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ABSTRACT 

This study involves experimental design and development of continuous 

microwave reactor for the production of zinc oxide (ZnO) nanoparticles.  The reactor 

consisted of a modified household microwave oven which was operated with a 

frequency of 2.45 GHz and a maximum output power of 800 W. The modified 

microwave reactor was equipped with two peristaltic pumps and connected to glass 

columns via T-junction to allow for mixing of the reactants, zinc nitrate hexahydrate 

(Zn(NO3)2.6H2O) and sodium hydroxide (NaOH), in the microwave system. The 

effect of process parameters such as retention time, microwave power and reactant 

concentration on the phase composition, particle morphology and optical properties 

of ZnO was investigated. At a fixed concentration of the reactants, crystalline phase 

of ZnO was formed as observed from the X-ray Diffraction (XRD) patterns. Also, 

the phase crystallinity of ZnO was found to improve when the retention time of the 

reactants in the reactor was increased up to 20 min and increasing of the microwave 

power until 600 W. Besides, increasing the concentration of reactants has 

successfully produced crystalline phase pure ZnO nanoparticles which were obtained 

using the mole ratio of Zn(NO3)2.6H2O:NaOH of 1:2. Transmission Electron 

Microscopy (TEM) image revealed spherical-shape ZnO nanoparticles with sizes 

ranging from 6 to 12 nm and the result matched well with the crystallite sizes 

determined from the XRD data using the Scherrer equation. The ZnO nanoparticles 

exhibited a strong absorption in the 390 nm region of the Ultraviolet-Visible (UV-

Vis) spectra which is red-shifted from bulk ZnO (370 nm) with the band-gap value of 

3.15 eV. The peak intensity was increasingly decreased along with increasing of 

retention time, microwave power and reactant concentration while the band-gap 

energies were found to decrease upon increasing of the retention time, microwave 

power and reactant concentration. The green band emission observed in the region of 

350-470 nm in the Photoluminescence (PL) spectra suggests the presence of high 

oxygen vacancies in the ZnO lattice which then further reduced with increasing of 

retention time, microwave power and reactant concentration. 
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ABSTRAK 

Kajian ini melibatkan rekabentuk eksperimen dan pembangunan reaktor 

gelombang mikro berterusan untuk penghasilan zarah nano zink oksida (ZnO).  

Reaktor tersebut adalah terdiri daripada gelombang mikro isi rumah terubahsuai yang 

beroperasi pada frekuensi 2.45 GHz dan kuasa pengeluaran maksimum 800 W. 

Reaktor gelombang mikro terubahsuai tersebut dilengkapi dengan dua pam peristaltis 

dan dihubungkan dengan turus kaca melalui persimpangan-T untuk mencampurkan 

reaktan, zink nitrat heksahidrat (Zn(NO3)2.6H2O) dan natrium hidroksida (NaOH) 

dalam sistem gelombang mikro.  Kesan parameter proses seperti masa penahanan, 

kuasa gelombang mikro dan kepekatan reaktan ke atas komposisi fasa, morfologi 

zarah dan sifat optik ZnO yang terbentuk telah diselidiki. Pada kepekatan reaktan 

yang tetap, fasa habluran ZnO terbentuk seperti yang diperhatikan pada corak 

pembelauan sinar-X (XRD). Juga, fasa kehabluran ZnO didapati bertambah apabila 

masa penahanan reaktan di dalam reaktor dilanjutkan sehingga 20 min dan 

meningkatkan kuasa gelombang mikro sehingga 600 W. Di samping itu, 

meningkatkan kepekatan reaktan telah berjaya menghasilkan fasa habluran tulen 

zarah nano ZnO yang diperoleh menggunakan nisbah mol 1:2 untuk 

Zn(NO3)2.6H2O:NaOH. Imej Mikroskopi Penghantaran Elektron (TEM) 

mendedahkan zarah nano ZnO berbentuk sfera dengan saiz dalam julat dari 6 hingga 

12 nm dan keputusan ini sepadan dengan saiz kristalit yang ditentukan daripada data 

XRD menggunakan persamaan Scherrer. Zarah nano ZnO mempamirkan penyerapan 

kuat di kawasan 390 nm pada spektrum Ultra-lembayung-Nampak (UV-Vis) yang 

teranjak merah berbanding ZnO pukal (370 nm) dengan nilai luang jalur 3.15 eV.  

