STRUCTURAL AND LUMINESCENCE PROPERTIES OF ANTIMONY, LEAD, BISMUTH ZINC BOROPHOSPHATE GLASSES DOPED IRON AND TITANIUM

PANG XIE GUAN

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > JANUARY 2015

To my beloved family and friends

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Professor Dr. Rosli Bin Hussin for his guidance and encouragement. Besides, I also would like to show my appreciation towards my co-supervisor, Dr. Wan Nurulhuda Wan Shamsuri for her guidance and thank to all lecturers for sharing their knowledge.

I would like to extend my appreciation to laboratory assistant for their assistance in Material Laboratory, Faculty of Science. Also, I want to thank the postgraduate fellow seniors and friends for their helping and support.

Not forgot to thank my family for their encouragement and support. Finally, my appreciation to Universiti Teknologi Malaysia and Ministry of Education for their laboratory facilities and Fundamental Research Grant Scheme QJ.130000.2526.03H97 financial support.

ABSTRACT

Three series of antimony (Sb), lead (Pb) and bismuth (Bi) zinc borophosphate glass were prepared at composition $xSb_2O_3-(50-x)P_2O_5-20ZnO-30B_2O_3:2Fe_2O_3$, $xPbO-(50-x)ZnO-10B_2O_3-40P_2O_5$ and $xB_2O_3-(60-x)P_2O_5-10Bi_2O_3-30ZnO$ with $0 \le x$ \leq 50 mol%. All glasses were successfully fabricated by melt quenching method. The X-Ray Diffraction (XRD) confirmed the amorphous nature of glass samples. The Energy Dispersive X-Ray (EDX) was used for elemental analysis in the sample. The EDX spectrum showed the existence of antimony, lead, bismuth and zinc in glass samples. The structural vibrations were measured by the Fourier Transform Infrared (FTIR) spectroscopy. The analysis indicated the borophosphate glass system is dominated by the linkages of P-O, B-O-B, P-O-P, while the recorded stretching bond by the linkages of B-O, PO₂, BO₃ and BO₄. The glasses were doped by the iron (Fe) and titanium (Ti) for luminescence study. The Photoluminescence (PL) spectra showed the Fe emission at 402 nm, 464 nm and 540 nm are not affected by composition variation in antimony zinc borophosphate system. The Fe showed the same emission as the Fe was doped in lead zinc borophosphate glass. However, the 540 nm emission diminished when Fe was doped in bismuth zinc borophosphate glass. The Ultraviolet-Visible (UV-Vis) absorption spectra showed that the Fe absorbed at wavelength 277 nm to 430 nm as it doped to antimony zinc borophosphate system. As the Sb content increased up to 20 mol%, the absorption range extended to 462 nm. Fe doped lead zinc borophosphate glass was only absorbed at wavelength 200 nm to 385 nm. This range is reduced to 350 nm when Fe doped to bismuth zinc borophosphate glass. Ti doped lead zinc borophosphate glass absorbed at 200 nm to 335 nm while only absorbed at 200 nm to 314 nm when Ti was doped to bismuth zinc borophosphate glass.

ABSTRAK

Tiga siri kaca antimoni (Sb), plumbum (Pb) dan bismut (Bi) zink borofosfat telah disediakan dalam komposisi xSb₂O₃-(50-x)P₂O₅-20ZnO-30B₂O₃:2Fe₂O₃, xPbO-(50-x)ZnO-10B₂O₃-40P₂O₅ dan xB₂O₃-(60-x)P₂O₅-10Bi₂O₃-30ZnO dengan $0 \le x \le 50$ mol%. Semua kaca telah berjaya dihasilkan dengan menggunakan teknik sepuh lindap. Belauan Sinar-X (XRD) mengesahkan sifat amorfus sampel kaca. Serakan Tenaga Sinar-X (EDX) telah digunakan untuk menganalisa unsur dalam sampel. Spektrum EDX menunjukkan kewujudan antimoni, plumbum, bismut dan zink dalam sampel kaca. Getaran struktur telah diukurkan dengan Inframerah Transformasi Fourier (FT-IR). Analisa menunjukkan sistem kaca borofosfat didominasi oleh rangkaian P-O, B-O-B, P-O-P manakala peragangan ikatan merekodkan raingkaian B-O, PO₂, BO₃ and BO₄. Sampel kaca telah didopkan dengan besi (Fe) dan titanium (Ti) untuk kajian luminasi. Spektrum fotoluminasi menunjukkan pancaran Fe pada 402 nm, 464 nm dan 540 nm tidak terubah terhadap variasi komposisi kaca antimoni zinc borofosfat. Fe juga menunjukkan pancaran yang sama walaupun didopkan dalam kaca plumbum zink borofosfat. Namun, pancaran pada 540 nm telah lenyap semasa Fe didopkan dalam kaca bismut zink borofosfat. Spektrum penyerapan lembayung (UV-Vis) menunjukkan Fe menyerapkan panjang gelombang dari 277 nm hingga 430 nm bila ia didopkan kepada kaca antimoni zink borofosfat. Apabila kandungan Sb meningkat sehingga 20 mol%, julat penyerapan telah meningkat sehingga 462 nm. Kaca Fe mengedop plumbum zink borofosfat menyerap panjang gelombang dari 200 nm sehingga 385 nm. Julat ini telah menyusut sehingga 350 nm apabila Fe mengedop dalam kaca bismut zink borofosfat. Kaca Ti mengedop plumbum zink borofosfat menyerap pada panjang gelombang 200 nm hingga 335 nm manakala ia hanya menyerap pada 200 nm hingga 335 nm apabila Ti mengedopkan pada kaca bismut zink borofosfat.

