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ABSTRACT 

Monitoring of polycyclic aromatic hydrocarbons (PAHs) in water samples is 

important for human protection due to the carcinogenicity and mutagenicity of these 

compounds. A new technique termed dispersive micro solid phase extraction (D-µ-

SPE) based on multiwalled carbon nanotubes (MWCNTs) caged in calcium alginate 

(Ca
+2

-Alg) was developed and applied for efficient extraction of PAHs from 

environmental water samples. The prepared adsorbent (Ca-Alg-MWCNTs) was 

characterized by Fourier transform infrared spectroscopy, scanning electron 

microscopy and thermal gravimetry analysis. The hydrophilicity of the Ca
+2

-Alg 

cage enhances the dispersibility of the adsorbent in water samples and the MWCNTs 

core facilitates separation of PAHs. The composite beads not only make full use of 

the good PAHs adsorption properties of alginate and MWCNTs, but also prevent 

MWCNTs from breaking off from the composites to cause secondary micro-

pollution to water. The proposed D-µ-SPE method was applied successfully for the 

extraction of selected PAHs from environmental water samples.  The D-µ-SPE 

technique provides reasonable extraction time (30 min) to extract trace levels of 

PAHs from 100 mL of water samples with 100 mg of adsorbent. The extracted PAHs 

were desorbed by 0.1 mL of ethyl acetate to give enrichment factor of 1000. Under 

the optimized conditions, the detection limits for fluorene, phenanthrene and 

fluoranthrene were 0.42 ng mL
−1

, 0.3 ng mL
−1

 and 0.22 ng mL
−1

, respectively.  The 

recoveries of several spiked real water samples for PAHs were in the range of 71.2-

104.2% with good relative standard deviations (1.2% - 7.2%), showing good 

reproducibility of the method. The potential benefits of the D-µ-SPE using Ca-Alg-

MWCNTs include high extraction efficiency, short analysis time and convenient 

extraction procedure. Thus D-µ-SPE method based on Ca-Alg-MWCNTs is a 

suitable candidate for use as an alternative adsorbent in the simultaneous pre-

concentration of PAHs from environmental water samples. 
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ABSTRAK 

Pemantauan berterusan hidrokarbon aromatic polisiklik (PAH) sangat penting 

bagi memastikan perlindungan manusia daripada kesan karsinogen dan mutasi 

sebatian ini. Satu kaedah baru disebut sebagai fasa pengekstrakan pepejal secara 

serakan (D- µ-SPE) menggunakan tiub nanokarbon dinding berganda (MWCNTs) 

disalut dengan kalsium alginate telah dibangun dan digunakan sebagai pengekstrak 

berkesan PAH daripada air alam sekitar. Pencirian bahan penjerapan baru telah 

dianalisis menggunakan spektroskopi infra merah (FTIR), Imbasan Electron 

mikroskopi (SEM) dan termogravimetri. Ciri-ciri hidrofilik kurungan Ca
+2

-Alg telah 

meningkatkan lagi daya serakan bahan penjerap dalam air, manakala teras tuib nano 

karbon dinding berganda  berfungsi untuk penjerap PAH. Butiran komposit ini bukan 

sahaja menggunakan kelebihan MWCNTs untuk menyerap PAH, malah alginat telah 

berjaya menghalangnya daripada menjadi bahan pencemar sekunder kepada air. 

Kaedah D-uSPE telah berjaya diaplikasikan dalam pengekstrakan beberapa PAH 

terpilih dalam sampel air alam sekitar. D-uSPE memberikan masa pengekstrakan 

yang baik (30 minit) untuk mengekstrak PAH dalam 100 mL sampel air 

menggunakan 100 mg bahan penjerap.  PAH telah dinyahjerap menggunakan 0.1 mL 

etil asetat bagi menghasilkan faktor pengkayaan 1000. Di bawah keadaan optimum, 

had pengesanan bagi fluorena, fenantrena dan fluorantena adalah masing-masing 

0.42 ng mL
-1

, 0.3 ng mL
-1

  dan  0.22 ng mL
-1

. Pengembalian semula PAH dalam 

beberapa sampel air adalah dalam julat 71.2 - 104.2% dengan sisihan piawai relatif 

yang baik dalam julat 1.2% - 7.2% yang menunjukkan kebolehulangan yang baik. 