Keamatan puncak tersebut semakin menurun dengan pertambahan masa penahanan, 

kuasa gelombang mikro dan kepekatan reaktan manakala nilai luang jalur didapati 

semakin menurun dengan pertambahan masa penahanan, kuasa gelombang mikro 

dan kepekatan reaktan. Pancaran jalur hijau yang diperhatikan dalam kawasan 350-

470 nm pada spektrum fotoperdarcahaya (PL) mencadangkan terdapat banyak 

kekosongan oksigen dalam kekisi ZnO yang semakin berkurangan dengan 

pertambahan masa penahanan, kuasa gelombang mikro dan kepekatan reaktan. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction of Zinc Oxide as Nanomaterial 

 

 

Zinc Oxide (ZnO) has wide applications such as biomedical material, 

electronic applications, solar cell and lubricants etc.  It has a wide bandgap of 3.37 

eV with large exciton energy of 60 meV, which makes it suitable for short 

wavelength optoelectronic applications.  This strong exciton energy binding provides 

an efficient exciton emission at room temperature and makes this material a 

promising photonic material in the blue-UV region (Wang, 2004).  ZnO has been 

widely used since 2000 BC as an ointment (Moezzi et.al, 2012) and recently has 

been heavily used in light emitting devices, laser diodes, photodetectors, solar cells, 

catalysts, pigments, cosmetics, gas sensor and industrial additives (Dumbrava et.al, 

2013).   

 

 

In rubber industry ZnO has been used to accelerate the cure rate of rubber.  

ZnO is also used for the protection of latex plantation due to its reactivity with the 

enzyme responsible for latex decomposition, thus, it is able to improve as well as 

maintain physical properties of rubber.  In ceramic industry ZnO is used to maintain 

semiconductor ceramic elements at elevated temperature or high voltages during 

processing.  Other electronic devices like varistors are composed of modified ZnO or 

doped with other materials and it can also be used for other electrical devices.  In 

pharmaceutical/cosmetic industry ZnO is used in soap, ointment, dental inlays, food 

powders etc.  It is also known for its use in hair and skin care products.  On the other 

hand, ZnO is known for its use in food packaging industry as well as various 

packaging in animal and vegetable product as antibacterial material to keep product 

safe from bacteria and fungi. 
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Generally, ZnO exists in three different types of crystal structures, which are 

hexagonal wurtzite, cubic zinc-blend and cubic rock salt (NaCl type) (Moezzi et. al, 

2007).  Among these three structures, hexagonal wurtzite is the most 

thermodynamically stable structure and exists under ambient conditions. ZnO is 

categorized as non-toxic material as it usually does not cause skin or eye irritation, 

however it can be hazardous through inhalation or ingestion, while soluble zinc 

compounds are ecotoxic to aquatic organism. Due to its unique wide application, 

ZnO is capable to from diverse group of growth morphologies, such as nanocombs, 

nanorings, nanosprings, nanobelts, nanowires, nanocages and etc. (Wang, 2004). 

