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ABSTRACT 

 

 

The recovery of carotene from crude palm oil prior to refining would add 

significant value to the country’s palm oil industry.  Various methods are currently 

available to yield high concentrations of carotene.  These methods however, have 

many disadvantages when factors such as cost, and energy consumption are weighed 

into consideration.  This work presents the application of organic solvent 

nanofiltration membranes for the separation of carotene from a crude palm oil 

(CPO)/solvent system.  Filtration tests were conducted using a dead-end filtration 

set-up, utilizing four different polyimide membranes and four different solvents.  

PuraMem™ 280 showed the best performance, with a selectivity of 1.25 when 

hexane was used as the solvent. Runs using DuraMem™ 150, DuraMem™ 300 and 

DuraMem™ 500 showed low or no selectivity between carotene and triglyceride in 

all solvents.  It was found that rejection of carotene depends strongly on the type of 

solvents and membrane type and therefore is critical for carotene separation.  Lower 

applied pressure and low feed concentrations improved the membrane selectivity.  

The effect of solute-solvent coupling was much higher towards lower molecular 

weight component (carotene) and at lower pressures.  Theoretical pore size of the 

membrane was predicted using sets of equations relating the diffusivity of the solutes 

and the experimental rejection results.  Results showed that the theoretical pore size 

of membrane PuraMem™ 280 was between 1.38 nm to 1.85 nm.  The effect of 

concentration polarisation was predicted, and result showed that in this system, the 

effect of concentration polarization was very minimal, where cw/cb was only between 

1.06 to 1.24.  Generally, high feed concentrations increased the feed viscosity, 

resulting in significant osmotic pressures and reduces the permeate flux. 
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ABSTRAK 

 

 

Pemisahan karotena daripada minyak sawit mentah sebelum proses penapisan 

memberi nilai tambah kepada industri minyak sawit negara.  Pada masa ini, terdapat 

pelbagai kaedah yang berupaya menghasilkan karotena dalam kepekatan tinggi. 

Walau bagaimanapun, kaedah-kaedah tersebut mempunyai banyak kelemahan 

apabila faktor seperti kos dan penggunaan tenaga diambilkira.  Kajian ini 

membentangkan aplikasi membran nanopenurasan pelarut organik untuk pemisahan 

karotena daripada sistem minyak sawit mentah/pelarut organik. Ujian penurasan 

dijalankan dengan susunan penurasan buntu, menggunakan empat membran 

poliimida dan empat pelarut berlainan. PuraMem™ 280 menunjukkan prestasi 

terbaik dengan nilai pemilihan 1.25 apabila digunakan bersama pelarut heksana.  

Membran DuraMem™ 150, DuraMem™ 300 and DuraMem™ 500 menunjukkan 

nilai pemilihan yang rendah antara karotena dan trigliserida dalam semua pelarut.  

Kajian mendapati, kadar penolakan karotena sangat bergantung kepada jenis pelarut 

dan jenis membran oleh itu sangat kritikal dalam pemisahan karotena. Tekanan yang 

rendah dan kepekatan suapan yang rendah meningkatkan pemilihan membran 

tersebut.  Kesan gandingan antara bahan larut dan pelarut lebih tinggi terhadap 

komponen yang mempunyai berat molekul lebih ringan (karotena) dan pada tekanan 

yang lebih rendah.  Saiz liang membran teori boleh diramalkan menggunakan 

beberapa set persamaan yang mengaitkan kebolehresapan bahan larut dengan 

penolakan yang didapati dari eksperimen. Keputusan menunjukkan bahawa saiz 

liang membran teori adalah di antara 1.38 nm hingga 1.85 nm. Kesan kekutuban 

kepekatan telah diramalkan, dan keputusan menunjukkan kesan tersebut adalah 

minimum, di mana cw/cb  adalah antara 1.06 hingga 1.24.  Secara umumnya, 

kepekatan suapan yang tinggi meningkatkan kelikatan, seterusnya meningkatkan 

tekanan osmotik, dan merendahkan fluks.  
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Palm oil is one of the world's richest natural plant sources of carotenoids. 

The minor components of crude palm oil (CPO) consist of carotenoids, tocopherols, 

tocotrienols, vitamin E and sterols. It contains high concentration of carotenes of 

about 0.5-0.7 g/L, 15 times more retinol equivalents (vitamin A) than carrots and 300 

times more than tomatoes(Sundram e? 2003). The primary carotenes that exists 

in palm oil are a-carotene and P-carotene, which account for 80% of the total 

carotenes (Ooi e? %A, 1994). The importance of P-carotene is well documented for 

human nutrition and serves as a major source of vitamin A, as they can be 

transformed into vitamin A m vz'w (Chuang and Brunner, 2006) and serves as a 

potential alternative means of fighting vitamin A deficiency which is prevalent in 

many countries (Barison, 1996). Numerous studies have shown that carotenes can 

prevent certain types of cancer, such as lung, oral, pharyngeal and stomach cancers 

(Peto e? %A, 1981). It could also enhance the immune system and help to protect 

against flu, colds, infections, and toxins. Furthermore, carotenoids are strong dyes, 

in which at even very low levels of parts per million, they are able to impart the 

desired properties to foods (Gordon and Bouernfeind, 1982). Due to broad 

application of natural compounds in cosmetics, pharmaceuticals and food industry,



carotenoids have increased in its value and importance. Therefore, their recovery 

from palm oil or its by-products are very important.

