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ABSTRACT 
 
 
 
 
 

 

A pre-condition for identifying infectious disease and understanding the 

ecology of a species is by gender classification of the trabecular bone of an animal. 

Therefore, accurate gender classification on skeletal remains of nonhuman is 

essential for the research of nonhuman population. The traditional method of 

classifying gender by comparative skeletal anatomy by atlas has raised issues with 

regard to accurate classification and challenge in management of data to identify 

optimum features and interpretation optimum features in a simple way. In this 

research all these three issues were addressed by using a process model developed 

specifically for gender classification. This research used two computational 

intelligence models, namely Support Vector Machine (SVM) and Artificial Neural 

Network (ANN). Results of simulations of both models were compared and ANN 

performed better than SVM. To improve the accuracy of ANN classifier, Particle 

Swarm Optimization (PSO) feature selection was used as the basis for choosing the 

best features to be used by the selected ANN classification model. The model is 

called PSO-ANN and has been developed by MATLAB and WEKA tools platform. 

Samples were taken from Ryan and Shaw collection. This sample contains proximal 

femur and proximal humerus. Comparisons of the performance measurement namely 

the percentage of the classification accuracy, sensitivity and specificity of the model 

were performed. The results showed that the ability of PSO-ANN in classifying 

gender outperforming the SVM and ANN model by acquiring 100% accuracy, 

sensitivity and specificity. Apart from that, the optimum features of the gender 

classification are extracted and translated into more understandable explanations 

using Decision Tree and compare the differences and similarities with the original 

features. These findings have shown that the proposed PSO-ANN is capable of 

successfully solving three issues in the existing method in gender classification. 
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ABSTRAK 
 
 
 
 
 

  

Pra-syarat untuk mengenalpasti penyakit berjangkit dan pemahaman ekologi 

sesuatu spesis ialah dengan pengelasan jantina melalui tulang trabekular. Oleh itu, 

ketepatan pengelasan jantina pada rangka mayat haiwan adalah penting untuk kajian 

populasi haiwan. Kaedah tradisional dalam pengelasan jantina dengan 

membandingkan rangka anatomi dengan atlas telah menimbulkan isu-isu yang 

berkaitan dengan pengelasan tepat, dan cabaran dalam pengurusan data untuk 

mengenalpasti ciri-ciri optimum dan mentafsir ciri-ciri optimum dengan cara mudah. 

Dalam kajian ini, ketiga-tiga isu ini ditangani dengan menggunakan satu proses 

model yang dibangunkan secara khusus untuk pengelasan jantina. Kajian ini 

menggunakan dua model pengiraan pintar iaitu Mesin Sokongan Vektor (SVM) dan 

Rangkaian Neural Buatan (ANN). Hasil dari simulasi dua model ini dibandingkan 

dan menunjukkan bahawa prestasi ANN lebih baik dari SVM. Bagi meningkatkan 

ketepatan klasifikasi ANN, Pengoptima Kumpulan Zarah (PSO) digunakan sebagai 

asas dalam memilih ciri terbaik yang akan digunakan oleh model ANN terpilih. 

Model itu dikenali  sebagai PSO-ANN dan telah dibangunkan menggunakan platform 

MATLAB dan Weka. Kajian menggunakan sampel Ryan dan Shaw (2013) sebagai 

set data. Sampel ini mengandungi  ciri-ciri tulang rawan  proximal femur  dan  

proximal humerus. Perbandingan pengukuran prestasi iaitu peratusan ketepatan 

pengelasan, sensitiviti dan spesifisiti model dilaksanakan. Hasil kajian menunjukkan 

keupayaan PSO-ANN pengelasan jantina mengatasi SVM dan ANN dengan 

memperolehi 100% untuk ketepatan, sensitiviti dan spesifisiti. Selain itu, ciri-ciri 

optimum pengelasan jantina ini diekstrakkan dan diterjemahkan kepada penjelasan 

yang lebih mudah difahami menggunakan Pepohon Keputusan serta membandingkan 

perbezaan dan persamaan dengan ciri-ciri asal. Penemuan ini menunjukkan bahawa 

PSO-ANN model yang dicadangkan mampu dengan jayanya menyelesaikan tiga isu 

yang wujud dalam kaedah pengelasan jantina sedia ada. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Overview 

