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ABSTRAK

Objektif kajian ini adalah untuk menyediakan wrease—pegun tikar
poliakrilonitril elektrospun (ePAN) sebagai sistem pembawa—enzim. Gentian halus
mikro tanpa manik dengan purata gentian diameter 1448 + 380 nm telah dihasilkan
menggunakan putaran elektrostatik sebanyak 10 wt % PAN dalam campuran DMF.
Urease kemudiannya dipegunkan secara kovalen di atas permukaan tikar ePAN
diitkuti dengan rawatan menggunakan ethylenadiamina (EDA) dan kepekatan
glutaraldehid (GA) yang berbeza. Kimia permukaan pada as-spun dan gentian
terawat secara kimia telah diuji menggunakan Fourier transform infrared (FTIR)
spectroscopy. Field emission scanning electron microscopy (FESEM) telah
digunakan untuk mengkaji dan meneliti perubahan pada morfologi dan diameter
yang asli, terawat secara kimia, dan serat uwrease-pegun. Ciri—cirri urease—pegun
telah dianalisis. Ia didapat urease—pegun di atas tikar ePAN yang dirawat dengan 5
% GA mengekalkan aktiviti tertinggi bagi urease dipegunkan sebanyak 54 % dengan
157 pg enzim dipegunkan dengan setiap mg tikar. Di samping itu, telah diperhatikan
kepegunan telah merubah pH dan suhu aktiviti maksimum daripada 7 kepada 7.5 dan
37 °C kepada 50 °C untuk wurease bebas dan pegun, masing—masing. Parameter
kinetik urease bebas dan pegun, K,, dan V,,, juga telah dinilai dengan pemerhatian
peningkatan dalam K,, dan penurunan V,, diikuti dengan kepegunan enzim pada
permukaan gentian ePAN. Disamping itu, kaedah kepegunan telah membuktikan
keberkesanan dalam memelihara hampir 70 % aktiviti awal urease pegun walaupun
digunakan selepas 15 kitaran. Kesimpulan, keputusan kerja ini telah membuka
peluang yang cerah untuk enzim kovalen pegun yang berbeza ke atas nano ke tikar
gentian halus mikro. Gentian pegun wrease ePAN dijumpai mungkin sesuai untuk
aplikasi dalam pembuangan urea dari campuran dialisat yang bernilai dalam radas

hemodialisis dengan cekap.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Enzymes, the bunches of molecules consisting of thousands of atoms in
specific arrangement, are natural catalysts that help the evolution of different
chemical reactions in biological cells (Brena and Batista-Viera, 2006). For a given
reaction, enzymes catalyze the reaction pathway towards equilibrium (Rozzell,
1999). However, they enzymes are differentiated in matchless ways from other
catalysts, perhaps most importantly the chemical precision they bring to organic
synthesis that is mainly illustrated in terms of outstanding chemical selectivity often
displayed by enzymes (Kirk ez al., 2002; Sheldon, 2007). A number of chemical
benefits that is accompanied with using enzymes are fewer side reactions, easier
separations of products, and less pollution that can be translated into lower cost of

the production (Wiseman, 1993).

For well over a century, the use of enzymes has been pursued industrially for
a range of important chemical processing applications mostly on the grounds that
enzymes often possess unrivaled selectivity and they perform optimally under gentle
condition (Wiseman, 1980, 1993). Enzymes demonstrate high turnover numbers and
enormous reaction rate accelerations, in some cases exceeding 10°-fold over

background (Rozzell, 1999). Despite the mild ambient condition for optimal



operation of enzymes, their inherent instability seems to be an impediment for their

wide request as biocatalysts in industrial applications (Tran and Balkus Jr, 2011).

In fact, easy catalyst recycling, continuous operations and easy product
purification is a preference for near all large-scale industrial operations. The term
“immobilized enzymes” refers to “enzymes physically confined or localized in a
certain defined region of space with retention of their catalytic activities (Tischer and
Kasche, 1999). Immobilized enzymes or in general insoluble enzymes provide a
specialized form of heterogeneous catalyst that can meet the industrial operation
requirements in terms of easy recovery, and retention of activity for longer periods
(Brady and Jordaan, 2009). For a number of biotechnological applications such as
bioaffinity chromatography and biosensors, the application of immobilized enzymes
are getting more attractive due to the highly selective reaction outcomes they offer

for both structural and stereochemical terms (Tischer and Wedekind, 1999).

