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ABSTRACT 

 

 

 

 

The present study focused on comparison of three defuzzification methods in 

transforming fuzzy two-stage stochastic linear programming problem into a crisp 

problem.  The fuzzy transformation techniques that utilized in this study were 

Yager’s robust ranking method, generalized mean integration representation (GMIR) 

method, and centroid defuzzification method (CDM).  Besides that, an assumption 

that the probability distribution obtained via expert was fuzzy and consisted only 

partial information was made.  Five problems which modified based on Dakota’s 

Furniture Company were presented to give an illustration on how the fuzzy 

transformations using the three mentioned techniques were carried out.  The 

defuzzified two-stage stochastic linear programming problems from each of the 

techniques were solved using a modelling system of GAMS, which implemented 

using a solver called DECIS.  The difference between first problem and the rest of 

the problems was demand levels in first problem were symmetric triangular fuzzy 

numbers.  Transformation of first problem using three different techniques resulted 

in getting the same model formulation, and hence the result obtained from 

GAMS/DECIS obviously was similar.  The results of Problem 2 and Problem 3 

obtained from the GAMS/DECIS showed a slight difference in resource quantities, 

production quantities, and the total profit, and CDM method showed the best 

optimum solutions. Meanwhile, GMIR method showed better optimum solutions in 

Problem 4 and 5.  Hence, it can be concluded that CDM and GMIR are best methods 

of defuzzification for non-symmetric triangular fuzzy numbers problems comparing 

to Yager’s robust ranking method.  
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ABSTRAK 

 

 

 

 

Kajian ini fokus kepada perbandingan tiga teknik penyahkaburan dalam 

mentransformasi masalah pengaturcaraan linear stokastik dua peringkat kabur 

kepada masalah nyata.  Teknik transformasi kabur yang digunakan dalam kajian ini 

adalah kaedah kedudukan teguh Yager, kaedah perwakilan integrasi min umum 

(GMIR) dan kaedah penyahkaburan sentroid (CDM).  Selain itu, andaian dibuat 

bahawa taburan kebarangkalian diperolehi melalui pakar adalah kabur dan 

mengandungi hanya separa informasi.  Lima masalah yang telah diubah berdasarkan 

Syarikat Perabot Dakota telah dibentangkan untuk memberi ilustrasi bagaimana 

transformasi kabur menggunakan tiga teknik yang disebut tadi dilakukan.  Masalah 

pengaturcaraan linear stokastik dua peringkat yang telah dinyahkaburkan dari setiap 

teknik diselesaikan menggunakan sistem permodelan GAMS, yang mana 

dilaksanakan menggunakan penyelesai dipanggil DECIS.  Perbezaan di antara 

masalah pertama dan masalah-masalah yang lain adalah tahap permintaan dalam 

masalah pertama merupakan nombor kabur segitiga simetri. Transformasi bagi 

contoh pertama menggunakan tiga teknik yang berbeza menghasilkan pembentukan 

model yang serupa, dan justeru itu keputusan yang diperolehi melalui GAMS/DECIS 

semestinya serupa.  Keputusan bagi masalah kedua dan ketiga yang diperolehi 

melalui GAMS/DECIS menunjukkan perbezaan yang sangat sedikit dalam kuantiti 

sumber, kuantiti pengeluaran dan jumlah keuntungan, dan teknik CDM menunjukkan 

penyelesaian optimum yang terbaik.  Sementara itu, teknik GMIR menunjukkan 

penyelesaian optimum terbaik dalam masalah ke-empat dan ke-lima. Justeru itu, 

dapat disimpulkan bahawa CDM dan GMIR merupakan teknik penyahkaburan yang 

terbaik bagi masalah nombor kabur segitiga tidak simetri berbanding dengan kaedah 

kedudukan teguh Yager.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

Optimization is a very old and classical term used to describe the best 

selection of the solution of the particular problem from some set of available 

alternatives.  For instance, supply chain networks optimize the production and 

distribution to ensure the operating costs (including production costs, transportation 

costs and distribution costs) are reduce to the lowest and maximize the inventory 

placement, and vehicle networks find the best route to deliver the goods demanded to 

ensure optimization of the vehicles available, number of tasks completed in time and 

vehicles’ capacities.  

