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ABSTRACT 

 

 

 

 

 

Microbial aggregation and surface hydrophobicity are two important 

variables often used to evaluate the initial stage of granules development. Most 

studies only focused on the development of granules but have not studied the ability 

of microbial aggregation and surface hydrophobicity (SHb) of bacteria in the initial 

stage of biogranulation process. This study investigated the effect of metal cations in 

improving granules development based on microbial aggregation and surface 

hydrophobicity (SHb). Autoaggregation (AAg) and SHb of Brevibacillus panacihumi 

strain ZB1, Lysinibacillus fusiformis strain ZB2 and Enterococcus faecalis strain ZL 

cells were studied using batch culture. Synthetic wastewater under aerobic condition 

with the addition of Ca
2+

, Mg
2+

, Al
3+

, Mn
2+ 

and Zn
2+ 

was applied. Initial screening 

for AAg and SHb using 2-level factorial design showed that Ca
2+

 caused a significant 

increase in these two parameters for all the bacteria. Based on the AAg ratio 

measured from changes in absorbance of the culture medium, all of the three bacteria 

were classified as medium AAg. L. fusiformis strain ZB2 had the highest value of 

AAg by having a compact and large microscopic clustering of cells, followed by B. 

panacihumi strain ZB1 and E. faecalis strain ZL. The AAg ability of each bacterium 

was well correlated with the SHb. Addition of selected mixed cations (Ca
2+

, Mg
2+

, 

Al
3+

and Mn
2+

) increased the AAg ability of the bacterial strains from 35% to 41% for 

E. faecalis strain ZL, 43% to 56%  for B. panacihumi strain ZB1, and 49% to 57%, 

for L. fusiformis strain ZB2. The SHb of the investigated bacteria had also increased 

from 32% to 37% for E. faecalis strain ZL, 45% to 55% for B. panacihumi strain 

ZB1, and 51% to 57%, for L. fusiformis strain ZB2. Addition of mixed cations has 

also caused a significant increase in the microbial aggregation and SHb of the mixed 

bacterial culture. The mixed culture consisting of all bacteria had the highest 

microbial aggregation (44.7%). On the contrary, the mixed culture consisting of B. 

panacihumi strain ZB1 and E. faecalis strain ZL had the highest SHb (28.8%). As a 

conclusion, addition of different cations resulted in an increase of AAg and SHb in 

individual and consortium of the tested bacteria. 
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ABSTRAK 

 

 

 

 

 

Agregasi mikrob dan kehidrofobikan permukaan adalah dua pembolehubah 

penting yang selalu digunakan untuk menilai peringkat awal pembentukan granul. 

Kebanyakan kajian hanya tertumpu kepada pembentukan granul tetapi tidak 

mengkaji tentang keupayaan agregasi mikrob dan kehidrofobikan permukaan (SHB) 

daripada bakteria dalam peringkat awal proses pembentukan granul. Kajian ini 

dilakukan untuk menyelidik kesan kation logam dalam meningkatkan proses 

pembentukan granul berdasarkan agregasi mikrob dan kehidrofobikan permukaan 

(SHb). Agregasiauto (AAg) dan SHb bagi sel-sel Brevibacillus panacihumi strain 

ZB1, Lysinibacillus fusiformis strain ZB2 dan Enterococcus faecalis strain ZL telah 

dijalankan secara kultur berkelompok. Kajian dijalankan menggunakan airsisa 

sintetik dalam keadaan aerobik dengan tambahan Ca
2+

, Mg
2+

, Al
3+

, Mn
2+

 dan Zn
2+

. 

Penyaringan awal bagi AAg dan SHb menggunakan reka bentuk 2-tahap faktorial 

menunjukkan bahawa Ca
2+

 memberikan kesan peningkatan besar dua parameter 

tersebut kesemua bakteria yang dikaji. Berdasarkan nisbah AAg yang diukur 

menerusi perubahan penyerapan media kultur, ketiga-tiga bakteria ini 

diklasifikasikan sebagai jenis bakteria yang memiliki AAg sederhana. L. fusiformis 

strain ZB2 mempunyai nilai AAg tertinggi dengan sel mikroskopik yang padat dan 

gumpalan yang besar, diikuti oleh B. panacihumi strain ZB1 dan E. faecalis strain 

