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ABSTRAK 

 
 
 
 
 Alkohol adalah sebatian yang berguna tetapi pendedahan kepada alkohol 
yang berlebihan adalah berbahaya kepada manusia dan perlu dirawat. Oleh itu, 
fotopemangkinan telah dicadangkan sebagai kaedah alternatif untuk pengoksidaan 
alkohol dan titanium dioksida (TiO2) dikenal pasti sebagai fotomangkin yang paling 
berpotensi. Dalam kajian ini, untuk meningkatkan keberkesanan TiO2, siri TiO2-
MCM-41 telah disediakan dengan kaedah pengisitepuan. Corak pembelauan sinar-X 
dan analisis penjerapan-penyaherapan mendedahkan kejayaan pembuatan MCM-41. 
Corak pembelauan sinar-X juga menunjukkan bahawa fasa tulen TiO2 yang 
disediakan adalah anatas. Struktur MCM-41 dapat dikekalkan apabila jumlah muatan 
TiO2 adalah rendah (sehingga 5 wt%). Kejayaan pembentukan TiO2-MCM-41 juga 
telah disahkan oleh spektroskopi pendarfluor. Sebaliknya, spektrum pantulan serakan 
ultralembayung-cahaya nampak menunjukkan sampel dengan muatan 5 wt% TiO2 
adalah yang paling tersebar di kalangan sampel TiO2-MCM-41. Penyebaran TiO2 
yang baik pada MCM-41 juga dapat dilihat melalui analisis mikroskopi imbasan 
elektron pancaran medan dan pemetaan tenaga sebaran sinar-X. TiO2-MCM-41 
dengan berat 5% TiO2 (TiO2(5)-MCM-41) juga menunjukkan nombor perolehan 
(TON) yang paling tinggi iaitu 0.27 untuk pengoksidaan fenol. Penyelerakan TiO2 
dan pengekalan struktur MCM-41 dicadangkan sebagai parameter yang penting 
untuk aktiviti yang tinggi bagi fotomangkin tersebut. Kajian kinetik mendedahkan 
bahawa pengoksidaan fenol mengikuti tindak balas tertib pertama dengan kadar 
pemalar 0.33 h-1, manakala kajian terhadap mekanisme tindak balas mencadangkan 
bahawa lubang positif bertindak sebagai tapak aktif dalam pengoksidaan fenol. 
Aktiviti fotomangkin yang terbaik, TiO2(5)-MCM-41 juga diuji untuk pengoksidaan 
sikloheksanol dan heksanol. Fotomangkin menunjukkan peningkatan aktiviti 
pengoksidaan mengikut urutan heksanol<sikloheksanol<fenol. Adalah disarankan 
bahawa interaksi dan penjerapan yang paling kuat antara fenol dan fotomangkin 
mendorong kepada aktiviti yang tertinggi. Sebaliknya, pengoksidaan sikloheksanol 
mengikuti tertib kedua dengan kadar pemalar 0.026 M-1 h-1 manakala, pengoksidaan 
heksanol mengikuti tertib pseudo pertama dengan kadar pemalarnya 0.014 h-1. 
Keputusan ujian pemerangkap mencadangkan radikal superoksida bertindak sebagai 
spesies aktif untuk kedua-dua pengoksidaan sikloheksanol dan heksanol. 
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ABSTRACT 
 

 
 
!

Alcohol is a useful compound, but the excessive exposure of alcohol is 
hazardous to human and must be treated. Therefore, photocatalysis has been 
proposed to be an alternative method to oxidize the alcohol and titanium dioxide 
(TiO2) has been recognized as the most potential photocatalyst. In this study, in order 
to increase the efficiency of TiO2, TiO2-MCM-41 series were prepared by an 
impregnation method. The X-ray diffraction patterns and nitrogen adsorption-
desorption analysis revealed the successful formation of MCM-41. The X-ray 
diffraction patterns also showed that the pure phase of TiO2 is anatase. The structure 
of MCM-41 was maintained when the loading amount of TiO2 was low (up to 5 
wt%). The successful formation of TiO2-MCM-41 was also confirmed by 
fluorescence spectroscopy. On the other hand, diffuse reflectance ultraviolet visible 
spectrum showed that the sample with 5 wt% of TiO2 (TiO2(5)-MCM-41) loading 
has the most dispersed TiO2 among the TiO2-MCM-41 samples. The good dispersion 
of TiO2 on the MCM-41 was also observed by field emission scanning electron 
microscopy and the energy dispersive X-ray mapping analyses. The TiO2-MCM-41 
with 5 wt% of TiO2 loading showed the highest turnover number (TON) which is 
0.27 for phenol oxidation. The dispersion of TiO2 and well maintained MCM-41 
structure were proposed to be the important parameters for the high activity of the 
photocatalyst. The kinetic study revealed that phenol oxidation followed first order 
with the rate constant of 0.33 h-1, while the study on the mechanism of reaction 
proposed that the positive holes acted as the active sites in phenol oxidation. The 
activity of the best photocatalyst, TiO2(5)-MCM-41 was also tested for oxidations of 
cyclohexanol and hexanol. The photocatalytic activity increased in the order of 
hexanol < cyclohexanol < phenol. It is suggested that the strongest interaction and 
adsorption between phenol and the photocatalyst led to the highest activity. In 
contrast, cyclohexanol oxidation followed second order with the rate constant of 
0.026 M-1 h-1 while, the hexanol oxidation followed pseudo-first order with the rate 
constant of 0.014 h-1. Scavenger tests results proposed that the superoxide radicals 
acted as the active species for both cyclohexanol and hexanol oxidations.  
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CHAPTER 1 
 

