the entire degree program. We will cherish this moment together. Thank you.

ABSTRACT

Concern regarding sustainability in the construction industry has grown and many researches were conducted to improve understanding on the matter. New technologies and methodologies, including Industrialised Building System (IBS) emerge as an alternative to conventional in-situ methods of construction. Nonetheless IBS technology is not comprehensively adopted in Malaysia, which is most likely caused by lack of awareness and understanding on its beneficial impact to the environment. This study investigates the Global Warming Potential of IBS, focusing on precast concrete production of a residential building through Life Cycle Assessment (LCA). Investigation was focused on the production of wall panel or façade for a multi-storey building in a precast factory located in Pekan Nenas, Johor. Moreover, the production process and quality assurance and control for precast concrete were also identified. The boundary of this research is measuring the direct and indirect energy demand and carbon emission of precast concrete from *cradle-to*gate where data obtained was analysed using OpenLCA software. Direct data was collected from the precast factory that comprises on the information regarding on precast concrete production process. While indirect data which includes embodied energy and carbon for raw materials production process and conversion factors for energy and carbon emission were collected from previous researches. This study found that production of mould consumed the highest energy by 55% while cement production emit highest amount CO_2 by 92%. Embodied energy and carbon for this project are 11,790,968 MJ and 19,262,915 kg respectively while posing GWP of $4.4281 \text{ kg CO}_2, \text{eq } (x10^{10}).$

ABSTRAK

Penekanan mengenai aspek kelestarian dalam industri pembinaan telah berkembang pesat dan pelbagai kajian telah dijalankan bagi meningkatkan pemahaman mengenai perkara tersebut. Teknologi dan metodologi baru, termasuk Sistem Binaan Berindustri (IBS) muncul sebagai alternatif kepada kaedah konvensional pembinaan. Namun, teknologi IBS tidak diaplikasikan dengan komprehensif di Malaysia, berkemungkinan disebabkan oleh kurangnya kesedaran dan pemahaman mengenai manfaatnya kepada alam sekitar. Kajian ini mengkaji Potensi Pemanasan Global, memfokuskan kepada pengeluaran konkrit pratuang bagi sebuah bangunan kediaman melalui Penilaian Kitaran Hayat (LCA). Kajian ini tertumpu kepada pengeluaran panel dinding atau permukaan hadapan bangunan untuk bangunan berbilang tingkat di sebuah kilang pratuang terletak di Pekan Nenas, Johor. Selain itu, proses pengeluaran dan jaminan kualiti dan kawalan untuk konkrit pratuang juga telah dikenal pasti. Sempadan kajian ini adalah mengukur permintaan tenaga dan pelepasan karbon langsung dan tidak langsung daripada konkrit pratuang dari "cradle-to-gate" di mana data yang diperolehi akan dianalisis dengan menggunakan perisian OpenLCA. Pertama, data dikumpulkan langsung dari kilang pratuang yang terdiri daripada maklumat yang berkaitan pada proses pengeluaran konkrit pratuang. Kedua adalah pengumpulan data tidak langsung yang merangkumi tenaga dan karbon untuk process pengeluaran bahan-bahan mentah dan penukaran faktor untuk tenaga dan karbon pelepasan dikumpulkan daripada kajian terdahulu. Kajian ini mendapati bahawa pengeluaran acuan "mould" menggunakan tenaga yang paling tinggi sebanyak 55% manakala pengeluaran simen mengeluarkan jumlah tertinggi CO₂ sebanyak 92%. Tenaga dan karbon termaktub untuk projek ini adalah 11,790,968 MJ dan 19,262,915 kg CO₂ manakala potensi GWP adalah 4,4281 kg CO₂.eqivalent $(x10^{10})$.