TABLE OF CONTENTS

CHAPTER	
---------	--

1

TITLE

PAGE

7

7

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF APPENDICES	xviii
INTRODUCTION	1
1.0 Introduction	1

1.1	Study Background	1
1.2	Statement of Problem	5

1.3	Objectives of Study	5
	5	

1.4	Scope of Study	6
1.5	Significance of Study	6

2 LITERATURE REVIEWS 2.0 Introduction 2.1 Porete Class

2.1	Borate Glass	7
2.2	Phosphate Glass	9
2.3	Borophosphate Glass	11

	2.4	Heavy	Heavy Metal Modified Glass		
	2.5	X-Ray	Diffraction (XRD) Spectroscopy	16	
	2.6	Energ	y Dispersive X-ray (EDX) Spectroscopy	18	
	2.7	Fourie	er Transform Infrared (FT-IR) Spectroscopy	20	
	2.8	Photo	luminescence (PL) Spectroscopy	21	
	2.9	Ultrav	iolet-Visible (UV-Vis) Spectroscopy	23	
-					
3	MET	HODO	LOGY	25	
	3.0	Introd	uction	25	
	3.1	Sampl	e Preparation	25	
	3.2	Collec	ting and Analyzing Data	27	
4	RES	ULT AN	D DISCUSSION	29	
	4.0	Introd	uction	29	
	4.1	XRD .	Analysis	29	
	4.2	Eleme	ental Analysis	31	
	4.3	IR An	alysis		
		4.3.1	Antimony Zinc Borophosphate Glass Series	32	
		4.3.2	Lead Zinc Borophosphate Glass Series	34	
		4.3.3	Bismuth Zinc Borophosphate Glass Series	35	
	4.4	PL Ar	alysis		
		4.4.1	Doped Antimony Zinc Borophosphate Glass	38	
		4.4.2	Doped Lead Zinc Borophosphate Glass	40	
		4.4.3	Doped Bismuth Zinc Borophosphate Glass	41	
	4.5	UV-V	is Analysis		
		4.5.1	Antimony Zinc Borophosphate Glass	43	
		4.5.2	Lead Zinc Borophosphate Glass	44	
		4.5.3	Bismuth Zinc Borophosphate Glass	45	
5	CON	CLUSI	ON	47	
	5.0	Concl	usion	47	
	5.1	Recon	nmendation of Further Study	48	

REFERENCES	49
Appendices A-D	55-61
Publications	62

LIST OF TALBES

TABLE NO.	TITLE	PAGE
3.1	Antimony zinc borophosphate glasses at composition	
	xSb ₂ O ₃ -(50-x)P ₂ O ₅ -20ZnO-30B ₂ O ₃ :2Fe ₂ O ₃	
	$(0 \le x \le 50 \text{ mol}\%)$	26
3.2	Lead zinc borophosphate glasses at composition	
	x PbO-(50- x)ZnO-10B ₂ O ₃ -40P ₂ O ₅ (0 $\le x \le 50$ mol%)	27
3.3	Bismuth zinc borophosphate glasses at composition	
	$xB_2O_3-(60-x)P_2O_5-10Bi_2O_3-30ZnO (10 \le x \le 50 \text{ mol}\%)$	27
4.1	Bonding vibration of x Sb ₂ O ₃ -(50- x)P ₂ O ₅ -20ZnO	
	$-30B_2O_3:2Fe_2O_3$	33
4.2	Bonding vibration of <i>x</i> PbO-(50- <i>x</i>)ZnO-10B ₂ O ₃ -40P ₂ O ₅	35
4.3	Bonding vibration of xB_2O_3 -(60- x)P ₂ O ₅ -10Bi ₂ O ₃ -30ZnO	36

LIST OF FIGURES

FIGURE NO. TITLE		PAGE
2.1	Two parallel incident and reflected beam at angle θ	17
2.2	Bragg-Brentano geometry sketching	18
2.3	Flow of EDX data from detection to display step	19
2.4	Interferometer setup in FT-IR Spectroscopy	21
2.5	Mechanism of photoluminescence	21
2.6	Setup of PL Spectroscopy	22
2.7	Setup of UV-Vis Spectroscopy	24
3.1	Glass sample fabricated by melt quenching method	26
4.1	XRD spectrum of 20Sb ₂ O ₃ -30P ₂ O ₅ -20ZnO-30B ₂ O ₃	30
4.2	XRD spectrum of 20PbO-30ZnO-10B ₂ O ₃ -40P ₂ O ₅	30
4.3	XRD spectrum of 20B ₂ O ₃ -40P ₂ O ₅ -10Bi ₂ O ₃ -30ZnO	30
4.4	EDX spectrum of 20Sb ₂ O ₃ -30P ₂ O ₅ -20ZnO-30B ₂ O ₃	31
4.5	EDX spectrum of 20PbO-30ZnO-10B ₂ O ₃ -40P ₂ O ₅	31
4.6	EDX spectrum of 20B ₂ O ₃ -40P ₂ O ₅ -10Bi ₂ O ₃ -30ZnO	31
4.7	FT-IR spectra of x Sb ₂ O ₃ -(50- x)P ₂ O ₅ -20ZnO	
	-30B ₂ O ₃ :2Fe ₂ O ₃	33