Immobilized enzyme systems encompass an enzyme and matrix that are
linked to each other through a possible mode of attachment. In general, three modes
of interaction between the enzyme and the support namely reversible physical
adsorption, ionic linkages and stable covalent bonds. In fact, immobilization of the
enzyme will alter some properties such as catalytic activity or thermal stability

(Tischer and Wedekind, 1999).

The matrix characteristics have a great influence on the performance of the
immobilized enzyme system. Besides the general requirements such as inertness
toward enzymes, biocompatibility, and availability at low cost (Brena and Batista-
Viera, 2000), it is expected, however, that immobilization of considerable quantities
of enzyme with preserving activity during cycles of reuse is applicable (Tran and

Balkus Jr, 2011).



There are different approaches for immobilization, which the most frequent
applied methods are covalent bonding, physical adsorption, and entrapment.
Regarding the method of immobilization, support materials can be classified based
on their chemical composition or physical conformation as inorganic or organic
(polymeric) and porous or nonporous, respectively (Brena and Batista-Viera, 2000;

Tischer and Wedekind, 1999; Tran and Balkus Jr, 2011).

Although nonporous materials show few diffusional restrictions the porous
materials are generally preferred for enzyme immobilization since in comparison
with nonporous supports they allow for a higher enzyme loading (Wang and Caruso,
2005). In case of enzyme immobilization on the porous materials, the decrease in the
size of the particles results in an increase in the total surface area available for
immobilization and reduced diffusion pathway of the substrate; therefore improves

the performance of the immobilized enzyme critically (Kim ez al., 2006a).

Recent advances in nanotechnology have made the choice of nanostructure
materials more reasonable for a broader range of applications (Jia ef al., 2003; Kim
and Grate, 2003; Kim ef al., 2006a). In general, nanoparticles provide a perfect
preparation to the usually conflicting issues that come upon in the optimization of
immobilized enzymes: minimum diffusional limitation, utmost surface area per unit
mass, and high enzyme loading (Kim ef al., 2006a). Many nanostructured materials,
such as mesoporous media, nanoparticles, nanofibers, and nanotubes, have been
demonstrated as efficient hosts for enzyme immobilization. Thus, the applications of
nanosized materials as carriers for the immobilized enzymes have been widely
studied (Hwang and Gu, 2013; Jia ef al., 2003; Kim ef al., 2006a; Kim et al., 2006b;
Wang, 2006).

The daunting task of dispersion of nanoparticles in the reaction media and
their recovery, however, is among the major drawbacks of using nanoparticles as
supports for carrying enzymes. The dry powders of nanoparticles as well as the pure

powder of the carbon nanotubes show certain health and environmental concerns



when used as enzyme supports (Mitchell ef al., 2002; Rege et al., 2003). Some of
these problems can be overcome by using one-dimensional nanomaterials, such as
polymeric nanofibers (Herricks ef al., 2005; Jia et al., 2002). The surface to volume
ratio of nanofibers is two-thirds of the particles of the same diameter when
considering the same amount of material used, meaning that they can also provide an
available venue for immobilization. Furthermore, the nanofibers can be produced and
handled easily in the form of coils, sheets, or dispersed fibers (Herricks et al., 2005,
Jia et al., 2002; Nair et al., 2007, Wang et al., 2009, Wang ef al., 20006).

Electrospinning, also known as electrostatic spinning, is a competent method
of producing polymer fibers with micro to nanoscale diameters (Li et al., 2003,
Sawicka and Gouma, 2006). In a typical process, the liquid polymer droplet extruded
from the orifice of a metal needle is elongated under an adequately strong electric
field. The electric field builds up charges on the surface of the droplet that will defeat
the surface tension of the liquid to shape a liquid jet that is afterward accelerated
toward a grounded collector. Evaporation of the solvent during the time of the flight
comes with the liquid jet stretch to lots of times of its original length to form
continuous, ultrathin fibers (Reneker and Yarin, 2008; Sawicka and Gouma, 2006;

Thompson et al., 2007).

The removal of urea from aqueous solutions in various industries ranging
from urea-producing industry, agriculture and natural environment to food
production and medicine is a problem faced due to the increasing environmental and
health concern (Krajewska, 2009). Although generally urea has low ecotoxicity, the
durable impact of its excessive levels in environment may be damaging in causing
groundwater contamination (Francis ef al., 2002; Glibert et al., 2006; Glibert et al.,
2005). The level of urea in the eftluents of urea producing industries and in
municipal wastewater is pulled down to 1-10 ppm. A quick removal of urea is
required through filtration of blood during hemodialysis therapy in which 100-300 L
of dialysate solution is consumed (Chen and Chiu, 2000). To reduce the cost of the
treatment, regeneration of dialysate solution by removing urea is necessary

(Krajewska, 2009).