 

 

ZnO structure can be described as alternate number of planes which are 

composed of tetrahedrally coordinated O2- and Zn2+ ions.   ZnO has three types of 

growth directions, which are (2110), (0110) and (0001).  Bulk ZnO is normally 

produced using French and American Process, but there are several other processes 

available to produce ZnO as nanomaterial, such as solvothermal, sol-gel, 

hydrothermal, wet-chemical and microwave method (Fadeel and Garcia-Bennet, 

2010) 

 

 

 

 

1.2  Synthesis of ZnO 

 

 

 

 

1.2.1  Chemical Vapour Deposition Method (CVD) 

 

 

This method involves volatile precursors where the active gaseous 

species are generated and transported into the reaction chamber.  Here, the 

precursors undergo gas phase reaction to form an intermediate phase.  When 

the temperature inside the reactor gets higher, homogeneous gas phase 

reactions occur whereby the intermediate species undergo decomposition and 

chemical reaction to form powders and volatile byproducts.  Powders are 

collected on the substrate surface, which act as crystallization centers; 

eventually they are transported away from the deposition chamber.  The 
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intermediate are diffused across the boundary layer and are absorbed onto the 

heated substrate and heterogeneous reactions occur at the gas-solid interface 

that produces the deposit and byproducts. 

 

 

Later, the deposit is diffused along the heated substrate surface 

forming the crystallization center for subsequent growth of the film.  Finally, 

the gaseous byproducts are diffused away from the boundary layer and 

simultaneously, the unreacted gaseous precursor and byproduct are 

transported away from the deposition chamber (Figure 1.1) (Liu et. al, 2008). 

 

 

 

 
 

 

Figure 1.1:  Main steps occurring in the CVD process 

 

 

 

 

ZnO crystal fibers have been developed using CVD process, by using 

quartz tube at 1100 oC with one side opened to the air. Polycrystalline 

hexagonal wurtzite-phase ZnO with diameter ranging from 300 nm to 1.5 μm 

was prepared through this method (Chen et. al, 2004).  Meanwhile, a dual 

plasma-enhanced with metal-organic chemical vapour deposition 

(DPEMOCVD) has been used to study the ZnO grown on polyestersulfone 

(PES) surface.  They researchers used direct voltage and radio frequency 

plasma system inside DPEMOCVD to produce ZnO (Lei et.al, 2012). 
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1.2.2 Sol-gel method 
 

 

The ‘Sol’ refers to a stable dispersion of colloidal particles or polymer 

in the solvent.  These particles may be amorphous or crystalline.  Meanwhile, 

the ‘gel’ consists of three dimension of continuous network, where it is built 

from agglomeration of colloidal particles.  Generally, the sol may interact by 

Van der Waals forces or hydrogen bonds.  It may also be formed by linking 

polymer chains and gelation process may be reversible due to the 

involvement of other interactions. 

 

 

Simple method on sol-gel process to produce ZnO thin film was 

discussed detailed by Znaidi (2010), where typically ZnO thin film involves 

several critical parameters, which is nature of precursor and its concentration, 

solvent type, additive species type and its concentration, aging time on the 

early mixture of precursor, coating method of substrate and pre-heat, post-

heat treatment of materials.  Figure 1.2 shows a detailed process mapping 

conducted by Znaidi (2010). 

 

 

 
Figure 1.2: Process mapping of sol-gel method to produce ZnO thin film 

based on Znaidi (2010) study. 
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Based on figure above, a solution will undergo a transformation in (a), 

which is hydrolysis of the molecular precursor and transformation (b), which 

is polymerization via successive bimolecular additions of ions, to form a 

group of oxo-, hydroxyl or aquabridges.  Also, based on the figure, the main 

steps of preparation by sol-gel process can be summarized in three parts, 

where the first part is the preparation of precursor solution, then followed by 

deposited of the sol on the substrate and finally, the heat treatment process of 

the xerogel film.  Later this xerogel film will be dried gel at the ambient 

pressure. 

 

 

 

1.2.3 Hydrothermal Process 
 

 

Hydrothermal process involves heterogeneous reaction in the presence 

of aqueous solvents under high pressure and temperature in a closed system. 

