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ABSTRACT 

 

 

 

 

Laser-induced breakdown spectroscopy (LIBS) is an analytical technique used 

for the identification of elements by analysing the emission line spectrum from 

samples.  In this research, the possibility of classification of raw meat species based on 

emission spectra by using laser induced breakdown spectroscopy (LIBS) and 

chemometric techniques such as principal component analysis (PCA) and support 

vector machine (SVM) were implemented.  An experimental setup was developed 

using Q-Switched Nd:YAG laser operating at 1064nm (208mJ  per pulse) and a 

spectrometer connected to a fiber optic in order to collect the atomic emission.  

Different types of muscle tissues (beef, mutton, pork, fish, and chicken) were prepared 

as samples for the ablation process and the procedure for pork sample followed a 

specific guideline.  The LIBS experiment was able to detect the elements in the meat 

samples such as magnesium, iron, calcium, sodium, carbon, nitrogen, and hydrogen. 

The raw spectra data were preprocessed and grouped into six datasets for PCA and 

SVM analysis.  Standard ratio combination dataset showed the best result of PCA with 

variance of 99.8% which were later used for SVM classification. In SVM 

classification, the maximum accuracy of 89.33% was achieved by using a splitting 

ratio of 70:30 and linear kernel. The results obtained suggest a successful 

classification on the target tissues with high accuracy. This is valuable for an 

automatic discrimination in food analysis. 
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ABSTRAK 

 

 

 

 

Spektroskopi runtuhan aruhan laser (LIBS) adalah teknik analisis yang 

digunakan untuk mengenalpasti unsur-unsur dengan menganalisis spekrum garis 

pancaran dari sampel.  Dalam kajian ini, keupayaan untuk mengkelaskan pelbagai 

jenis daging mentah berdasarkan spektrum pancaran dengan menggunakan teknik 

spektroskopi runtuhan aruhan laser (LIBS) dan teknik kemometrik seperti analisis 

komponen utama (PCA) dan mesin vektor sokongan (SVM) telah dilaksanakan. 

Peralatan eksperimen telah dibangunkan dengan menggunakan laser Nd:YAG 

bersuis-Q beroperasi pada 1064 nm (208 mJ per denyut) dan spektrometer yang 

disambung dengan gentian optik untuk mengumpulkan pancaran dari atom.  

Pelbagai jenis tisu otot (lembu, kambing, babi, ikan, dan ayam) telah diambil sebagai 

sampel untuk proses ablasi ini dan prosedur untuk daging babi mengikuti garis 

panduan yang khusus.  Eksperimen ini dapat mengesan unsur-unsur dalam sampel 

daging seperti magnesium, besi, kalsium, sodium, karbon, nitrogen dan hidrogen.  

Data spektrum mentah telah diproses dan dibentuk menjadi enam dataset untuk 

analisis PCA dan SVM.  Dataset nisbah kombinasi piawai menunjukkan hasil yang 

terbaik daripada analisis PCA dengan variasi 99.8% yang kemudiannya digunakan 

untuk pengkelasan SVM.  Dalam pengkelasan SVM, ketepatan maksimum 89.33% 

telah tercapai dengan menggunakan kadar pecahan 70:30 dan kernel linear 

Keputusan yang diperoleh menunjukkan keupayaan mengkelaskan tisu sasaran 

dengan kejituan yang tinggi.  Hasil kajian ini sangat bernilai untuk pengasingan 

secara automatik dalam menganalisis makanan.  
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1 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 In early 2013, the horsemeat burger scandal is ongoing in Europe especially in 

Irish and British supermarkets when frozen beef burgers has been discovered contained 

horse DNA.  Moreover, an analysis done by The Food Safety Authority of Ireland 

(FSAI)  that pig DNA were found in 23 samples of beef burgers which are prohibited for 

Muslim communities.  Thus, testing of food products to assure consumer protection 

against fraudulent practices in the food industry is of a greater interest.  

 

 

  Food adulteration with non-halal ingredients is becoming a common 

phenomenon in food industries.  Adulteration occurs when high cost raw material is 

swapped with cheaper materials for reducing their production cost.  Such cheap 

ingredients can jeopardize health of the consumers who may be allergic to specific foods 

and emotionally disturbed due to religious reasons.  For this purpose, different analysis 

based on certain identified biomarkers such as oil/fat-based, protein-based, DNA-based 

and metabolite-based were proposed for halal products authentication (Che Man and 

Mustafa, 2010). 
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After all, laser induced breakdown spectroscopy (LIBS) is one of several 

analytical techniques that can be deployed in authentication of halal products.  Over the 

past decade, intense scientific activity has been study of LIBS in identification of 

elements by analyzing the emission line spectrum from samples.  The reason is its 

potential advantages like simple experimental setup, very little or no sample preparation 

and universal type of samples. 

 

 

Combination of LIBS with chemometric methods provides a powerful approach 

in pattern recognition and classification.  Most recently, the use of LIBS spectra in 

combination of support vector machine (SVM) has applied successfully in 

discrimination of rocks (Zhu et al., 2014).  Moreover, a successful classification using 

SVM had done on different types of proteins from LIBS spectra has potential in 

detection ovarian cancer (Vance et al., 2010).  This proves the ability of LIBS to 

distinguish between the biological species with similar compositions on the basis of their 

spectral signatures.   

 

 

 

 

1.2 Research Problem 

 

 

Food adulteration especially in meat products is becoming a common 

phenomenon in food industries.  For this purpose, scientists come up with some various 

approaches.  The most commonly approach is to use some analytical methods derived 

from the measurements of the physical or chemical characteristics of specific 

components present in the food products.  However, the currently available analytical 

techniques require sample preparation especially in chemical form.  This type of 

chemical preparation is a time-consuming and sometimes labor-intensive process.  

 

 



3 

 

Combination of LIBS and chemometrics analysis has a great potential in 

identification and classification of biological samples for many application in recent 

years.  Kanawade et al. (2013) found that application of LIBS with multivariate analysis 

has successfully differentiated four different structures of tissue types (skin, muscle, fat, 

and nerve).  Instead of using multivariate analysis, machine learning such as Support 

Vector Machine (SVM) is proposed to increase the accuracy of LIBS in qualitative 

analysis.  Hence, this study will try to discriminate between five different type of meats 

(beef, chicken, lamb, pork, and fish) which including a non-halal meat by using LIBS 

with PCA and SVM application.  

 

 

 

 

1.3 Objectives of Study 

 

 

 To obtain spectral lines from various types of meats using LIBS.  

 To identify the elements present in all meat samples. 

 To establish performance of PCA in dimensional reduction and classification of 

different type of datasets 

 To differentiate between different types of meats from the best separation dataset 

using SVM. 

 

 

 

 

1.4 Scope of Study 

 

 

Nd:YAG laser was used to induced breakdown and generate plasma formation 

onto the meat species.  The plasma emission spectrum will provide information and 

hence, the factors affecting the plasma such as laser characteristics, pulse duration of 

laser and time-window of observation has to be controlled.  The focus study dealing with 

the multiple spectra per sample and spectra training via PCA and SVM.  The wavelength 
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range of 200 nm to 700 nm which is exactly the range wavelength detectable by the 

spectrometer was used. 

 

 

 

 

1.5 Significance of Study 

 

 

The outcome of this study is important in improving the halal authentication 

techniques.  Generally, there been efforts made to develop new application of existing 

analytical techniques for detection and quantification halal and non-halal of food 

systems.  However, the methods still have their limitations.  Thus, combination between 

LIBS and SVM will provide an automatic discrimination between halal and non-halal 

food.  
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