Forensic anthropology is a discipline that is concerned with postmortem 

identification of nonhuman skeletal remains. The objective of forensic anthropology 

is to contribute to the medico-legal process in building identification of the biological 

profile from nonhuman remains, usually in infectious disease cases (Coulibaly and 

Yameogo, 2000) and ecological knowledge (Gavan and Hutchinson, 1973). The 

biological details such as gender, ethnicity, race, age and stature are often the first 

data to helps to investigation on specific population.  The successful forensic 

anthropology performance can be achieved when positive identification of skeletal 

remains which are the closest match to atlas. The first step for positive identification 

when burned, decomposed, extreme fragmentation, unrecognizable or otherwise 

mutilated body recovered is gender classification. Gender classification help to solve 

remains problematic, especially with regard to the evidence of crime while 

examination of skeletal remains in post-mortem. Gender builds based on biological 

sex. Knowledge of the gender of an unknown set of remains is essential to make a 

more accurate estimation of age (Koçak et al., 2003). Hence, the gender 

determination is necessary to identify age, ancestry, and stature estimations 

(Blanchard, 2010). 
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There are three methods used in forensic anthropology in classification; the 

gender traditional method (Adams et al.  2009), statistical method (Van et al., 2000) 

and computational intelligence method (Mahfouz et al., 2007). The traditional 

classification of gender was done by comparative skeletal anatomy by atlas. The atlas 

contains the bone morphology measurement from previous collection. This method 

faces a complex comparison of bone and selection of closest match to the atlas.  The 

most parts of nonhuman bones have been research for gender classification such as 

foot (Archie et al., 2006;Rozenblut and Ogielska, 2005), teeth (Stander, 1997) and 

long bone (Yeni et al., 2008). In gender classification, the main issues that need to be 

addressed in the traditional gender classification process (GC) are classed for 

ensuring high efficiency of post-mortem results. The limitations of traditional 

methods are for certain population that is elephant foot in Kenya (Archie et al., 

2006), leopards teeth in United Kingdom (Stander, 1997) and bovine long bone in 

United States of America. The specific atlas for certain population is constrained to 

use in gender classification due to different development and growth of bone for 

different species.  

Beside comparative skeletal anatomy in traditional method, computational 

methods are often used in data analysis to solve these traditional classification 

problems. In classification, modeling plays a very important role when trying to 

understand the various issues. Modeling classifications can be categorized into two: 

statistical classifier and computational intelligence classifier. One of popular linear 

statistical classifier is Discriminant Function Analysis (DFA). The application of 

DFA is most widespread of other techniques because very easy to use and simple 

technique (Du Jardin et al., 2009). While Artificial Neural Network (ANN), Genetic 

Algorithm (GA) and Support Vector Machine (SVM) are artificial intelligence 

classifier that are the most popular and widely used to solve different kinds of 

complex classification problems.  
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Brief explanations about SVM is one of Computational Intelligence (CI) 

methods that has ability to high classification accurate rate (Mukkamala and Sung, 

2003). The success of SVM in classification methods is proven from several 

countries such as China (Zheng et al., 2004), Mexico (Mukkamala and Sung, 2003), 

Taiwan (Lin et al., 2008; Hsu et al., 2003) and Spain (Huang and Wang, 2006). ANN 

is an intelligent model comparable to SVM that is also widely used. ANN is a 

mathematical model or computational model that tries to simulate the structure of 

biological neural networks, which are involve interconnected of artificial neurons 

group. In addition, ANN is an adaptive system consisting of sturucture based on 

information during the learning process in the network. Unlike the SVM, ANN uses 

Empirical Risk Minimization (ERM) to minimize the errors in the training data. 

Since 1989, ANN methods have been successfully applied in many classifications, 

especially in pattern recognition (Carpenter, 1989). 

In literature search engine in web browser of the Scopus digital library, there 

is no research that has made using SVM and ANN in the  gender classification of 

nonhuman bone domain as shown in Figure 1.1. 