Continuous hydrothermal process has also gained its popularity due to its 

quick reaction times, and it is able to achieve high purity of nanoparticles 

without any post treatment (Shin et.al, 2009).  Makishima et.al (2009) have 

successfully developed a continuous hydrothermal method, where its reactor 

structure consisted of material feeder, tube shape hydrothermal reactor and 

product discharge unit (Figure 1.3). 

 

 

 

Figure 1.3: Continuous hydrothermal process from Makishima et.al, 2009 
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However, a drawback of this process is that it requires high 

temperature and pressure in order to furnish products with high purity and 

crystallinity. The reactor works most best at the critical temperature of water 

(374 oC) at this temperature the reactor presents serious safety concerns and 

long term operation of the reactor is fairly costly. Furthermore, continuous 

flow hydrothermal flow system suffers from poor heat transfer control, 

limited crystal growth due to the short dwell time inside the heating zone and 

particles are highly agglomorated (Aimable et.al, 2009).  The reactor also 

works best at low concentrations of the reactants to avoid blockage of 

stainless steel pipes and pressure valves, furthermore the corrosion of pipes 

and valves are also major drawbacks of the system. 

 

 

 

 

1.2.4 Solid-state Process 

 

 

This solvent less process is often referred to as ceramic method.  A 

mixture of solid starting materials, which usually do not react together at 

room temperature are heated at elevated temperature between 1000 oC-

1500oC.  This process requires high temperature in order to provide necessary 

energy for the process to occur.  Figure 1.4 shows the formation of product 

in the solid-state process. 

 

 

Reaction starts when two precursors, which is A and B is on contact, 

and reaction will only occurs at contact points between grains of precursor A 

and B.  Then, at high temperature, the product of C will grow from diffusion 

process of A and B, and high temperatures provides the necessary energy for 

the reaction to occur and it usually leads to thermodynamically stable 

product.  However, diffusion process to produce C is very slow, due to it 

requires breaking and forming many bonds for complete disruption of 

structure A and B. 

 

 



 

 

7 

 

 

 

 

 

Figure 1.4: Solid-state process to produce nanopowders 

 

 

 

 

1.2.5 Co-precipitation Process 
 

 

In a co-precipitation process a product is precipitated from the 

solution containing other ions, and it occurs when a solution is supersaturated 

with a substance and forming a precipitate or when a melt is super cooled.  

Generally, there are three major processes involved in co-precipitation 

process.  The first process is known as inclusion, where the impurity in 

substance occupies a lattice site in the crystal structure of the carrier.  The 

second process is called occlusion, where an adsorbed impurity is physically 

trapped inside the crystal during growth.  Third process is called adsorption, 

where the adsorbed impurity is weakly bound to the surface of the precipitate.  

After these three processes are completed, a powder is often washed and 

dried to obtain pure nanopowders. 
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1.3       Microwave Assisted Synthesis 

 

 

 

 

Microwave assisted syntheses in the modern research have received 

tremendous attention due to their shorter processing time.  In certain cases, it has 

successfully replaced the traditional method like sol-gel, hydrothermal, solid-state 

reaction, emulsion and microemulsion synthesis (Parhi et.al, 2004).  Microwave 

heating enables thorough direct heating to the materials through molecular 

interaction with electromagnetic field (Thostenson and Chou, 1999).  It offers 

advantages such as non-contact heating, efficient energy transfer, rapid volumetric 

heating and provides higher level of safety and automation (Menendez et.al, 2010). 

 

 

Microwave heating also gives advantage to ceramics and polymer processing, 

where these materials are well known for having low thermal conductivities, and 

thus, it can reduce processing time significantly (Thostenson and Chou, 1999).  

There are several advantages of using microwave processing compared to 

conventional method, such as speed, where microwave heating occurs not just at the 

surface of the material, but it occurs within the material itself, making the heating 

process much faster.  Besides, it enables energy saving because microwave energy is 

not wasted to heat the equipment walls or the environment.  Heat is only developed 

where it is needed, such as material or precursors that are used for the process. 