4.8	FT-IR spectra of <i>x</i> PbO-(50- <i>x</i>)ZnO-10B ₂ O ₃ -40P ₂ O ₅	34
4.9	FT-IR spectra of xB_2O_3 -(60- x)P ₂ O ₅ -10Bi ₂ O ₃ -30ZnO	36
4.10	Excitation profile of x Sb ₂ O ₃ -(50- x)P ₂ O ₅ -20ZnO -30B ₂ O ₃ :2Fe ₂ O ₃ glass	39
4.11	Emission profile of x Sb ₂ O ₃ -(50- x)P ₂ O ₅ -20ZnO -30B ₂ O ₃ :2Fe ₂ O ₃ glass	39
4.12	(a) Excitation profile and (b) emission profile of Fe ³⁺ doped 20PbO-30ZnO-10B ₂ O ₃ -40P ₂ O ₅ glass	40
4.13	(a) Excitation profile and (b) emission profile of Ti^{2+} doped 20PbO-30ZnO-10B ₂ O ₃ -40P ₂ O ₅ glass	40
4.14	(a) Excitation profile and (b) emission profile of Fe ³⁺ doped 10Bi ₂ O ₃ -30ZnO-20B ₂ O ₃ -40P ₂ O ₅ glass	41
4.15	(a) Excitation profile and (b) emission profile of Ti ²⁺ doped 10Bi ₂ O ₃ -30ZnO-20B ₂ O ₃ -40P ₂ O ₅ glass	41
4.16	Energy level diagram of Fe ³⁺	42
4.17	Energy level diagram of Ti ²⁺	42
4.18	UV-Vis absorption spectra of x Sb ₂ O ₃ -(50- x)P ₂ O ₅ -20ZnO-30B ₂ O ₃ :2Fe ₂ O ₃ glass	44
4.19	UV-Vis absorption spectra of Fe ³⁺ and Ti ²⁺ doped 20PbO-30ZnO-10B ₂ O ₃ -40P ₂ O ₅ glass	45
4.20	UV-Vis absorption spectra of Fe ³⁺ and Ti ²⁺ doped 10Bi ₂ O ₃ -30ZnO-20B ₂ O ₃ -40P ₂ O ₅ glass	45

LIST OF SYMBOLS

$^{\circ}$	-	Degree celsius
d	-	Spacing between parallel plannes
θ	-	Angle
λ	-	Wavelength
e	-	Electron
I _t	-	Intensity of light pass through sample
I ₀	-	Intensity of light source
~	-	Around
%	-	Percent
ν_{s}	-	Symmetric stretching
g	-	Gram
cm	-	Centimeter
nm	_	Nanometer

LIST OF ABBREVIATIONS

- Energy Dispersive X-ray EDX -FT-IR Fourier Transform Infrared _ IR Infrared -NMR Nuclear Magnetic Resonance -PL Photoluminescence _ SEM Scanning electron microscope -UV Ultraviolet -Vis Visible _ X-ray Diffraction XRD -Aluminium oxide Al_2O_3 - B_2O_3 Boron trioxide (Borate) -Bi₂O₃ -Bismuth (III) oxide Fe₂O₃ Iron (III) oxide - Gd_2O_3 Gadolinium (III) oxide _ Boric acid H_3BO_3 -
- H_3PO_4 Phosphoric acid

KBr	-	Potassium bromide
MnO ₂	-	Manganese dioxide
Nd_2O_3	-	Neodymium (III) oxide
P_2O_5	-	Phosphorus pentaoxide (Phosphate)
Pb ₃ O ₄	-	Lead (IV) oxide
Sb ₂ O ₃	-	Antimony trioxide
SiO ₂	-	Silicon dioxide
TiO ₂	-	Titanium dioxide
Y ₂ O ₃	-	Yttrium oxide
В	-	Boron
Ba	-	Barium
Bi	-	Bismuth
Ca	-	Calcium
Cu	-	Copper
Cr	-	Chromium
Cs	-	Cesium
Dy	-	Dysprosium
Eu	-	Europium
Fe	-	Ferum/Iron
Gd	-	Gadolinium

Н	-	Hydrogen
K	-	Potassium
La	-	Lanthanum
Li	-	Lithium
Mg	-	Magnesium
Mn	-	Manganese
Na	-	Sodium
0	-	Oxide
Р	-	Phosphorus
Pb	-	Lead
Rb	-	Rubidium
Si	-	Silicon
Sm	-	Samarium
Sn	-	Tin
Ti	-	Titanium
V	-	Vanadium
Zn	-	Zinc
Q ³	-	Tetrahedral (vitreous v-P ₂ O ₅)
Q^2	-	Metaphosphate
Q^1	-	Pyrophosphate

- Q⁰ Orthophosphate
- NBO Non bridging oxygen
- MCA Multi channel analyzer

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Glass Composition Calculation	55	
В	Calculation for Orbital's Transition	57	
С	Energy Level of Fe ³⁺	58	
D	Energy Level of Ti ²⁺	60	

Chapter 1

Introduction

1.0 Introduction

This chapter is about the study background, problem statement, objective of study, scope of study and significance of study. We'll discuss on what had been done by other researchers and the problem in their studies. Besides, we will point out why we want to carry out this study.