ZL. AAg untuk setiap bakteria yang dikaji mempunyai korelasi yang baik dengan 

SHb. Penambahan campuran kation terpilih (Ca
2+

, Mg
2+

, Al
3+

dan Mn
2+

) telah 

meningkatkan keupayaan AAg untuk setiap strain bakteria daripada 35% hingga 

47% bagi E. faecalis strain ZL, 42% hingga 57% bagi B. panacihumi strain ZB1 dan 

42% hingga 56% bagi L. fusiformis strain ZB2. SHb bagi bakteria yang dikaji juga 

menunjukkan peningkatan daripada 32% hingga 37% bagi E. faecalis strain ZL, 45% 

hingga 55% bagi B. panacihumi strain ZB1 dan 51% hingga 57% bagi L. fusiformis 

strain ZB2. Penambahan kation campuran juga memberikan kesan terhadap 

peningkatan agregasi mikrob dan SHb bagi kultur bakteria campuran. Kultur 

campuran yang terdiri daripada kesemua bakteria mempunyai agregasi mikrob 

tertinggi (44.7%). Kultur campuran yang terdiri daripada B. panacihumi strain ZB1 

dan E. faecalis strain ZL memberikan peratusan kenaikan SHb tertinggi (28.8%). 

Sebagai kesimpulan, penambahan kation yang berlainan menghasilkan peningkatan 

AAg, dan SHb secara individu dan gabungan bakteria konsortia yang diuji. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

Biogranulation is a branch of biotechnology for wastewater treatment. 

Biogranulation can be divided into anaerobic and aerobic processes. Although it is 

different in operational processes, the fundamental method of granules formation  in 

both systems are the same. The development of granules requires the  microbial cell 

to aggregate to one another either among the same or different microorganisms. This 

can be achieved  autoaggregation or coaggregation among the bacterial strains. Auto-

aggregation is referred to physical cell-to-cell interaction between genetically 

identical cells, while coaggregation refers to the interaction between genetically 

distinct bacterial cells. Granules are formed by cell immobilization and consists of 

biofilm, entrapped microorganisms and microbial aggregates (Liu and Tay, 2002). 

However it is different from the formation of biofilm because no carriers or 

supporting materials is needed to develop granules (Tay et al., 2006; Di Iaconi et al., 

2007; Adav et al., 2008a; Liu et al., 2009). 
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In general, biogranulation is a process that involves the transformation of the 

seed sludge to sludge aggregates and then the formation of compact clumps. After 

which is the formation of granular sludge before forming mature and stable granular 

sludge. Mature and stable granular sludge is compact and forms nearly spherical  

shape (Tay et al., 2006; Sondhi et al., 2010; Liu et al., 2010; Zheng et al., 2011). 

Compared to conventional activated sludge floc, anaerobic and aerobic granules have 

a regular, dense and strong physical structure, good settling ability, high sludge 

retention and able to withstand shock-loading rate. Application of compact granules 

based technology ease the conventional associated problem such as sludge bulking, 

large treatment plant space, and high production of sludge waste (De Kreuk et al., 

2005). 

 

 

There are two types of reactor system used for biogranulation development; 

upflow anaerobic sludge blanket (UASB) and sequencing batch reactors (SBRs). 

UASB reactor systems have been one of the important anaerobic wastewater 

treatment system for over two decades. There have been successfully operated to 

treat various types of wastewater such as domestic wastewater (Kalogo et al., 2001), 

latex wastewater (Boonsawang et al., 2008) and industrial wastewater such as 

beverage, brewery, food and tannery industries (Karthikeyan and Kandasamy, 2009), 

agro-industrial wastewater (Rajagopal et al., 2013), grey water (Elmitwalli et al., 

2007) and leachate (Torres et al., 2009). The UASB reactors system were commonly 

used by researchers for anaerobic biogranulation development. 

 

 

 Basically, SBR was used for activated sludge treatment in which all of the 

treatment processes take place in the reactor tank and clarifiers are not required. It 

consists of five stages which involves fill, react, settle, decant and idle conditions. 

Research in this area has led to the development of granules in laboratory scale SBRs 

on a wide variety of easily degradable carbon sources such as glucose, acetate and 

ethanol. SBRs have been used for nutrient removal (Keller et al., 2001) such as to 

treat municipal and agricultural wastewater (Abdullah et al., 2011). It has also been 

used to treat industrial and other hazardous wastewater. Research on aerobic 

granulation has concentrated mainly in sequencing batch reactors (SBR) because the 
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reactor operation conditions (cyclic feeding and starvation, high shear stress and 

short settling time) promote development of granules (Liu et al., 2002a)  

 

 

 

 

 

1.2 Problem Statement  

 

 

The anaerobic and aerobic biogranulation wastewater treatment demonstrates 

effective and reliable removal performance, together with outstanding settleability 

sludge profile. However, both systems require relatively long start-up period (Yu et 

al., 2009). Development of granules will take weeks to several months depending on 

the condition of the experimental set-up. Sometimes granules could be formed and be 

seen in the reactor in just a week, however it woud take a long period of time to 

make the whole reactor filled with granules (De Kreuk and Van Loosdrecht, 2004; 

Di Iaconi et al., 2007). 