 

 

Generally, such problems have been attracting attention of researchers from 

decades ago.  Various theories, techniques, methods, and algorithms as well as 

computer software have been introduced with the aim of finding the best solution of 

the particular problem arises.  Besides searching for the best solution, researchers 

also attempt to find the best theories, techniques, methods, algorithms, computer 

software that can reach the optimal solution as fast as possible.   

 

 



2 

In this study, we are focusing on optimization of stochastic linear 

programming (SLP) problem, more specifically fuzzy stochastic linear programming.  

In comparison to linear programming, network flow programming and integer 

programming which ignores the impact of uncertainty and the outcomes of the 

problem is predictable and deterministic, SLP on the other hand has been an 

attraction to various parties as it takes the uncertainty into consideration.  SLP has 

been extensively studied by various researchers such as Ang, Meng, and Sun (2014), 

Barbarosoğlu and Arda (2004), Ben Abdelaziz and Masri (2005, 2009), Fábián and 

Szőke (2007), Higle (2005), Huang and Ahmed (2008), MirHassani et al. (2000), 

Tsiakis et al. (2001), Sakawa, Katagiri and Matsui (2014), Sudhakar and Kumar 

(2010), and Tan, Huang and Liu (2013).    

 

 

Fuzzy stochastic linear programming problem includes the characteristics of 

“fuzziness” into the SLP problem.  Fuzzy stochastic linear programming problem has 

been studied by researchers such as Bag, Chakraborty and Roy (2008), Giri, Maiti 

and Maiti (2014), Halim, Giri and Chaudhuri (2011), and Hop (2007).  Fuzziness can 

be found in demand levels, probability distribution, production rate, and demand rate 

of the production inventory model and production planning model.  As for the 

transportation problem, fuzziness probably occurred in sources, demands, capacities 

of conveyances, transportation cost and transportation time.  

 

 

The fuzziness in the fuzzy stochastic linear programming problem usually 

solved using the defuzzification techniques such as center of area, center of gravity, 

smallest of maximum, mean of maximum, largest of maximum, ranking techniques, 

bisector method and some meaningful discovered techniques, for instance graded 

mean integration representation method (GMIR).  The most frequently used 

defuzzification method is centroid method, so called center of area or center of 

gravity method.   
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1.2 Motivation of the study 

 

 

Linear programming has extensively evolved in order to model and tackle the 

real life problem more accurately and precisely.  Linear programming problem 

assume that all the parameters of the problem, such as the coefficients of the 

objective function, the inequalities and the availabilities are known numbers 

(Tintner, 1960).  In other words, linear programming is specifically formulated to 

model deterministic problems.  Although linear programming used to be one of the 

most applicable operational research techniques in real world problems, however due 

to the fact that linear programming requires much well-defined and precise data that 

are hardly obtained in real world, numerous amount of effort have been done by 

researchers to propose new model of optimization.  From a general linear 

programming, SLP has been introduced, and followed by much more complicated 

yet more precise model have been discovered, such as two-stage stochastic linear 

programming (2-SSLP), multi-stage SLP, multi-objective SLP, and stochastic 

convex linear programming.   

 

 

As we live in the world full of uncertainty, dealing with uncertainty is 

unavoidable.  Majority of concrete real life problems consists of relatively some level 

of uncertainty about values to be assigned to various parameters. As quoted by 

Shackle (1961) about the uncertainties in real world:  

“In a predestinate world, decision would be illusory; in a world of 

perfect knowledge, empty; in a world without order, powerless. Our 

intuitive attitude to life implies non-illusory, no-empty, non-powerless 

decision…Since decision in this sense excludes both perfect foresight 

and anarchy in nature, it must be defined as choice in the face of 

unbounded uncertainty.”  

 

 

Upon realization of the fact that real world problems almost invariably 

include some unknown parameters, Dantzig (1955) and Beale (1955) incorporated 

the influence of “uncertainties” into linear programming problem.  In this sense, if 
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there is an element that is subject to uncertainty, the linear programming is called 

SLP.  SLP undoubtedly has become an essential tool to solve optimization problem 

since it has been introduced by Dantzig (1955) and Beale (1955).  Since then, SLP 

has been recognized as powerful modelling tool, but under condition that precise 

probabilistic description of the randomness is presented.  However, this information 

is hardly available for the decision makers, for example information as regards to the 

demand level of customers on particular product.  Although the information is 

usually obtained by decision makers through past data, yet it is inaccurate as demand 

might increase or decrease depending on variables such as the launch of new 

products by a competitor or lack of advertising of the product.  