1.1 Study Background

Glass is defined as an inorganic product of fusion which has been cooled into rigid condition without crystallization. By this definition, a glass is a non-crystalline materials which can be obtained by various methods such as melt quenching, chemical vapour deposition, sol-gel process, etc (Yamane *et al*, 2000). Glass was also known as amorphous solid. It can be formed by 'glass forming substances' such as SiO₂, B₂O₃, P₂O₅ with 'modifier' metal oxide (Scagliotti *et al*, 1986). The addition of modifier into glass network could alter glass properties and durability towards atmosphere. In terms of atomic arrangement, glass has random atomic arrangement unlike crystal with well atomic arrangement. Glass can be used for building and car's windows, containers, decoration and other else. In recent technology application, it has being used for television display panel, lighting, optical lenses, fiber optic and so on.

Borate, B_2O_3 was a well known host in glass research area. Borate glass consists of trigonal BO₃ and tetrahedral BO₄ structure units. Borate glass can be easily melted, having smaller mass compare to other glass network former, chemically durable and thermally stable. Besides, it has high transparency which suitable for optical materials. Moreover, it acted as a good host for transition metal ions (El Batal et al, 2008). However, borate glass has limited efficiency for infrared and upconversion visible emission due to its high phonon energy. There was also a special phenomena occurring in borate glass, called 'boron anomaly', where BO₃ transformed to BO₄ units. The researcher explained it as appearance of BO₄ structure due to addition of alkali oxide up to 20 mol% into borate system (Khalifa et al, 1991). Khalifa et al implemented Fourier Transform Infrared (FT-IR) to study structural units of sodium, lithium, potassium borate glass. From the FT-IR result, they interpret peaks at 1350 cm⁻¹ as BO₃ transformation into BO₄ units. Their study also revealed the increasing alkali oxide content slightly shifted the absorption band of FT-IR spectra to longer wavelength due to the decreases of ligand field strength. Recent year, researchers started to use heavy metal oxide to modify borate glass. Heavy metal oxide offered a wide range of glass formation composition. In bismuth borate glass, as Bi₂O₃ content increased, the glass molar volume increased while the glass transition temperature decreased (Bajaj et al, 2009). Besides, the heavy metal borate glass is able to shield the gamma radiation. Interaction of gamma ray upon bismuth borate glass had been studied by Ultraviolet Visible (UV-Vis) and FT-IR (El Batal et al, 2007). Their results showed no obvious change for UV-Vis spectra upon gamma radiation. FT-IR spectra interpretation suggested introduction of Bi₂O₃ may transform BO₃ to BO₄. A recent study on lead borate glass with gamma radiation interaction was done as well. This system measured by UV-Vis and FT-IR (El Batal, 2012). Both of the measurement results showed no obvious changes for irradiated samples compare to un-radiated samples. Furthermore, FT-IR displayed the presence of BO₃, BO₄ and Pb-O units. So, heavy metal borate glass is able to act as gamma ray shielding and this ability was confirmed by the researchers.

Another glass network former was phosphate, P_2O_5 . Phosphate glass was analyzed as basic structure PO_4 tetrahedral connected through bridging oxygen. Generally, it was described as Q^n terminology with n as number of bridging oxygen

per tetrahedron. This structure categorized as Q^3 tetrahedral (vitreous v-P₂O₅), Q^2 (metaphosphate), Q^1 (pyrophosphate) and Q^0 (orthophosphate) (Hussin *et al*, 2009). Phosphate glass has low viscosity, high refractive index, high thermal expansion coefficient and UV transparency (Majjane et al, 2014). However, the exploration on phosphate glass become slow and limit due to its poor chemical durability. Recently, calcium phosphate glass applied as bones and dental implants due its biocompatible properties. It is also used as solid state laser and glass-to-metal seal (Majjane et al, 2014; Fu and Mauro, 2013). The introduction of heavy metal oxide such as PbO, Al₂O₃ into phosphate glass system increases the glass resistant toward moisture, higher chemical durability and enhance the mechanical strength (Rao *et al*, 2012). A study on heavy metal oxide Sb₂O₃ replaced ZnO in ZnO-Sb₂O₃-P₂O₅ glass system concluded that the Sb_2O_3 improve the glass chemical durability as phosphate chain was replaced by P-O-Sb bonds (Zhang et al, 2008). Another study measured lead phosphate glass by X-ray Diffraction (XRD) and FT-IR. XRD had confirmed that the glass system was amorphous. In FT-IR measurement, the lead phosphate glass exhibited the Pb-O stretching vibration, deformation modes of the P-O glass network, stretching modes of non-bridging P-O bonds, asymmetric stretching vibration of PO²⁻, asymmetric and symmetric stretching mode of the P-O-P bonds (Pisarska et al, 2011). Ternary zinc bismuth phosphate was also studied. FT-IR revealed almost the same phosphate bonding vibration as in lead bismuth system. The author suggested bismuth had depolymerised phosphate chain with formation of P-O-Bi unit and the incorporation of Bi as BiO₆ octahedral in the glass matrix. Other features were the glass density and glass transition temperature increase with the increase of Bi₂O₃ content. (Im et al, 2010). The introduction of heavy metal oxide into phosphate glass improved the glass moisture resistant and enriched information in phosphate glass research field.