 

 

 

 

 

 

Figure 1.1: Result from search engine in the web browser of the Scopus Digital 

Library 

The capability of these two methods (i.e. SVM and ANN) in classification of 

gender of nonhuman bone have not yet been evaluated. Therefore, this research is to 

identify the advantages of these two methods (i.e. SVM and ANN) in classification of 

gender that lead to the accurate classification in the post-mortem process.  
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As mentioned by Lim and Haron (2013), the different methods work best for 

different databases. Both SVM and ANN method have limitations in eliminating 

irrelevant data and may decrease the classification rate. Hsu et al. (2003) suggested 

that other method such as feature selection may be needed to identify optimum 

features in improving the classification rate. Liu et al. (2011) obtain low 

classification accuracy rate (75.9%) when model the classification with all dataset 

features. However, the accurate classification rate was improved by using the 

proposed Particle Swarm Optimization (PSO) as a feature selection method with 

achieved 80.2%. According to Jantan (2009), SVM and ANN not work in describing 

the data to predict the value of a target variable based on several input variables. 

Apart from that, the optimization features of the gender classification are extracted 

and translated into more understandable explanations using Decision Tree and 

compare the differences and similarities with the original features. Data features 

interpretation is important to understand the data features in alternative ways, such as 

symbol method because sometimes the data are complex which are depends on 

several aspects such as human expertice, experience, knowledge, preference and 

judgment. The decision tree is one of popular symbol method representations of a 

decision process that enable  intuitive understanding of the data features and has the 

ability to extract IF THEN rule's pattern or other name is boolean logic rules. 

Therefore, the aim of this research is to apply computational intelligence 

method based on establishing algorithm of forensic anthropology as a reliable method 

that is comparable to traditional methods. It can assist the authorities to gender 

classification in nonhuman and medical forensic cases involved the corpse. 
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1.2 Problem Background 

The problems in traditional forensic anthropology are the specific atlas used 

as a reference for certain population to gender classification. The gender is developed 

based on previous collection nonhuman in Kenya (Archie et al., 2006), United 

Kingdom (Stander, 1997) and United States of America (Yeni et al., 2008) to solve 

medical forensic legal enforcement. Forensic Anthropology practitioner normally 

used the traditional method (comparative skeletal anatomy) for nonhuman 

identification which are depends on comparative skeletal anatomy by atlas used as a 

reference material. Positive identification achieved when the part of nonhuman bones 

(i.e. Long bone) accurate classified, the closest match to the atlas. This method 

requires a quality comparative collection of bones with demographic details or 

biological profile (i.e. Gender, age, species and stature) that are well-documented.  

The biological profile as pre-condition for access of infectious disease likes 

tuberculosis, anthrax, cysticercosis and hydatidosis (Coulibaly and Yameogo, 2000). 

Background and clinical signs of pain experienced by nonhuman are necessary 

during the process of post-mortem begins. From here, some probabilities of a 

diagnosis can be made so that further examination of the skeletal remains can be 

done properly. This is very essential because there may be no signs of skeletal 

remains and the need to depend on the background of the case skeletal remains. 

Results of post-mortem conducted are very important in implementing disease 

control programs, particularly the control of infectious diseases. However, current 

comparative collections have been supplemented by identification guides and atlases 

which are developed based on bone morphology measurement of nonhuman in 

Kenya (Archie et al., 2006), United Kingdom (Stander, 1997) and United States of 

America (Yeni et al., 2008). Therefore, for this case the probability of getting 

accurate results can not be determined because of differences with the standard atlas 

(Darmawan et al. 2012). 
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In this research, we will fundamentally analyse a potential method that can be 

proven to relate gender to bone morphology measurement. In order to develop the 

possibility of utilizing current computational intelligence classification method of 

identification of nonhuman, the measurement of bone morphology from the femur 

and humerus (i.e. Long bone) of monkey will be used to develop an algorithm for the 

detection method. Although computational intelligence classification method has a 

great potential in gender classification, it does not have the ability to recognize the 

optimum feature as input. Therefore, the feature selection process is a way to select 

the most informative and potential features. The major issue in this research is to 

achieve positive identification of skeletal remains. In this research we will analyze 

whether there is any significant improvement in term of accurate classification by 

using feature selection for classification of gender in forensic anthropology post-

mortem process. Addition, computational intelligence classifier (i.e. SVM and ANN) 

failed to describe data feature differences and similarities between optimum features 

and original features (Jantan, 2009). Jantan, 2009 believes that the decision tree 

method has ability to predict the value of a target class based on several input 

features by learning simple decision IF THEN rules inferred from the data features. 