TABLE OF CONTENT

CHAPTER	TITLE		PAGE	
	DECLARATION OF THESIS STATUS			
		CRVISOR'S DECLARATION E PAGE		
			ii	
	DECLARATION		n iii	
	DEDICATION ACKNOWLEDGEMENTS		in iv	
		TRACT		
		TRAK	v vi	
		LE OF CONTENT	vii	
		OF TABLES	vii X	
		OF FIGURES	xi	
			A	
1	INTR	ODUCTION		
	1.1	Introduction		1
	1.2	Problem statement		3
	1.3	Objectives		5
	1.4	Scopes		5
2		RATURE REVIEW		
	2.1	Introduction		6
	2.2	Embodied Energy and Carbon		6
	2.3 Industrialised Building System (IBS)			8
	2.4 Precast Concrete System			10
		2.4.1 Precast Concrete Process		12
	2.4.2 Precast Concrete Quality Control			13
	2.5	Concrete		18

3 METHODOLOGY

3.1	Introd	uction	22
3.2	Litera	ture Review	23
	3.2.1	Preliminary Study	23
	3.2.2	Industrialized Building System (IBS)	23
	3.2.3	Embodied Energy and Carbon	24
	3.2.4	Life Cycle Assessment	24
3.3	Proces	ss Based Life Cycle Assessment	24
	3.3.1	Estimation Criteria	27
	3.3.2	Life Cycle Impact Assessment (LCIA)	28
		3.3.2.1 ReCiPe Impact method	29
3.4	Concr	rete Production Data Collection	31
3.5	Result	t and Discussion	32

4 **RESULT AND DISCUSSION**

4.1	Introduction		33
	4.1.1	Quality Assurance and Control	36
4.2.	Data (Collection of Raw Materials	39
4.3	Energ	y Consumption and Carbon Emission	44
	4.3.1	Life Cycle Goal and Scope	46
	4.3.2	Life Cycle Inventory Analysis	47
		4.3.2.1 Raw Material Production Process	48
		4.3.2.2 Raw Materials Transportation	51
4.4	Life C	cycle Impact Assessment	53
	4.4.1	Energy Demand and Carbon Emission	53
	4.4.2	Emission of Carbon Dioxide Equivalent (CO2,eq)	56

5 CONCLUSION & RECOMMENDATIONS

5.1	Introduction	58
5.2	Conclusion	58

5.3	Recommendations	59
REFEREN	NCES	61

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Categorization of IBS according to different countries	9
2.2	Dimension tolerance for elements or opening for services	15
2.3	Relevant requirement for alignment, plumbs, level,	
	lifting and inserts, connection, and cast-in steel items	16
4.1	Summary of approved material's test standards and	
	frequency	36
4.2	Information on Concrete Mix Design for Concrete	
	Class G 40 N	41
4.3	Percentage by mass passing sieves	42
4.4	Weight of raw materials for different types of panel	43
4.5	Quantity of raw materials for the production of 1212.135 n	n ³
	concrete	45
4.6	Distance of raw materials source	46
4.7a	Relevant factors for Inventory Analysis for production	
	of raw materials	47
4.7b	Relevant factors for Inventory Analysis for transportation	47
4.8	Percentage of Sources of Energy Demand	48
4.9	Carbon Dioxide Intensities of Fuels per 1kg of raw	
	materials	49
4.10	Total energy demand of raw materials manufacturing	
	process	50
4.11	Total carbon emission of raw materials manufacturing	
	process	50

4.12	Total Energy demand and CO2 emission of raw materials	
	transportation	51
4.13	Total energy and carbon emission of precast panel	
	concreting process	52
4.14	Energy consumption and carbon emission of production	
	process including transportation for raw material delivery	53
4.15	Emission of CO ₂ ,eq for the production process of	56
	precast concrete	

LIST OF FIGURES

FIGURE NO. TITLE P.