Recently, researchers started to combine both borate and phosphate to make a new glass system, called borophosphate glass. Borophosphate glass provides better chemical durability compare to pure borate and pure phosphate glass system while maintaining the low melting point. It was expected to have distinctive properties from pure B_2O_3 and pure P_2O_5 network. As result, the structural of borophosphate glass is

transparent from ultraviolet to near infrared region. Moreover, borophosphate provided the other application as solder glasses, fast ionic conductors and recently shown up for biomedical application (Abdelghany *et al*, 2012). There was some research study on borophosphate glass modified with heavy metal oxide. The lead borophosphate glass was studied using Raman Spectroscopy (Koudelka *et al*, 2003). From the result of Raman spectroscopy, lead borophosphate glass demonstrated the stretching vibrations of O-P-O bonds, symmetric stretching frequency of v_s(PO₂), vibrations of P-O bonds and stretching vibrations of oxygen atoms in P-O-P units. Tin (Sn) borophosphate glass was also investigated by Raman Spectroscopy. It has reported the stretching vibration of P-O, symmetric stretching mode of bridging oxygens which link the phosphate tetrahedral and bonding of Sn-Borate (Lim *et al*, 2010).

The luminescence is a phenomenon where the substance emits light under the influence of certain radiation. It might be cause by chemical reaction, electrical energy, subatomic motion and can be measured by Photoluminescence (PL) Spectroscopy. To make a luminous substance, a doping process is needed. Doping is a process where small amount of impurity was added into substance to alter its properties. This impurity is also known as dopant or so called activator. The rare earth elements are well known dopant for the glass research due to its visible light emission characteristic. Europium (Eu) is a frequent used dopant as it is emitted at red colour region. In number of glass research, Eu has doped the zinc borate glass, aluminium phosphate glass and zinc borophosphate glass. The studies reveal that Eu is consistently emitted at wavelength ~592 nm and ~613 nm although the host network were different (Elisa et al, 2013; Ivankov et al, 2006; Lian et al, 2007). Dysprosium (Dy) is also frequently use for doping process. Dy doped the lead borate glass, lead phosphate glass and also sodium lead borophosphate glass. As the result, Dy emitted at ~480 nm and ~573 nm even with different host network (Kiran and Kumar, 2013; Pisarska, 2009; Pisarski et al, 2014). On the other hand, the transition metal element also had been used as dopant. Among all, manganese (Mn) became a popular dopant for glass luminescence research. Manganese doped borogermanate glass possessed a strong peak at 623 nm (Sun et al, 2013). However, as Mn doped the sodium lead borophosphate glass, it does emitted at 560 nm (Kiran et al, 2011a). In calcium zinc borophosphate glass, researcher varies Mn concentration from 2-10 mol%. It does shown the emission band shifted from 582 nm to 650 nm with the increase of Mn concentration (Wan *et al*, 2014).

In this study, we will investigate the zinc borophosphate glass modified with 3 different heavy metal elements: antimony, bismuth and lead. The glass sample from these 3 types of glass system will be doped with transition metal iron (Fe) and titanium (Ti).

1.2 Statement of Problem

In this study, we will investigate antimony, bismuth, lead modified zinc borophosphate glass. Although there were some structural studies done on antimony zinc borophosphate glass and lead zinc borophosphate glass, but these studies focused to Raman and Nuclear Magnetic Resonance (NMR) Spectroscopy measurements only. Furthermore, there was no investigation reported on bismuth zinc borophosphate glass. To enrich the structural information on heavy metal oxide modified zinc borophopshate glass, we will study the glass system by using XRD, FT-IR and Energy Dispersive X-Ray (EDX) Spectroscopy. Besides, there was no study on luminescence properties of these glass systems. We will dope the glasses with transition metal ions and examine it by PL and UV-Vis Spectroscopy.

1.3 Objectives of Study

- To determine structural properties of antimony zinc borophosphate glasses on variation of antimony and phosphate content
- •
- To determine structural properties of lead zinc borophospahte glasses on variation of lead and zinc content

- To determine structural properties of bismuth zinc borophosphate glasses on variation of borate and phosphate content
- To determine the luminescence properties of antimony, bismuth, lead modified zinc borophosphate glass doped with iron and titanium.

1.4 Scope of Study

The structural properties of glass system will be measured by XRD, FT-IR and EDX Spectroscopy. XRD is used to examine the amorphous nature of glass to confirm the glass samples were not crystalline. For FT-IR study, it is used to reveal structure bonding between borate and phosphate unit of glass. On the other hand, EDX Spectroscopy is responsible to detect the existence of modifier element in the sample and to ensure it does not sublimated in the sample's fabrication process.

Meanwhile, luminescence properties of glass system are characterized by PL and UV-Vis Spectroscopy. By PL spectroscopy, the excitation and emission profile of dopant will be discovered to study its luminescence properties. Finally, UV-Vis spectroscopy will be recorded the absorption range of dopant in each sample.

1.5 Significance of Study

This study is important to provide more information on glass research field especially borophosphate glass research. The structural information on heavy metal oxide zinc borophosphate glass will be improved. Besides, the luminescence properties of this glass system will be revealed.