 

 

Other advantages include space saving and fast process or production startup 

and shutdown.  This is because microwave oven is compact equipment, and it does 

not affect the processing rate prior to its building space.  Therefore, production 

capacity can be increased without the need for any additional space.  Nowadays, 

many researchers are trying to design, evaluate, and optimize their microwave to 

achieve the desirable, higher yield result.  There are several type of equipment used 

in microwave synthesis, as listed below. 
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 1.3.1 Household microwave oven 

 

 

This is the cheapest of equipment used especially in organic synthesis 

process and is limited to 1000 W only.  Its electric field distribution is 

homegenous and samples are often subjected to the maximum levels for 

varying time period.  However, organic syntheses often require control of 

reaction parameters such as pressure and temperature, which cannot be 

controlled in this type of setup. 

 

 

 

 

1.3.2  Modified microwave oven 

 

 

This setup is very similar to the domestic microwave oven, but has been 

modified with a slight variation prior to maintain its accuracy and safety 

during synthesis.  The only difference in modified microwave oven is that it 

has a cavity at the top of the microwave, which allows the introduction of air 

cooler for solvent reflux as well as allowing researchers to follow various 

process parameters. 

 

 

 

 

 1.3.3 Commercially available microwave reactor. 

 

 

This category is specialized equipment, which is equipped with various 

features such as build-in magnetic stirrer, direct temperature controller to 

maintain fixed temperature and pressure of the reaction mixture with the aid 

of fiber optic probes.  
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1.4       Problem Statement 

 

 

ZnO is a valuable material with wide applications; however, current 

production to produce zinc oxide at nano-sized is complicated, time-consuming, 

tedious process and it requires expensive design and setup.  Most of the methods also 

require post treatment such as calcination of nanopowders.  Also, current continuous 

method for ZnO at nano-sized production requires expensive laboratory setup and it 

can only work at very low concentrations. 

 

 

The purpose of this research is to build and evaluate a continuous reactor for 

the production of ZnO nanopowders.  The proposed continuous microwave flow 

reactor will make use of cheap precursors and will not involve expensive and 

elaborate setup.  It mainly involves a modified household microwave oven which 

easily available at the market, and the modification of microwave is made from 

inexpensive laboratory equipment as well as easily the equipment is easily made 

from local laboratory. 

 

 

 

 

1.5       Objectives of the Study 

 

 

Below are the main objectives for this research: 

1. Design and build a continuous microwave reactor for the production of ZnO. 

2. Control process parameters to obtain phase pure ZnO nanoparticles.  All process 

control will be observed in terms of process flow rates, pumps velocity, effect on 

process time and microwave power and effect on precursor concentration, 

3. Study the effect of process parameters on the crystallinity of nanopowder, 

crystallite size and its effect on the optical properties as well as antibacterial 

activities of ZnO nanopowder. 
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1.6       Scope of the Study 

 

 

This research addresses the continuous production of ZnO nanoparticles 

using continuous microwave flow reactor.  The main reactor consists of 800 W 

modified household microwave operating at 2.45 GHz frequency.  This project will 

be assessed prior to the efficiency design setup and the quality of the ZnO produced.  

Therefore, it will be evaluated according to the degree of crystallinity, phase purity, 

crystallite size, particle morphology and optical properties. Techniques such as XRD, 

FTIR, TEM, UV-Vis, and Photoluminescence will be used to fully characterize the 

ZnO nanostructures. 

 

 

 

1.7       Significance of the Study 

 

 

This study will enable us to continuously produce crytalline ZnO 

nanoparticles, where physicochemical and optical properties of the nanoparticles 

could be controlled by adjusting the process parameters.  This customized continuous 

microwave flow reactor would be a cheaper alternative to the elaborate and 

expensive setup of continuous hydrothermal flow synthesis reactor.   
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