Thus, the data features will interpret in simple IF THEN rule's pattern to describe 

data feature differences and similarities between optimum features and original 

features using decision tree method. The statistical analysis that can be used to see 

the strength of the relationship between gender and trabecular bone morphology of 

the monkey’s population is regression analysis, T test and ANOVA as motivated by 

Cerroni (2000). In continuing Medical Forensic (CMF), the new classifier algorithm 

will be beneficial to authorities to help in infectious disease cases involved corpse.  
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1.3 Problem Statement 

Traditionally, classification of the gender of the nonhuman in forensic 

anthropology context fully depends on comparative skeletal anatomy via atlas used as 

a reference material to match the bone. So, the traditional methods (i.e. Comparative 

skeletal anatomy) do not have the ability to use in gender classification in term of 

achieving a positive identification which is required accurate classification for 

different population and other features that probably have a great potential and 

informative feature. Hence, the feature selection process is a way to select the most 

significant and optimum features. Addition, the data features interpretation of the 

simple rule pattern which are proven for differences and similarities between the 

optimum features and original features. The best classification model for gender 

should be one of that has a high classification accuracy by using optimum features. 

Therefore the problem statement of this research is, 

 “A hybrid (SVM or ANN) classification model by using PSO feature 

selection that can identify optimum features that enable to influence the classifier 

performance in order to get higher accuracy classification rates and find 

differences and similarity between the optimum features and original features in 

simple decision tree symbol with IF THEN rule’s pattern” 
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1.4 Research Question 

There are four fundamental questions that need to be answered through this 

research: 

i. Which one between SVM and ANN will produce the highest  

           gender classification accuracy? 

 

ii. What are the most significant trabecular bone morphology features  

           which can help produce the highest gender classification accuracy? 

 

iii. How to improve the classification accuracy rate of gender by using a 

           PSO feature selection for classifier model? 

 

iv. How to concisely describe the data feature differences and similarities 

between the  optimum and original features in gender classification? 

1.5 Objectives of the Research 

The main objectives of the research are: 

i. To develop SVM and ANN model and to select as a classifier that 

hybrid with feature selection method for gender classification. 

ii. To determine the significant features in the trabecular bone 

morphology dataset that enhance the gender classification 

performance. 

iii. To develop a hybrid gender classification model based on the 

significant trabecular bone morphology features. 
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iv. To describe the data feature differences and similarities between  

optimum features and original features in gender classification in a 

simple rules pattern by using decision tree symbol method. 

1.6 Scopes of the Research 

The scopes of this research area: 

i. The research only focuses on trabecular bone morphology of the 

monkey as a function of gender classification.  

ii. Ryan and Shaw (2013) sample datasets will be used in the gender 

classification model. 

iii. The classifier used in this research is a Support Vector Machine 

(SVM) and Artificial Neural Network (ANN). 

1.7 Summary 

This chapter has been clearly defined in relating to the idea of research 

implementation. The overview, problem background, research question, objectives 

and scopes of the research have been identified. In Continuing Medical Forensic 

(CMF), the simulation model can assist in the identification of deceased nonhuman  

remains are decomposed, extreme fragmentation, unrecognizable, burned or 

otherwise mutilated body. 
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This research is organized into six chapters. The outline is as follows: 

 

 

Chapter 1: This chapter outlines a research overview, problem background, 

problem statement, research question, objectives and scopes of this research. 

 

 

Chapter 2: This chapter presents tough theoretical and a literature review of 

methods and gender classification in forensic anthropology such as a physical 

maturity comparison, dentition based comparison, trabecular bone morphology based 

comparison and computational based comparison method model. Furthermore, 

analysis is done with the tools to find out the strength and weakness of each tool. 

 

 

Chapter 3: This chapter describes the methodology of this research. The 

theoretical framework of the proposed method is shown in this chapter. The 

components in the proposed method are elaborated in this chapter. 

 

 

Chapter 4: This chapter describes SVM classifier and ANN classifier 

implementation details of this model and compared. 

 

 

Chapter 5: This chapter presents the development proposed hybrid feature 

selection in classifier model for gender classification in forensic anthropology on 

trabecular bone morphology dataset. 

 

Chapter 6: The result and finding from the research are detailed in this 

chapter. Apart from that, chapter 6 focused on evaluating the performance of 

classification method with accuracy, sensitivity and specificity percentage.  

 

 

Chapter 7: Lastly, Chapter 7 summarizes and discusses the overall findings 

in this research research and recommendations for further research. 
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