REFERENCES

- Abdelghany, A. M., ElBatal, F. H., Azooz, M. A., Ouis, M. A., ElBatal, H. A. (2012).
 Optical and Infrared Absorption Spectra of 3d Transition Metal Ions-Doped
 Sodium Borophosphate Glasses and Effect of Gamma Irradiation.
 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 98, 148-155.
- Abd El-Moneim, A., Youssof, I. M., Abd El-Latif, L. (2006). Structural Role of RO and Al₂O₃ in Borate Glasses Using an Ultrasonic Technique. *Acta Materialia*. 54, 3811-3819.
- Alajerami, Y. S. M., Hashim, S., Ghoshal, S. K., Ramli, A. T., Saleh, M. A., Ibrahim, Z., Kadni, T., Bradley, D. A. (2013). Luminescence Characteristics of Li₂CO₃-K₂CO₃-H₃BO₃ Glasses Co-doped WithTiO₂/MgO. *Applied Radiation and Isotopes*. 82, 12-19.
- Ali, A. A. (2009) Optical Properties of Sm³⁺-doped CaF₂ Bismuth Borate Glasses. *Journal of Luminescence*. 129, 1314-1319.
- Babu, Y. N. C. R, Sree Ram Naik, P., Vijaya Kumar, K., Rajesh Kumar, N., Suresh Kumar, A. (2012). Spectral Investigations of Sm³⁺ Doped Lead Bismuth Magnesium Borophosphate Glasses. *Journal of Quantitative Spectroscopy & Radiative Transfer*. 113, 1669-1675.
- Babu, Y. N. C. R., Sree Ramnaik, P., Suresh Kumar, A. (2013). Photoluminescence Features of Ho³⁺ Ion Doped PbO-Bi₂O₃ Borophosphate Glass Systems. *Journal of Luminescence*. 143, 510-516.
- Bajaj, A., Khanna, A., Chen, B., James, G. Longstaffe, Zwanziger, U., Zwanziger, J.W., Gómez, Y, Gonz dez, F. (2009). Structural Investigation of Bismuth Borate Glasses and Crystalline Phases. *Journal of Non-Crystalline Solids*. 355, 45-53.
- Banerjee, J., Ongie, G, Harder, J., Edwards, T., Larson, C., Sutton, S., Moeller, A., Basu, A., Affatigato, M., Feller, S., Kodama, M., Aguiar, P. M., Kroeker, S.

(2006). Structural Studies of Solution-Made High Alkali Content Borate Glasses.

- Burns, A. E., Winslow, D. W., Clarida, W. J., Affatigato, M., Feller, S. A., Brow, R.
 K. (2006). Structure of Binary Neodymium Borate Glasses by Infrared Spectroscopy. *Journal of Non-Crystalline Solids*. 352, 2364-2366.
- Carta, D., Dong, Q., Guerry, P., Ahmed, I., Abou Neel, E. A., Knowles, J. C., Smith, M. E., Newport, R. J. (2008). The Effect of Composition on The Structure of Sodium Borophosphate Glasses. Journal of Non-Crystalline Solids 354, 3671-3677.
- Duffus, J. H. (2002). "Heavy Metals"-A Meaningless Term? Pure and Applied Chemistry. 74, 793-807.
- Eeu, T.Y., Wan, M. H., Wong, P.S. Nur Amanina, M.J., Ibrahim, Z., Hussin, R. (2012). Structural study of Antimony Borate glass system doped with Transition Metal Ions using Infrared and Raman Spectroscopy. Advanced Materials Research. 501, 51-55.
- El Batal, H. A., Abdelghany, A. M., Ali, I. S. (2012). Optical and FTIR Studies of CuO-doped Lead Borate Glasses and Effect of Gamma Irradiation. *Journal of Non-Crystalline Solids*. 358, 820-825.
- El Batal, F. H., El Kheshen, A. A., Azooz, M.A., Abo-Naf, S.M. (2008). Gamma Ray Interaction with Lithium Diborate Glasses Containing Transition Metals Ions. *Optical Materials*. 30, 881-891.
- El Batal, F. H., Marzouk, S. Y., Nada, N., Desouky, S. M. (2007). Gamma-ray Interaction with Copper-doped Bismuth-Borate Glasses. *Physica B*. 391, 88-97.
- Elfayoumi, M. A. K., Farouk, M., Brik, M. G., Elokr, M. M. (2010). Spectroscopic Studies of Sm³⁺ and Eu³⁺ Co-doped Lithium Borate Glass. *Journal of Alloys and Compounds*. 492, 712-716.
- Elisa, M., Sava, B. A., Vasiliu, I. C., Monteiro, R. C. C., Veiga, J. P., Ghervase, L., Feraru, I., Iordanescu, R. (2013). Optical and Structural Characterization of Samarium and Europium-Doped Phosphate Glasses. *Journal of Non-Crystalline Solids*. 369, 55-60.
- Fu, A. I., Mauro, J. C. (2013). Topology of Alkali Phosphate Glass Networks. Journal of Non-Crystalline Solids. 361, 57-62.