       
 
 

INTRODUCTION 
 
 
 
 

 
1.1 Background of Study 
 
 
 Alcohol is widely used in many industrial applications. However, the excessive 

amounts of alcohol in our environment will give bad impacts to human being, such 

as lung cancer, bronchitis, brain damage and others. Therefore, before its disposal to 

our environment, alcohol should be converted to more useful compounds, such as 

aldehyde that can be used in drug delivery, perfumery, pharmacist and food 

industries and carboxylic acid that is an intermediate for organic synthesis. Another 

approach is to convert alcohol to harmless compounds, such as CO2 and H2O (Adan 

et al., 2009; Augugliaro et al., 2008). 

 
 
 In the early 80’s, some strong oxidation reagents such as KMnO4 and CrO3 

were introduced to increase the performance of alcohol oxidation reaction. 

Unfortunately, some drawbacks have been recognized, which are expensive, can 

cause explosion if misuse them and not environmentally friendly. In order to 

overcome these problems, heterogeneous catalysts have been proposed. Compared to 

the homogeneous catalysts, heterogeneous catalysts are easier to be handled and can 

be reused, thus giving more benefits for industrial processes (Anpo et al., 2009; 

Endud & Wong, 2007).   

!
!
 Recently, photocatalytic oxidation of alcohol has become one of the alternative 

methods to convert alcohol to more useful or harmless compounds via partial or 

complete oxidation processes, respectively. This is due to the fact that the 
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photocatalytic oxidation process can occur at ambient temperature and pressure in 

the presence of photocatalyst and light source, either UV or visible light. Light is 

considered as non-toxic and ideal to be used in the environmentally friendly green 

process. Light also generates no waste and can be obtained from the renewable 

source, which is the sun (Higashimoto et al., 2009). 

 
 
 Titanium dioxide (TiO2) is one of the most studied photocatalysts. TiO2, 

especially anatase phase, has been investigated in various photocatalytic reactions 

due to its large band gap (3.2 eV), which gives a strong absorption in the ultraviolet 

(UV) region. TiO2 is usually active for total oxidation reaction (Lachheb et al., 

2011), for instance it is active for complete oxidation of phenol (Zheng et al., 2000). 

It has been proposed that the continuous irradiation should produce many electrons 

and holes on the surface of titanium that could degrade the organic pollutant. 

 

On the other hand, the highly dispersed TiO2 on supports, such as silica 

showed good activity for partial oxidation reaction (Yoshida, 2003). Unfortunately, 

there are still no clear comparison studies between TiO2 and highly dispersed TiO2 

when they are used for oxidation of specific alcohols under the same conditions. In 

this study, TiO2 and highly dispersed TiO2 series were prepared by impregnation 

method. Mesoporous silica, MCM-41 was used as the support material for the 

dispersion of TiO2. This is due to the remarkable properties of MCM-41, which are 

uniform cylindrical pores of diameter varying from 15 to 100 Å, high surface area of 

around 1000 m2/g and long range ordering structure of hexagonal arrangement 

(Atchudan & Pandurangan, 2012; Zhao et al., 1996). 

 
 

 In this study, the performance of bulk and dispersed TiO2 were examined for 

oxidation of alcohols. In the photocatalytic reactions, many parameters would affect 

the activity of the degradation of alcohols such as crystallinity of photocatalyst, 

concentration of pollutant, oxidation potential of pollutants and others. The use of 

different types of alcohols might also give influences in the performance of the 

photocatalysts since it gives different results in the terms of activity and also 

selectivity for partial or complete oxidation reactions (Koodali & Zhao, 2010). These 

points were revealed in this study.  
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1.2  Statement of Problem 
!
!
! TiO2 has been recognized as the most appropriate and potential photocatalyst 

for the oxidation of organic pollutants to form non-hazardous compounds, which are 

CO2 and H2O. However, there are some drawbacks of TiO2, such as low crystallinity 

due to the agglomeration of active site, which resulted in low activity of the reaction 

(Reddy et al., 2004). Therefore, modification of TiO2 using support material is 

important in order to decrease the agglomeration of the active site of TiO2 and also 

produce high quantum yield. It has been reported that the use of MCM-41 as support 

material for TiO2 would increase performance of the photocatalyst for photocatalytic 

oxidation reaction (Davydov et al., 2001). 