2.1	Breakdown of embodied energy	7
2.2	Structural system for precast concrete	11
2.3	Precast concrete elements	12
2.4	Production process of precast concrete	13
2.5	Damaged lifting device on precast component	17
2.6	Corrosion on steel bars	17
2.7	Grout tubes congested with debris	18
2.8	Production Process for Cement	19
3.1	Four steps in conducting LCA study	25
3.2	: System boundary for LCA of construction building	
	process	26
3.3	Standard LCIA Principle Framework	28
3.4	Relationship between LCI parameters (left), midpoint	
	indicator (middle) and endpoint indicator (right) in	
	ReCiPe 2008	30
4.1	Manufacturing process of precast components	34
4.2	Storage for sand and coarse aggregate	34
4.3	Batching plant for concrete mixing	34
4.4	Typical layout plan	40
4.5	Boundary of Process in Precast Concrete Manufacturin	g
	Process	46
4.6	Energy consumption of each processes in precast	
	concrete manufacturing process	54

4.7	CO ₂ Emission of each process in precast concrete	
	manufacturing process	52
4.8	Emission of CO2,eq for the production process of	
	precast concrete	57

CHAPTER 1

INTRODUCTION

1.1 Introduction

The industrial sector is the second highest energy consumer next to transportation sector. Construction is the largest and most fragmented industrial activities which accounts for an estimated 40% of all resources consumption and produces about 40% of all waste including greenhouse gas emissions. For example, the production of a standard reinforced concrete beam was estimated to consume 109 MJ of energy and emit 79.4kg of CO₂ for every tonne of concrete produced.

Many scholars highlighted the difficulties in estimating accurate environmental impact in their studies. Generally, the most common key to estimation of environmental impact is through measuring the production of greenhouse gases (GHG) emission. GHG emission includes carbon dioxide, methane, nitrous oxides, and etc. which are commonly converted to CO_2 equivalent to measure their respective global warming potential, in comparison to carbon dioxide. Global warming potential (GWP) is a measure of heat being trapped in the atmosphere due to greenhouse gases. There are various greenhouse gases emitted to the atmosphere and each has different potential of absorbing heat. Hence, as carbon dioxide is the most common and vastly produced greenhouse gas, the potential of heat absorption of other gases are converted to carbon dioxide equivalent (CO_2 ,eq) by the scholars. Greenhouse gases are the products of human activities that include the combustion of fuels for transportation, factories machineries, and electricity generation. The construction industry contributes a lot of greenhouse gases as it require high amount of energy to operate. However, comprehensive measures were taken by government bodies to retain its impact at a minimum level.

Industrialised Building System (IBS) is one of the many solutions to sustainability. Traditional construction methods will requires the materials to be cast on site where waste production is inevitable regardless of proper planning. Concrete is the most common materials for building construction due to its high strength which however requires a lot of formwork for casting. The most common formwork for concrete is wood where high demand of it will lead to serious issue of deforestation. This method is labour intensive, involving formwork fabrication, steel bending, and concreting. It requires many wet trades on-site, such as skill carpenters, plasterers, and brick workers.¹ This process can be hampered by quality issues, unfavourable site conditions, a skilled labour shortage, and bad weather conditions. On the other hand, IBS uses steel as formwork and can be reuse for a longer period of time. Although requires electricity to operate, the production of concrete using IBS is more energy efficient compared to the traditional method.

1.2 Problem Statement

Construction industry plays an important role in economic growth through contributions in the socio-economic development as well as in developing complementary industries. However, its high demand on building materials and energy poses a detrimental effect on the environment. Industrialised Building System (IBS) is one of the emerging technologies that act as a solution for a more sustainable construction development method. Other than its benefits toward faster construction, fire protection, and productivity improvement, IBS is also known to have low energy consumption and carbon emissions.

Previous research on comparison of carbon emission between two construction methods which are conventionally reinforced concrete and precast concrete panels, revealed a total emissions reduction of 26.27% through the selection of a precast wall panel system.² According to Omar et al. (2013), other research that highlight the benefits of prefabricated building system was conducted by Monahan and Powel (2011) whom assessed the embodied energy and emission of a construction low energy building using prefabricated panellised timber framed system. Compared with more traditional methods of construction, this system has resulted 34% reduction in embodied carbon. Similarly he also mentioned a study founding that a steel-framed prefabricated system resulted in reduced material consumption of up to 78% compared to conventional concrete construction.³ on the other hand, previously conducted research studies to quantify the carbon emissions of precast concrete columns but failed to address the influence of indirect emissions which subsequently underestimated the results for the LCA. However none of these researches estimated the embodied energy of the system.