 

 

Furthermore, as the studies on stochastic programming progress extensively, 

researchers come to the realization that in real life situations, information on 

probability distribution is usually not completely known.  In other words, only partial 

information on the probability distribution is known.  The term partial information is 

sometimes also referred as imprecise information, incomplete knowledge or linear 

partial information.   

 

 

Along with the development on stochastic optimization, the concept of 

fuzziness has also been integrated into the SLP to visualize the problem in a more 

realistic way to present the real life problem.  As stated by Rommelfanger (1996), 

utilization of fuzzy mathematical programming is highly recommended for the 

purpose of reducing cost of information and modelling the problem more 

realistically.  The term “fuzzy” is first introduced by Bellman and Zadeh (1970).  

Fuzzy logic allows the management of uncertainty and vagueness of the information 

obtained.  The fuzzy mathematical programming is first introduced by Bellman and 

Zadeh (1970), and further studied by researchers such as Luhandjula (2007), 

Luhandjula and Gupta (1996), Nukala and Gupta (2007), Omar (2012), Veeramani 

and Sumathi (2014), and Zimmermann (1985).   
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1.3 Background of Study 

 

 

Stochastic programming is an essential part of mathematical programming 

with random parameters, and has been widely applied to various fields such as 

economic management and optimization control (Birge and Louveaux, 1997).  

Undeniably, stochastic programming has attracted more attention of researchers from 

various area of expertise, as it proved to be able to handle the uncertainty scenarios 

that is unpredictable in real life environment.   

 

 

Two-stage stochastic linear programming (2-SSLP) and multi-stage 

stochastic linear programming have also been extensively studied since SLP has been 

discovered in 1955.  Numerous theories, algorithms and methods to solve the 2-

SSLP and multi-stage SLP has been introduced since then.  However, according to 

Han and Ma (2012), these theories and algorithm obtained on stochastic linear 

programming are all based on assumption that the probability distributions of random 

parameters have complete information.  In the mid-1960s, researchers such as 

Dupačová has discovered the limitations of the expected value paradigm that have 

been practiced so far, where he concluded that the exact knowledge of underlying 

probability distribution are difficult to estimate accurately (Thiele, Terry, and 

Epelman, 2010).  In 2005, Ben Abdelaziz and Masri proposed a model of SLP with 

fuzzy linear partial information on probability distribution, in conjunction with the 

study of Kofler (2001) on linear partial information with application.  In addition to 

that, various computer softwares including modelling systems such as A 

Mathematical Programming Language (AMPL) and General Algebraic Modelling 

System (GAMS), and powerful large scale solvers such as CPLEX, excel solver, 

LINDO, LINGO, OSL-SE and DECIS have been established to serve as the tool to 

solve linear programming problem.  Despite of that, however most of them are still 

incapable of solving a stochastic linear programming problem.  Only limited number 

of softwares and solvers are available to model and solve stochastic programming 

problem.   
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Fuzzy linear programming has been studied extensively by numerous 

researchers, however, only few studies on fuzzy stochastic linear programming can 

be found up to date (Giri, Maiti and Maiti, 2014; Sakawa, Katagiri, and Matsu, 2014; 

Wang, and Watada, 2011).  Various methods of fuzzy transformation and 

defuzzification methods have been proposed to defuzzify the optimization problem, 

such as max membership defuzzification method, centroid defuzzification method 

(CDM), weighted average method, mean max membership method, center of sums 

method, center of largest area method, first (or last) maxima, Yager’s robust ranking 

method, and GMIR.  Although a lot of methods have been proposed to defuzzify the 

fuzziness in the problems, however up to now, limited studies have been made to 

search for the best methods among all the proposed methods.  Mogharreban and 

DiLalla (2006) proposed that center of area is the best method of defuzzification, 

meanwhile Naaz, Alam and Biswas (2011) suggested that the center of gravity, 

bisector method, and mean of maxima methods were the three best defuzzification 

methods.  There was a proposed method of defuzzification to defuzzify the 

generalized fuzzy numbers, which was GMIR method. However, no comparison 

between GMIR method and previously proposed method has been made. 