Justeru, kaedah D-µ-SPE menggunakan alginat-MWCNTs merupakan kaedah 

alternatif yang sesuai bagi pra-pemekatan PAH di dalam sampel air alam sekitar.  
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CHAPTER 1 

INTRODUCTION 

1.1  Research Background 

Polycyclic aromatic hydrocarbons (PAHs) are notorious environmental 

persistent pollutants with toxic, carcinogenic and mutagenic properties (Menezes and 

de Lourdes Cardeal, 2011).  So far, over 100 PAHs have been known to occur 

naturally and 16 of them have been included in the list of priority pollutants (EPA, 

1995).  PAHs are non-polar and hydrophobic compounds with low water solubility.  

PAHs are considered as very significant environmental pollutants since they are 

restrict biodegrade due to their high stability and complex molecular structures 

(Anyakora and Nollet, 2007).  PAHs are a set of organic compounds with two or 

more fused aromatic rings.  They are mainly produced by human activities such as 

incomplete combustion of fossil fuels or carbon-containing organic substances, 

industrial processes, and domestic burning (Hii et al., 2009).  Therefore, PAHs can   

easily mobile into aquatic environments that lead to human risk.  However, US 

Environmental Protection Agency (EPA) have set a maximum residual levels 

(MRLs) is 0.2 ng mL
-1

 for specified PAHs in drinking water (EPA, 2009) 

Due to high toxicity of PAHs even at very low levels, development of 

methodologies for the monitoring of PAHs in environment is often necessary, thus 

one of the important aspects of environmental analytical chemistry (Li and Lee, 

2001).  The direct determination of PAHs by instrumental techniques is often limited 

due to the low concentration levels of the analytes and the presence of matrix 

interferences.  Therefore, sample preparation is usually necessary to separate the 
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analytes from complex matrices or to pre-concentrate them in order to improve 

sensitivities and detection limits.  Unfortunately, this step is considered the most 

time-consuming and error-prone step of the whole analytical procedure.  Moreover, 

the classical sample pre-treatment techniques such as liquid-liquid extraction (LLE) 

and solid-phase extraction (SPE) require high volumes of toxic reagents.  In recent 

years, increased interest in the development of environmentally friendly analytical 

procedures according to the rules of green chemistry has been observed (Armenta et 

al., 2008).  The objectives of green analytical methods are replacing toxic reagents, 

minimizing waste in the laboratory and in consequence miniaturization of classical 

methods.  Because of these trends, liquid-phase microextraction (LPME) and solid 

phase microextraction (SPME) have become the most valuable alternative techniques 

to classical LLE and SPE (Pena-Pereira et al., 2010). 

SPE has been extensively used for the pre-concentration of PAHs in 

environmental waters (Crozier et al., 2001, Liang et al., 2006, Ma et al., 2010).  In 

general, SPE is surface dependent processes since its kinetics depend directly on the 

contact surface between the analysts and the solid Adsorbent.  This issue becomes 

critical when the amount of solid adsorbent reduced to the micro scale.  In this 

context, dispersive-based procedures have gained importance as rapid and efficient 

sample treatment methodologies (Cruz-Vera et al., 2011).  In dispersive solid phase 

extraction (DSPE) and in dispersive micro solid-phase extraction (D-µ-SPE) the 

small amount of solid adsorbent promotes the immediate interaction between the 

analyst and adsorbent and shortens the time of sample preparation.  After adsorption 

the analytes held in the solid adsorbent are eluted  with suitable solvents (Fu et al., 

2012, Jiménez-Soto et al., 2012). 

The nature and properties of the solid adsorbent are of prime importance in 

D-µ-SPE. In practice, the main requirements for a solid adsorbent are: (a) fast and 

quantitative sorption and elution, (b) a high surface area and high capacity, and (c) 

high dispensability in liquid samples. 

In this context, nanoparticles (NPs) seem to be perfect for use in D-µ-SPE.  In 

general, NPs can be divided into two groups according to their chemical nature 
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carbon-based, such as fullerene (Hu et al., 2008), carbon nanotubes (CNTs) (Bagheri 

et al., 2011) and graphene (Luo et al., 2011), and inorganic NPs (Wang and 

Campiglia, 2008) including magnetic NPs.  Such NPs can be applied in organic 

(Ballesteros-Gómez and Rubio, 2009) and inorganic (Shin and Jang, 2007) analyses.  