- Hall, A. W. (1919). A New Method of Chemical Analysis. *Journal of The American Chemistry Society*. 41 (8), 1168-1175.
- Hussin, R., Ahmad Salim, M., Alias, N. S., Abdullah, M. S., Abdullah, S., Ahmad Fuzi, S. A., Hamdan, S., Md Yusuf, M. N. (2009). Vibrational Studies of Calcium Magnesium Ultraphosphate Glasses. *Journal of Fundamental Sciences*. 5, 41-53.
- Im, S. H., Na, Y. H., Kim, N. J., Kim, D. H., Hwang, C. W., Ryu, B. K. (2010). Structure and Properties of Zinc Bismuth Phosphate Glass. *Thin Solid Films*. 518, 46-49.
- Ivankov, A., Seekamp, J., Bauhofer, W. (2006). Optical Properties of Eu³⁺-Doped Zinc Borate Glasses. *Journal of Luminescence*. 121, 123-131.
- Jain, D., Sudarsan, V., Vatsa, R. K., Pillai, C. G. S. (2009). Luminescence Studies on ZnO-P₂O₅ Glasses Doped With Gd₂O₃:Eu Nanoparticles and Eu₂O₃. *Journal* of Luminescence. 129, 439-443.
- Karabulut, M., Yuze, B., Bozdogan, O., Ertap, H., Mammadov, G. M. (2011). Effect of Boron Addition on The Structure and Properties of Iron Phosphate Glasses. *Journal of Non-Crystalline Solids*. 357, 1455-1462.
- Khalifa, F. A., El-Hadi, Z. A., Ezz El-Din, F. M., Moustaffa, F. A. (1991). Infrared Absorption Spectra of Some Alkali Borate Glasses Containing Nickel. *Journal of Material Science Letters*. 10, 1132-1135.
- Kiran, N., Kesavulu, C.R., Suresh Kumar, A., Rao, J. L. (2011a). Spectral Studies on Mn²⁺ Ions Doped in Sodium-Lead Borophosphate Glasses. *Physica B*. 406, 3816-3820.
- Kiran, N., Kesavulu, C. R., Suresh Kumar, A., Rao J. L. (2011b). Spectral Studies on Cr^{3+} Ions Doped in Sodium-Lead Borophosphate Glasses. *Physica B*. 406, 1897-1901.
- Kiran, N., Kumar, S. A. (2013). White Light Emission from Dy³⁺ Doped Sodium-Lead Borophosphate Glasses Under UV Light Excitation. *Journal of Molecular Structure*. 1054-1055, 6-11.
- Kesavulu, C. R., Muralidhara, R. S., Rao J. L., Anavekar, R. V., Chakradhar, R. P. S. (2009). EPR and Photoluminescence Studies on Lithium-Potassium Borophosphate Glasses Doped with Mn²⁺ Ions. *Journal of Alloys and Compounds*. 486, 46-50.

- Koudelka, L., Mosner, P. (2000). Borophosphate Glasses of The ZnO-B₂O₃-P₂O₅ System. *Materials Letters*. 42, 194-199.
- Koudelka, L., Mosner, P., Zeyer, M., Jager, C. (2003). Lead Borophosphate Glasses Doped with Titanium Dioxide. *Journal of Non-Crystalline Solids*. 326&327, 72-76.
- Kulyuk, L. L., Laiho, R., Lashkul, A. V., Lahderanta, E., Nedeoglo, D. D., Nedeoglo, N. D., Radevici, I. V., Siminel, A. V., Sirkeli, V. P., Sushkevich, K. D. (2010). Magnetic and Luminescent Properties of Iron-Doped ZnSe Crystals. *Physica B*. 405, 4330-4334.
- Lakshminarayana, G., Buddhudu, S. (2005). Spectral Analysis of Cu²⁺: B₂O₃–ZnO– PbO Glasses. Spectrochimica Acta Part A 62, 364-371.
- Lian, Z., Wang, J., Lv, Y., Wang, S., Su, Q. (2007). The Reduction of Eu³⁺ to Eu²⁺ in Air and Luminescence Properties of Eu²⁺ Activated ZnO-B₂O₃-P₂O₅ Glasses. *Journal of Alloys and Compounds*. 430, 257-261.
- Lim, J. W., Schmitt, M. L., Brow, R. K., Yung, S. W. (2010). Properties and structures of tin borophosphate glasses. *Journal of Non-Crystalline Solids*. 356, 1379-1384.
- Linganna, K., Srinivasa, Rao Ch., Jayasankar, C. K. (2013). Optical Properties and Generation of White Light in Dy³⁺-doped Lead Phosphate Glasses. *Journal of Quantitative Spectroscopy & Radiative Transfer*. 118, 40-48.
- Lucacel, R. C., Marcus, C., Timar, V., Ardelean, I. (2007). FT-IR and Raman Spectroscopic Studies on B₂O₃-PbO-Ag₂O Glasses Doped with Manganese Ions. *Solid State Sciences*. 9, 850-854.
- Majjane, A., Chachine, A., Et-tabirou, M., Echchahed, B., Do, T. O., Mc Breen, P. (2014) X-ray Photoelectron Spectroscopy (XPS) and FTIR Studies of Vanadium Barium Phosphate Glasses. *Materials Chemistry and Physics*. 143, 779-787.
- Manupriya, Thind, K. S., Singh, K., Kumar, V., Sharma, G., Singh, D. P., Singh, D. (2009). Compositional Dependence of In-Vitro Bioactivity in Sodium Calcium Borate Glasses. *Journal of Physics and Chemistry of Solids*. 70, 1137-1141.
- Pisarska, J. (2009). Luminescence Behavior of Dy³⁺ Ions in Lead Borate Glasses. *Optical Materials*. 31, 1784-1786.