 

 

 

 

1.4 Problem Statement 

 

 

Fuzzy transformation is an essential method to defuzzify any fuzzy numbers 

into a crisp value.  Hence, countless methods have been proposed with the aim to be 

the best defuzzification methods under various circumstances.  Although various 

defuzzification methods have been proposed, limited studies on comparison of 

defuzzification methods have been. Therefore, the present study would like to 

compare GMIR defuzzification method with the most frequently used method, which 

is CDM, and also the most simplest method, which is the Yager’s robust ranking 

method. 
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1.5 Research Objectives 

 

 

The objectives of the study are:  

1. To defuzzify the fuzzy two-stage stochastic linear programming problem 

with symmetric fuzzy demand levels using Yager’s robust ranking 

method, GMIR, and CDM. 

2. To defuzzify the fuzzy two-stage stochastic linear programming problem 

with non-symmetric fuzzy demand levels using Yager’s robust ranking 

method, GMIR, and CDM. 

3. To solve the defuzzified problems resulting from Yager’s robust Ranking, 

GMIR and CDM using GAMS/DECIS solver. 

4. To compare the performance of the three defuzzification methods in 

symmetric fuzzy demands levels problems.  

5. To compare the performance of the three defuzzification methods in non-

symmetric fuzzy demands levels problems.  

 

 

 

 

1.6 Scope of the Study 

 

 

This study aims to transform the fuzzy 2-SSLP problem using different 

defuzzification methods under the circumstances that the probability distribution is 

not explicitly known and it is fuzzy.  At first, the problem is modelled as fuzzy 

stochastic problem, then we performed fuzzy transformation process to defuzzify all 

the fuzzy parameters into a crisp value.  The defuzzified problems are solved 

separately using an optimization system called GAMS and solve using a solver 

called DECIS.  In addition to that, this study would like to investigate how the 

symmetric and non-symmetric in triangular fuzzy numbers would affect the optimum 

solutions acquired.   
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1.7 Significance of the Study 

 

 

Throughout this study, hopefully more real world problems can be solved 

under the circumstances that the probability distribution is fuzzy and have linear 

partial information.  As the limitation on the number of research done on fuzzy 2-

SSLP problem is countable, this study would like to provide an insight to various 

parties to solve the real life problems such as transportation problem, replacement 

problem, supply chain problem and production planning, and products mixing, which 

subjects to randomness and fuzziness in the parameters.  In addition, hopefully this 

study can provide useful information on which defuzzification methods to be 

utilized; of course it is problem-dependent.  Through this comparison study on the 

defuzzification methods, we hope it will guide the researchers to choose the best 

methods to defuzzify the fuzzy problems.   

 

 

 

 

1.8 Organization of the Study 

 

 

This study can be divided into five chapters. Chapter 1 presented an overview 

of the study, where the background of the study and problem statement, as well as 

research objectives, scope of the study and significance of the study are included.  

 

 

Chapter 2 reviewed the past literature, including an overview of the literature 

from past studies on stochastic linear programming, particularly in 2-SSLP.  Details 

and literature on fuzzy set theory, triangular fuzzy numbers, fuzzy distribution, linear 

partial information on probability distribution, fuzzy linear partial information on 

probability distribution and fuzzy two-stage stochastic linear programming are 

provided in this chapter.  Furthermore, fuzzy transformation is also discussed in this 

chapter.     
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Chapter 3 formulated the model of fuzzy 2-SSLP with fuzzy linear partial 

information on probability distribution.  The defuzzification techniques employed in 

the numerical examples in Chapter 4 are explained in detail.  

 

 

In Chapter 4, five numerical problems which illustrated the fuzzy 2-SSLP 

with fuzzy linear partial information on probability distribution are discussed.  A 

detail on defuzzification of fuzzy parameters and probability distribution using the 

three defuzzification methods, which are Yager’s ranking method, GMIR and CDM 

is provided.  Problem 1 tested the three defuzzification methods using the symmetric 

triangular fuzzy numbers in demand levels, mean while the rest of the problem tested 

the three defuzzification methods using the non-symmetric triangular fuzzy numbers 

in demand levels The solutions generated from GAMS/DECIS solver are also 

provided.  The discussion on the research findings are provided as well.  

 

 

Chapter 5 included the conclusion on the study, discussion on the findings, 

and recommendations for future studies.   
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