Recently carbon based MWCNTs widely used as adsorbent for PAHs removal or 

pre-concentration (Wang et al., 2007).  Due to chemical structures of the PAHs are 

planar with benzene ring, which can form both hydrophobic interaction and strong π–

π interaction with MWCNTs, the π–π bonding interaction is still strong enough to 

keep the analytes adsorbed onto them MWCNTs (Ding et al., 2011).  

However, widespread usage of MWCNTs will cause increased emissions to 

the aqueous environment and cause human health problem.  Large numbers of in 

vitro and in vivo toxicology studies have shown that MWCNTs have an adverse 

effect on living organisms.  They can enter into human pneumocytes and injure 

pulmonary functions (Davoren et al., 2007, Firme and Bandaru, 2010), can be 

scavenged by the reticuloendothelial system from blood and accumulate in mouse 

liver and spleen and affect the immunity of spleen (Deng et al., 2008, Deng et al., 

2009).  Because of the poor degradability (Hyung et al., 2007) and toxicity of 

MWCNTs they should be removed from drinking water as much as possible.  While 

it is difficult to remove MWCNTs from water using conventional separation methods 

due to their micro-sized structures, this limitation may be the bottleneck to obstruct 

MWCNTs to be widely used as adsorbents in environmental protection in the future. 

One effective method to resolve the second pollution caused by MWCNTs is 

to search for suitable supporters to immobilize MWCNTs for preparing macroscopic 

CNTs composites in order to make full use of the current micro-sized MWCNTs and 

its supporting the alginate is a potential candidate for MWCNTs.  Alginate, the salt 

of alginic acid, has hydrophilicity, biocompatibility, nontoxicity, exceptional 

formability and is a linear chain structure of (1- 4) linked β-D-Mannuronic acid (M) 

and α-L-Guluronic acid (G) residues arranged in a block wise fashion (Bhat and 

Aminabhavi, 2006).  Therefore, alginate has the excellent formability to support and 

fix MWCNTs.  The composites not only make full use of the good PAHs adsorption 
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properties of MWCNTs and alginate, but also prevent micro-sized MWCNTs from 

breaking off the composites to cause second micro-pollution to water. 

In this study, a novel application dispersive micro solid-phase extraction (D-

µ-SPE) based on alginate multiwalled carbon nanotube beads (Ca-Alg-MWCNTs) as 

active adsorbent is presented.  The dispersion of the beads has been deeply studied in 

order to maximize the efficiency of the extraction.  Moreover, the whole procedures 

were optimized in order to achieve the highest recoveries.  PAHs were selected as 

model compounds taking into account their applications to the analysis of water 

samples. 

1.2  Statement of Problem 

Conventional extraction methods for instance liquid-liquid extraction (LLE) 

and solid-phase extraction (SPE) involve large volumes of organic solvents and are 

time-consuming.  To address these drawbacks, solid-phase microextraction (SPME) 

has been developed (Arthur and Pawliszyn, 1990).  SPME uses no extraction solvent, 

but the lifetime of the fiber is limited and it is fragile.  Recently, liquid phase micro 

extraction (LPME) has been introduced for sample preparation.  It has been 

developed as many variants, such as single-drop microextraction (SDME) (Jeannot 

and Cantwell, 1996), hollow-fiber-protected liquid-phase micro extraction (HF-

LPME) (Sanagi et al., 2013), and stir bar micro extraction (SBME) (Kawaguchi et 

al., 2006).  All of these techniques use less organic solvents and have good 

sensitivity.  However, they have long extraction times.  To overcome these problems 

the D-µ-SPE based on Ca-Alg-WMCNTs was developed for analyse three of PAHs 

(fluorene, phenanthrene and fluoranthrene).  The advantages of D-µ-SPE over 

conventional method are that D-µ-SPE allows the direct contact between the 

analytes/interferes with the adsorbent thank to the homogeneous dispersion of the 

solid in the liquid matrix sample.  Although it was initially proposed to increase the 

method selectivity, it can also be used to increase the sensitivity by retaining the 

target analytes on the appropriate adsorbent material (Alcudia-León et al., 2008), 

uses smaller quantities of adsorbents and solvents. Furthermore, is simple and use 
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inexpensive equipment.  The advantages of using Ca-Alg-WMCNTs beads are their 

ease of handling and storage, greater precision during weighing and greater stiffness.  