Commonly used approaches for the removal of urea are nonenzymatic urea
hydrolysis, which requires high temperatures and pressures and biological
conversion of urea nitrogen to dinitrogen that suffers from instabilities of microbial
bed. Hence, both methods have high operating costs (Simka ef al., 2009). Adsorption
is not considered as an alternative removal method since urea does not show high
affinity to common adsorbents (Chen and Chiu, 2000; Lehmann et al., 1981). Urea
rejection by reverse osmosis membranes also yields below 40%. This is because of
the nature of urea that does not dissociate in water and its molecular weight is low

(Ozaki and L1, 2002).

An attractive, alternative removal method is based on the enzymatic
hydrolysis of urea by urease. The hydrolysis reaction of urea by means of urease is
10" fold higher than the rate of uncatalyzed hydrolysis elimination reaction (Estiu

and Merz, 2004; Krajewska, 2009).

Besides the advantageous of using enzymes as biocatalysts, their instability,
short operational lifetimes, and impossibility for reuse limit their wide range of
applications. Enzyme immobilization onto or within solid support has been accepted
as one of the most successful methods in eliminating the limitations of the free

enzyme (Krajewska, 2004).

1.2 Problem Statement

Despite the fact that enzyme immobilization enables easy recovery and
repetitive use of enzymes, immobilized enzyme much or less will lose its activity
during immobilization regarding the method used for immobilization (Kim ef al.,
2006a). A robust immobilization method requires an easy to fabricate support that
affects less on the activity and substrate/product mass transfer to/from the active sites

of the enzyme. In addition, facile and robust immobilization chemistry that assures



respectable loading of the covalently immobilized enzyme that prevents its leaching

during repetitive use is required.

Recently, electrospun fibers are introduced as promising candidates for
enzyme immobilization that possess many interesting characteristics among them are
exceptional large surface to volume ratio and their facile manipulation for enzyme
immobilization in comparison with other nano to micro sized supports (Jia et al.,
2002). However, the immobilization of urease on electrospun fibrous mats has not

been investigated yet.

Other problems are related to the instable activity of the enzyme in different
pH and temperatures, and rapid decrease in activity as a function of storage duration
(Schulze and Wubbolts, 1999). In general, a successful immobilization of the
enzyme on a support reduces the dependence of the enzyme performance on exact
pH and temperature (make its activity more stable in wider ranges of pH and
temperature), preserves considerable activity over repeated number of reuses, and
increase its storage duration. None of these parameters is investigated for the

immobilized urease on electrospun mats.

1.3  Research Objectives

Based on the problem statements, the objective of the study are as follows:

1. To prepare and characterize the urease immobilized-electrospun
polyacrylonitrile (ePAN) mats

2. To determine the amount of enzyme loading and activity retention

3. To compare the performance of free and immobilized urease in terms of pH,

temperature, storage stability and reusability



1.4  Research Scopes

This study was conducted to determine the alteration in the properties of
urease in terms of pH, temperature, and storage stability following the covalent
immobilization of enzyme on chemically treated electrospun polyacrylonitrile
(ePAN) fibrous mats. Furthermore, applicability of the urease-electrospun fibrous

mat system was studied and expressed in terms of reusability.

First off, polyacrylonitrile (PAN) / dimethylformamide (DMF) dope solution
was electrospun, the fibrous mats were aminated with ethylenediamine (EDA) for 4
hours at 100 °C, and then glutaraldehyde (GA) with different concentrations (0 to 10
wt %) was used as a linker for covalent immobilization of urease on aminated ePAN
(NH,—ePAN) mats. In order to keep track of the changes in the chemistry of pristine
electrospun polyacrylonitrile (ePAN) fibers following the stepwise chemical
treatment, Fourier Transform Infrared (FTIR) spectroscopy was used. As well, Field
Emission Scanning Electron Microscopy (FESEM) to examine the changes in the

morphology of the ePAN fibers, prior and after the chemical treatment.

Finally, effect of temperature (4 °C to 90 °C), pH (5.5 to 8.5) and storage (for
duration of 20 days) on the activity retention of immobilized urease were measured
and compared to those of free respectively, respectively. Reusability was also studied
as a function of remained activity of the urease immobilized ePAN fibrous mats

during reuse cycles.
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