 
 

On the other hand, the highly dispersed TiO2 on inert support has been reported 

to be the selective for some partial oxidation reactions (Yoshida, 2003). However, 

there are still no clear comparison studies when TiO2 and the dispersed one are both 

used for oxidation of the same alcohol compound under the same conditions. 

Moreover, the type of alcohol might also give the effect on the type of oxidation 

reactions, which however, has never been reported before. 

 
 

The different types of alcohol might be oxidized following different reaction 

order and mechanism. Since the kinetic study and the reaction mechanism for 

different types of alcohols are still not clear, there are still many rooms to be 

investigated. Moreover, the interaction between the type of alcohol and the 

photocatalyst might play the significant role for the photocatalytic oxidation reaction. 

Therefore, it would be important to study the properties of photocatalyst and their 

effects on the photocatalytic oxidation of different types of alcohol. 

 
 
 
 
1.3 Objectives 
!
!
The main objectives of this research are: 
 
1) To synthesize the bulk TiO2 and dispersed TiO2 on MCM-41 photocatalysts. 
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2) To study the properties of the prepared bulk TiO2 and dispersed TiO2 on 

MCM-41. 

3) To investigate the photocatalytic activity, kinetic and mechanism reactions of 

bulk TiO2 and dispersed TiO2 on MCM-41 for oxidation of phenol, 

cyclohexanol and hexanol. 

 
 
 
 
1.4 Scope of Study 
 
 
 The scope of this study is shown as below. The bulk TiO2 was prepared by 

hydrolysis of titanium isopropoxide, followed by calcination at 773 K. The MCM-41 

was prepared by using tetraethyl orthosilicate (TEOS) as the silica source and 

cetyltrimethylammonium bromide (CTABr) as the surfactant. Furthermore, the 

surface area of MCM-41 was determined by using Brunauer-Emmett-Teller (BET) 

specific surface area and Barret-Joyner-Halenda (BJH) pore siza distribution. The 

dispersed TiO2 on MCM-41 series with various amounts of TiO2 loadings were 

prepared by impregnation method. The amounts of loaded TiO2 were 3, 5, 7, and 9 

wt%. The prepared materials were characterized in details by using the following 

instruments, which were X-ray diffraction (XRD), diffuse reflectance ultraviolet-

visible (DR UV-Vis), fluorescence spectroscopy and field emission scanning 

electron microscopy (FESEM).  

 
 
 Photocatalytic reaction was conducted at room temperature under an 8 W UV 

lamp with wavelength centered at 254 nm using a closed reactor system attached 

with water system cooling. The investigated alcohols were phenol as the model of 

aromatic alcohol, cyclohexanol and hexanol as the model of aliphatic alcohol. The 

products were analyzed by gas chromatography equipped with a flame ionization 

detector (GC-FID) and a thermal conductivity detector (GC-TCD) for liquid and gas 

products, respectively. The mechanism of the reaction was investigated using 

benzoquinone, silver nitrate, ammonium oxalate, and tert-butyl alcohol as scavengers 

for superoxide radical, electron, holes, and hydroxyl radical, respectively. 
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1.5 Significance of Study 

 
The development of photocatalyst design that can enhance the properties of the 

active site is an important approach in material science. This study would reveal 

some important parameters to improve the efficiency of the TiO2 photocatalyst. 

Moreover, the simple preparation of the photocatalysts shown in this study would 

give also benefits for photocatalysis field. Furthermore, this research also could give 

us deepen knowledge about the characteristics of the photocatalysts so that they 

could be used for other applications. This study also would help us to give better 

understanding in fundamental requirements of active sites responsible in the 

oxidation reactions.  

 
 

On the other hand, this study might improve our technology in terms of 

handling organic pollutants in our environment. The successful degradation of 

organic compounds from the wastewater industries absolutely would give great 

advantages to our environment as well as human being. This research can be 

considered as one of the green technologies due to the capability of the 

photocatalysts to oxidize the harmful pollutants into non-hazardous compounds via a 

green process using light as a source of energy. Besides the photocatalytic reaction, 

this study also could give knowledge about fundamental studies on the oxidation 

reactions by studying their kinetics and mechanisms. 
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