 

 

 Many research have been conducted to reduce the start-up period for 

biogranulation development by adjusting the configuration of reactors. Optimizing 

certain conditions in the reactor system such as increasing aeration rates, reducing 

the settling time, extending the aeration period and varying the organic loading rate 

have been reported  to reduce the biogranulation time and enhance the performance 

(Qin et al., 2004; Ivanov et al., 2006; Li et al., 2009; Gao et al., 2011). Apart from 

the optimization of certain conditions for the biogranulation development, many 

researchers have also used other alternatives such as adding bioaugmentation 

bacteria, substances, co-substrates, polymers and divalent cations to enhance the 

microbial aggregation during the initial start-up (Tay et al., 2006).   

 

 

These studies show that addition of any material as previously mentioned was 

basically to improve the microbial aggregation hence to speed up the biogranulation 



4 

 

in the initial stage. According to Guo et al. (2011), the changes in bacterial 

population and extracellular polymeric substance (EPS) production could influence 

the cell surface hydrophobicity (SHb), which could also have an effects on microbial 

aggregation. In this case, any factor that can increase the EPS production and surface 

hydrophobicity, may help to improve the microbial aggregation. According to Liu et 

al. (2004a), cell SHb is one of the important factor that trigger the biogranulation. 

However there is still lack of understanding on the effects of foreign materials or 

enhancers on the bacterial cell. Furthermore much research have proven that 

different types of bacteria are non-identical and  may act differently towards the 

materials that are used as enhancers, either as in individual or mixed culture (Adav 

and Lee, 2009; Lamprecht, 2009).  

 

 

Previous research in biogranulation development explains that bacterial 

behavior or characteristic is not necessarily similar to the changes of the 

environment. The bacteria or microorganisms would react to any changes or 

modifications that would probably give a similar or different result. The aim of this 

study was to examine the effect of cations on microbial aggregation and SHb, and 

find a way to improve the aerobic granulation start-up from the perspective of cells 

aggregation. Hence, in order to invstigate the microbial aggregation and cell SHb on 

the addition of cations, three dye-degrading bacteria, Enterococcus faecalis strain 

ZL, Brevibacillus panacihumi strain ZB1 and Lysinibacillus fusiformis strain ZB2 

were used in this study. These bacteria were kindly donated from Faculty of 

Biosciences and Bioengineering, Universiti Teknologi Malaysia. E. faecalis strain 

ZL was indigenously isolated from a palm oil mill effluent (POME). While B. 

panacihumi strain ZB1 and L. fusiformis strain ZB2 were isolated from local textile 

effluent. From here onwards, Enterococcus faecalis strain ZL will be referred to as 

ZL, Brevibacillus panacihumi strain ZB1 will be referred to as ZB1 and 

Lysinibacillus fusiformis strain ZB2 will be referred to as ZB2. 
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1.3 Objectives of the study 

 

 

a) To determine the classification of the autoaggregation (AAg) and 

surface hydrophobicity (SHb) for Brevibacillus panacihumi strain ZB1, 

Lysinibacillus fusiformis strain ZB2 and Enterococcus faecalis strain 

ZL. 

 

b) To investigate the effect of selected cations that influence microbial 

aggregation (AAg) and surface hydrophobicity (SHb) of the bacteria 

using 2 level factorial design on individual bacteria. 

 

c) To investigate the effect of combined cations on microbial aggregation 

and surface hydrophobicity on the mixed culture. 

 

 

 

 

 

1.4 Scope of study 

 

 

In this study, three dye-degrading bacteria, Brevibacillus panacihumi ZB1, 

Lysinibacillus fusiform ZB2 and Enterococcus faecalis ZL were used to represent 

mixed culture in real wastewater. This research involve the investigation of cation on 

microbial aggregation and cell surface hydrophobicity (SHb) of the bacterial strain 

either in the form of single and mixed cultures under aerobic condition using 

modified synthetic textile wastewater. This study was divided into three parts; firstly 

the classification of aggregation and SHb of each bacteria used in this study. 

Secondly experimental design; using a 2-level factorial design, the effects of AAg 

and SHb on the three bacteria were studied individually. Finally the best cations were 

selected and effects of the cations on AAg and SHb of the mixed culture was studied. 
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1.5 Significance of Study 

 

 

This study investigated the effect of cations on the biogranulation initial start-

up. This is because biogranulation development significantly depends on the 

mechanism during the initial stage of the granules formation. This includes the 

process of microbial aggregation and SHb. The significance of this study is to 

improve the initial stage of aerobic biogranulation development by observing the 

microbial aggregation and surface hydrophobicity of bacterial cells. In this study, the 

effect of single cation and interaction between cationic affinity to the change of 

microbial aggregation and SHb of tested bacterial culture were also been observed. 

Nevertheless, the method used in this study will provide an alternative that could be 

used to overcome the long start-up period of aerobic biogranulation development.  
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