Therefore, this technique is beneficial for many laboratories. 

1.3  Objectives of the Study 

This study was undertaken to investigate the efficiencies of Ca-Alg-

MWCNTS  composite beads, as D-µ-SPE Adsorbent for the extraction of polycyclic 

aromatic hydrocarbons from water samples the specific objectives of the study were 

undertaken: 

 To synthesize of Ca-Alg-MWCNTs composite beads as PAHs adsorbent. 

 To characterize synthesize alginate MWCNTs beads using FTIR, TGA, SEM. 

 To develop and optimize effective parameters on dispersive micro solid-phase 

extraction (D-µ-SPE) method. 

 To apply D-µ-SPE base on Ca-Alg-MWCNTs extraction method for real 

sample analysis prior to gas chromatography–flame ionization detector (GC-

FID). 

1.4  Scope of Study 

For PAHs analysis, Ca-Alg-WMCNTs beads were synthesized using 

MWCNTs and sodium alginate.  The amount of material was optimized according to 

their PAHs extraction efficiency.  The optimized nanocomposite was characterized 

using FTIR, TGA and SEM.  Effective parameters on extraction method (i.e. 

desorption solvent, extraction time, solvent volume, desorption time, the mass of 

adsorbent and sample volume) were optimized.  The synthesized adsorbent was used 

as D-µ-SPE adsorbent for the monitoring of PAHs monitoring of environmental 

water samples.  The extracted analytes were determined by GC-FID. 
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1.5  Outline of the Dissertation 

This outline provides a brief description of the contents of each section of the 

dissertation.  Chapter 2 presents the reader with a review of the literature relevant to 

the study undertaken.  In Chapter 3 the methodology and experimental procedures of 

the study undertaken are detailed.  Chapter 4 presents the results of experimental 

work carried out the analysis of the sample and discussion of the results.  Finally, 

Chapter 5 covers the overall conclusions and future directions for further studies. 

This chapter compiles the overall results obtained, including the optimized 

conditions and the analytical performances of the developed methods.  Future 

directions are presented and discussed for possible further study. 

1.6  Significant of Study 

The main concern associated with PAH is their capacity to react with 

environmentally available chemicals and as a consequence, the products of such 

reactions being inherently toxic to animals, plants and humans even at very low 

levels (Walgraeve et al., 2010).  On other hand, the structures of the PAHs are planar 

compounds, which can form both hydrophobic interaction and strong π–π bonding 

interaction with MWCNTs, the π–π bonding interaction is still strong enough to keep 

the analytes adsorbed onto MWCNTs  (Ding et al., 2011). 

The toxicity and ubiquitousness of PAHs and CNTs within different 

terrestrial environments has been an increasing cause for concern amongst 

environmental scientists in the last decades, in particular regarding their transport 

within the water (Davoren et al., 2007, Guiavarc’h et al., 2010).  In order to monitor 

PAHs in environmental water by using MWCNTs as adsorbent and prevent leaking 

MWCNTs into the water, D-μ-SPE was developed for the determination of trace 

level of three PAHs in water samples. Ca-Alg-MWCNTs were employed as D-μ-SPE 

adsorbent.  The large surface area afforded by the MWCNTs and their π-π 

electrostatic interactions with the aromatic rings of the analytes facilitated strong 

adsorption between the two species.  After extraction, analyte desorption was carried 
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out with a suitable organic solvent under ultrasonication.  Due to the protection 

provided by the porous alginate cage (beads) in D-μ-SPE, no additional clean-up step 

was required.  The results showed that the method could provide high extraction 

efficiency for the analysis of PAHs in water. 

Due to the strong affinity between the adsorbent and PAHs and the large 

volume of sample possible, high enrichment factor, good LOD and satisfactory 

extraction efficiency are achieved.  Thus, the proposed extraction method based on 

Ca-Alg-MWCNTs is a preferable candidate for alternative methods toward PAHs 

isolation. 
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