The nation's palm oil industry would benefit significantly from the process of 

extraction and recovery of carotenes from palm oil. But unfortunately, conventional 

physical and chemical methods of palm oil refining causes almost all of the carotenes 

to be either removed or destroyed (Ooi e? 1994). This process also helps to give 

the light colored oil as favoured by consumers. A few processes have been 

developed to recover carotenes from palm oil which includes solvent extraction 

(Tanaka, 1986), molecular distillation, and adsorption (Ong and Boey, 1980). These 

technologies however require high capital expenditure to set up and have significant 

operating costs due to vast energy consumption.

Nanofiltration offers a good alternative for the process of separating carotene 

from crude palm oil due to its lower energy consumption, ambient temperature 

operation, and retention of thermally sensitive compounds. Recently, organic 

solvent nanofiltration (OSN) has found numerous applications including 

homogeneous catalyst recovery, solvent exchange, chiral separation, concentration of 

natural extracts, and peptide synthesis. There are a few reports on the membrane 

process of recovering carotenoids from palm oils, in which the oil was first 

transesterified into methyl esters, then the carotenes are separated from the methyl 

esters through nanofiltration (Chiu e? %A, 2009; Darnoko and Cheryan, 2006). The 

disadvantage of this process is that the edible oil is lost or rendered useless for 

further consumption. Thus there is a need to find a membrane filtration process to 

recover the carotenoids from crude palm oil prior to refining without chemical 

transformation of the triglycerides.

2
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1.2 Problem Statement

During conventional physical and chemical methods of palm oil refining, 

almost all of the carotenes are removed and destroyed. It is proposed that prior to 

chemical or physical refining of the crude palm oil, the carotenoids are first 

recovered by adding an extra step of membrane filtration in the process. There are 

various methods being applied to recover carotene from crude palm oil, and intensive 

studies have been done on the extraction and recovery of carotene. These methods 

include saponification, selective solvent extraction, and transesterification followed 

by both phase separation and distillation of the ester. The process of 

transesterification can produce high concentrations of carotene however, has many 

disadvantages after weighing in factors such as cost, materials, and the large amount 

of energy required for evaporation. Converting the palm oil into methyl esters also 

renders the oil useless for further usage and consumption. Organic solvent 

nanofiltration can address these problems whereby the separation of carotene from 

crude palm oil is based on different molecular size, lowering energy consumption, 

minimizing thermal damage and without involving any phase change,. Moreover, 

the separation maintains the oil quality where the oil is not transformed to methyl 

esters while increasing yield through gentle ambient temperature separations.

1.3 Research Objectives

The main objective of this study is to explore the potential of OSN process to 

separate carotene from palm oil. In this present work, the performances of various 

OSN membranes will be evaluated for the permeation of carotene and retention of 

triglycerides. The best membrane in terms of flux and selectivity will be further 

studied on the effects of operating parameters such as pressure and feed 

concentration towards selectivity of carotene. The specific research objectives are as 

follows:



1. To identify the best combination of membrane and solvent for the 

separation of carotene from crude palm oil.

2. To evaluate the effects of varying operating parameters towards the flux 

and selectivity using the best combination of membrane and solvent.

3. To study the transport phenomenon involved in the OSN membrane 

separation of carotene and triglyceride using model solutions.

4

1.4 Scope of Study

In order to achieve the specified objectives, the study involves investigating 

the performance of OSN membrane in the recovery of carotene from crude palm oil 

directly without chemical transformation of the triglycerides. Performance was 

based on the flux (J), rejection (R) and selectivity ( <x) between carotene and 

triglycerides (palm oil). The process will use 4 different polyimide membrane 

materials with different molecular weight cut-off (MWCO) as described by the 

manufacturer. The membranes are PuraMem™ 280, DuraMem™ 150, DuraMem™ 

300, and DuraMem™ 500. The effect of using different types of solvents namely 

acetone, hexane, ethyl acetate, and isopropanol towards flux and rejection will be 

studied. The effects of varying operating parameters namely; palm oil feed 

concentration, and pressure, and towards flux and selectivity will be studied. The 

rejection characteristics of the selected membrane will then be tested using model 

solution of carotene in solvent, and triglyceride in solvent. Based on the 

experimental data, the solute diameters and theoretical pore size of the selected 

membrane will be predicted using Stokes-Einstein equation. The implications of 

concentration polarization, osmotic pressure, membrane swelling, and solubility 

parameters in the membrane system will be investigated.



5

1.5 Significance of Research

This study will help to improve our understanding on the potential of OSN 

membranes towards specific applications in the processing of crude palm oil. This 

research will add significant advantages to the palm oil industry especially in the 

processing of crude palm oil since the findings will help to add value to the final 

product.
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