Carbon dioxide (CO₂) is a significant greenhouse gas and the emissions are inextricably linked to energy consumption when energy is produced through the combustion of fuels.⁴ Hence, this research will study the significant influence of

precast concrete in terms of both embodied energy and carbon. Moreover, there are various precast concrete systems being applied in the industry such as skeletal and load bearing system. In addition, a building construction also consist of many components; beam, column, slab, and etc. The emission of carbon and energy consumed by each system is not yet critically identified.

Research on the environmental impact of IBS system in Malaysia is considered limited which consequently causes lack of data to promote its benefits to the industry. Therefore, Life Cycle Assessment (LCA) methodology is chosen to quantitatively convey its benefits. Other than application of IBS in Malaysian construction industry, Green Building is another approach to promote sustainable development. However, the green certification system such as Green Building Index (GBI) and Leadership in Energy and Environmental Design (LEED) rating systems were criticized by researches for not including life cycle perspective to its assessment. For instance, a research argued that the LEED system "does not provide a consistent, organized structure for achievement of environmental goals" from a life-cycle perspective.⁵ They recommended incorporating life-cycle assessment (LCA) for further development of the LEED system. LCA includes the entire life cycle of products; extraction of raw materials, manufacturing, transportation and distribution, operational, and demolition. This research aim is to quantify the GWP through embodied energy and carbon emission of precast concrete system using the LCA methodologies.

1.3 Objectives

The aim of this study is to estimate the Global Warming Potential of precast products which was achieved by following the objectives of the study;

- i. To identify the manufacturing process involved in precast system
- ii. To investigate the energy consumption and carbon emission in manufacturing process
- iii. To calculate the energy and carbon life cycle inventory of precast system
- iv. To estimate the embodied energy and carbon and Global Warming Potential of precast products

1.4 Scope

This study was conducted on a precast concrete factory located in Pekan Nenas, Johor. The boundary of life cycle assessment is measuring the direct energy consumption and carbon emission from extraction of raw materials to the production of precast concrete wall facade of residential building (*cradle-to-gate*). OpenLCA which is one of the many LCA-based tools will be utilised to analyse the data. Information sources for materials and energy consumption data will be obtained from the precast concrete factory, and references from previous literatures.

REFERENCES

- ¹ E. C. W. Lou and K. A. M. Kamar, Ph.D. (2012). Industrialized Building Systems: Strategic Outlookfor Manufactured Construction in Malaysia
- ² Wan Mohd Sabki Wan Omar, Jeung-Hwan Doh, Kriengsak Panuwatwanich, Dane MillerGriffith (2013). Assessment of the embodied carbon in precast concrete wall panelsusing a hybrid life cycle assessment approach in Malaysia.
- ³ Wu Peng and Low Sui Pheng. (2011). *Managing the Embodied Carbon of Precast Concrete Columns*.
- ⁴ Gillian F. Menzies (2011). Embodied Energy Consideration for Existing Building 13.
- ⁵ Scheuer, C. W.; Keoleian, G. A. (2002). *Evaluation of LEED Using Life Cycle Assessment Methods*.
- ⁶ IPCC (1996) Climate Change 1995: The Science of Climate Change. Intergovernmental Panel on Climate Change; J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.; Cambridge University Press. Cambridge, U.K.
- ⁷ Richard Haynes (2010). Embodied Energy Calculations within Life Cycle Analysis of Residential Buildings