- Pisarska, J., Zur, L., Goryczka, T., Pisarski, W. A. (2011). Local Structure and Luminescent Properties of Lead Phosphate Glasses Containing Rare Earth Ions. *Journal of Rare Earth*. 29, 1157.
- Pisarski, W. A., Zur, L., Goryczka, T., Soltys, M., Pisarska, J. (2014). Structure and Spectroscopy of Rare Earth-Doped Lead Phosphate Glasses. *Journal of Alloys and Compounds*. 587, 90-98.
- Rao, C. S., Kumar, K. U., Babu, P., Jayasankar, C. K. (2012). Optical Properties of Ho³⁺ Ions in Lead Phosphate Glasses. *Optical Materials*. 35, 102-107.
- Rao, P. S., Rajyasree, Ch., Ramesh Babu, A., Vinaya Teja, P. M., Krishna Rao, D. (2011). Effect of Bi₂O₃ Proportion on Physical, Structural and Electrical Properties of Zinc Bismuth Phosphate Glasses. *Journal of Non-Crystalline Solids*. 357, 3585-3591.
- Rasool, N., Sk. Rama Moorthy L., Jayasankar, C. K. (2013). Optical and Luminescence Properties of Dy³⁺ Ions in Phosphate Based Glasses. *Solid State Sciences*. 22, 82-90.
- Saranti, A., Koutselas, I., Karakassides, M. A. (2006). Bioactive Glasses in The System CaO-B₂O₃-P₂O₅: Preparation, Structural Study and In Vitro Evaluation. *Journal of Non-Crystalline Solids*. 352, 390-398.
- Scagliotti, M., Villa, M., Chiodelli, G. (1986). Short Range Order In The Network of The Borophosphate Glasses: Raman Results. *Journal of Non-Crystalline Solids*. 93, 350-360.
- Silva, A. M. B., Correia, R. N., Oliveira, J. M. M., Fernandes, M. H. V. (2010). Structural Characterization of TiO₂-P₂O₅-CaO Glasses by Spectroscopy. *Journal of the European Ceramic Society*. 30, 1253-1258.
- Srinivasulu, K., Omkaram, I., Obeid, H., Suresh Kumar, A., Rao, J. L. (2012) Structural Investigations on Sodium-Lead Borophosphate Glasses Doped with Vanadyl Ions. *Journal of Physical Chemistry A*. 116, 3547-3555.
- Srinivasulu, K., Omkaram, I., Obeid, H., Suresh Kumar, A., Rao, J.L. (2013). Structural and Magnetic Properties of Gd³⁺ Ions in Sodium-Lead Borophosphate Glasses. *Journal of Molecular Structure*. 1036, 63-70.
- Subhadra, M., Kistaiah, P. (2012). Infrared and Raman Spectroscopic Studies of Alkali Bismuth Borate Glasses: Evidence of Mixed Alkali Effect. Vibrational Spectroscopy. 62, 23-27.

- Sun, X. Y., Jiang, D. G., Wang, W. F., Cao, C. Y., Li, Y. N., Zhen, G. T., Wang, H., Yang, X. X., Chen, H. H., Zhang, Z. J., Zhao, J. T. (2013). Luminescence Properties of B₂O₃-GeO₂-Gd₂O₃ Scintillating Glass Doped with Rare-Earth and Transition-Metal Ions. *Nuclear Instruments and Methods in Physics Research A*. 716, 90-95.
- Varsamis, C.P., Kamitsos, E.I., Chryssikos, G.D. (2000). Spectroscopic investigation of AgI-doped borate glasses. *Solid State Ionics*. 136-137, 1031-1039.
- Vedeanu, N., Cozar, O., Stanescu, R., Cozar, I. B., Ardelean, I. (2013). Structural Investigation of New Vanadium-Bismuth-Phosphate Glasses by IR and ESR Spectroscopy. *Journal of Molecular Structure*. 1044, 323-327.
- Vosejpkova, K., Koudelka, L., Cernosek, Z., Mosner, P., Montagne, L., Revel, B. (2012). Structural studies of boron and tellurium coordination in zinc borophosphate glasses by 11B MAS NMR and Raman spectroscopy. *Journal* of Physics and Chemistry of Solids. 73, 324-329.
- Wan, M. H., Wong, P. S., Hussin, R., Lintang, H. O., Endud, S. (2014). Structural and Luminescence Properties of Mn²⁺ Ions Doped Calcium Zinc Borophosphate Glasses. *Journal of Alloys and Compounds*. 595, 39-45.
- Yamane, M., Asahara, Y. (2000). Glasses for Photonics. United Kingdom: Cambridge University Press.
- Zhang, B., Chen, Q., Song, L., Li, H., Hou, F., Zhang, J. (2008). Fabrication and properties of novel low-melting glasses in the ternary system ZnO-Sb₂O₃-P₂O₅. *Journal of Non-Crystalline Solids*. 354, 1948-1954.
- Zhou, L., Lin, H., Chen, W., Luo, L. (2008). IR and Raman Investigation On The Structure of (100-x)B₂O₃-x[0.5 BaO-0.5ZnO] Glasses. *Journal of Physics and Chemistry of Solids*. 69, 2499-2502.