- ⁸ M.N.A. Azman, M.S.S. Ahamad and W.M.A. Wan Hussin. *Comparative Study on Prefabrication Construction Process*
- ⁹ Zainal Abidin Hashim (2010). House Price and Affordability in Housing in Malaysia. Universiti Kebangsaan Malaysia, Malaysia.
- ¹⁰ Mohamed Nor Azhari Azman, Mohd Sanusi S. Ahamad, and Nur Diyana Hilmi (2012). *The Perspective View of Malaysian Industrialized Building System (IBS) Under IBS Precast Manufacturing*. The 4th International Engineering Conference –Towards engineering of 21st century.
- ¹¹ Maria Isabel Acuna (2000). *Reducing Time in the Construction of High Rise Buildings*. Massachusetts Institute of Technology, U.S.
- ¹² CIDB. Industrialized Building System (IBS) Roadmap 2003-2010 Construction Industry Development Board (CIDB), Kuala Lumpur, 2003.
- ¹³ CONQUAS 21 Enhancement Series Good Industry Practices Guide Book
- ¹⁴ Leslie Struble and Jonathan Godfrey (2004). *How Sustainable is Concrete*. University of Illinois at Urbana-Champaign, USA. International Workshop on Sustainable Development and Concrete Technology.
- ¹⁵ <u>http://www.cima.com.my/cima/mainpage.php?menu=process</u>
- ¹⁶ Amanjeet Singh, George Berghorn, Satish Joshi, and Matt Syal (2011). Review of Life-Cycle Assessment Applications in Building Construction
- ¹⁷ European Environmental Agency, Europe's environment. The second assessment. Amsterdam, Elsevier Science, 1998.

- ¹⁸ Bullard C W, Penner P S and Pilati D A (1978), Net energy analysis handbook for combining process and input-output analysis, Resources and Energy 1, 267-313.
- ¹⁹ Nisbet, M., Van Geem, M. G., Gajda, J., and Marceau, M. (2000). *Environmental life cycle inventory of portland cement concrete*. Portland Cement Association, Skokie, IL.
- ²⁰ Prof. Geoff Hammond & Craig Jones (2008). *Inventory of Carbon & Energy* (*ICE*). University of Bath, U.K.
- ²¹ World Steel Association (2011). Life Cycle Assessment Methodology Report.
- ²² <u>https://www.ipcc.ch/pdf/special-reports/sroc/Tables/t0305.pdf</u>
- ²³ United States Environmental Protection Agency (2008). Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance; Direct Emissions from Mobile Combustion Sources.
- ²⁴ Professor Alan McKinnon and Dr. Maja Piecyk (2010). *Measuring and Managing CO₂ Emissions of European Chemical Transport*. Heriot-Watt University, UK.
- ²⁵ ISO 14040:2006. Environmental management Life cycle assessment Principles and framework
- ²⁶ Mark Goedkoop, Reinout Heijungs, Mark Huijbregts, An De Schryver, Jaap Struijs, and Rosalie van Zelm (2009). *ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level First edition Report I: Characterisation.*
- ²⁷ Nik Zafri Abdul Majid (2000). *The Influence of Aggregate Properties on Strength of Concrete.*

- ²⁸ Louise K. Turner and Frank G. Collins (2013). Carbon dioxide equivalent (CO2e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials 43 (2013) 125–130
- ²⁹ Performance Analysis of Electric-Rubber Tired Gantries from a Green Container Terminal Perspective Yi-Chih YANG a, Wei-Min CHANG (2013)
- ³⁰ L. Romo, O. Solis, J. Matthews, D. Qin. Fuel Saving Flywheel Technology For Rubber Tired Gantry Cranes In World Ports Reducing Fuel Consumption Through Use Of Flywheel Energy Storage System (2008)
- ³¹ Don Hofstrand. Liquid Fuel Measurements and Conversions. (2008)
- ³² Norihiro Itsubo and Atsushi Inaba (2002). Assessment of Environmental Impact of Manufacturing Steel Considering Physical Damage to Human Health. National Institute for Advanced Industrial Science and Technology, Japan.