PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE AND METHANE TO LIGHT HYDROCARBONS OVER NITROGEN DOPED TITANIUM DIOXIDE

MOHAMMADREZA DASTAN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of (Chemical Engineering)

> Faculty of Chemical Engineering Universiti Teknologi Malaysia

> > AUGUST 2014

To my beloved father, mother and sister

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Allah Almighty as with the blessing this project has successfully been concluded.

Foremost, I would like to express my sincere gratitude to my supervisor Professor Dr Nor Aishah Saidina Amin for the continuous support of my research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this dissertation. I could not have imagined having a better supervisor and mentor for my master study. I would like to thanks Dr Muhammad Tahir for introducing me to the topic as well for the support on the way. Aside, I would like to express my warmest thanks to Chemical Reaction Engineering Group (CREG) members, and other UTM friends for their support and valuable inputs regarding the research.

Words cannot express how grateful I am to my mother, my father and sister for all of the sacrifices that you've made on my behalf. Your prayer for me was what sustained me thus far. I would also like to thanks to all my family members, especially my dear uncle, Mohsen Dastan for supported me in this long journey.

I also wish to express my gratitude to my beloved partner who will always be in my heart for being with me through thick and thin.

ABSTRACT

Concerns of fossil fuel reserves depletion and environmental pollution problems have led to increased demand for alternative fuels. Therefore, methods for converting natural gas into useful fuels were considered. The main objective of this study is to develop pathways for photolysis reduction of carbon dioxide and methane. Initially nanocatalyst were investigated using cell type photoreactor with C₂H₆ and C₃H₈ as main products during CO₂ reduction with CH₄ over nitrogen (N) /TiO₂ nanocatalyst. The yield of C₂H₆ over TiO₂ was 35 µmole g⁻¹ catal⁻¹ enhanced to 166 µmole g⁻¹ catal⁻¹ using 15% N doped TiO₂. Besides, the effects of parameters such as, CH₄/CO₂ feed ratio, reaction temperature and light irradiation time on yield of reduction of CO₂ was studied. Finally, the central composite design (CCD) was employed to find individual and interactive effects of the mentioned parameter on yields of C₂H₆ was studied. The predicted values of the yield of C₂H₆ were found to be in good agreement with experimental values (R²= 0.97), which indicate the suitability of the CCD model.

ABSTRAK

Kebimbangan terhadap pengurangan rizab bahan api fosil dan masalah pencemaran alam sekitar telah membawa kepada peningkatan permintaan bagi bahan api alternatif. Oleh itu, kaedah menukarkan gas asli kepada bahan api berguna dipilih. Objektif utama kajian ini adalah untuk membangunkan laluan bagi pengurangan photolysis terhadap karbon dioksida dan metana. Pada permulaan, naocatalyst dikaji dengan menggunakan sel photoreactor dengan C_2H_6 dan C_3H_8 sebagai produk utama bagi pengurangan CO₂ bersama dengan CH₄ terhadap nanocatalyst nitrogen (N)/TiO. Kadar hasil bagi C_2H_6 C terhadap TiO₂ adalah 35 µmole g⁻¹ catal⁻¹, dipertingkatkan kepada 166 catal⁻¹ g µmole⁻¹ menggunakan 15% N disaluti oleh TiO₂. Selain itu, kesan parameter seperti, nisbah suapan CH₄/CO₂, suhu tindak balas dan sinaran cahaya masa bagi hasil pengurangan CO₂ telah dikaji. Akhirnya, pusat rekabentuk komposit (CCD) digunakan untuk mencari kesan parameter yang dirujuk di atas secara individu dan interaktif bagi pengahsilan C₂H₆ telah dikaji. Nilai ramalan bagi penghasilan C₂H₆ menunjukkan keputusan yang baik dengan nilai eksperimen (R²= 0.97), sekaligus menunjukkan kesesuaian penggunaan CCD model.

TABLE OF CONTENTS

CAHPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xiv
	LIST OF ABBREVIATIONS	xvi
	LIST OF APPENDICES	xvii
1	INTRODUCTION	
	1.1 Background of research	1
	1.2 Problem Statement of Research	3
	1.3 Objectives of Research	4
	1.4 Scope of Research	4
	1.5 Research Hypothesis	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Energy Concern and Global Warming	7
	2.3 Importance of the Methane Utilization	9

2.4	Developments of Methane Conversion	10
	2.4.1 Conversion to Hydrocarbon	10
	2.4.2 Oxidation	10
	2.4.3 Reforming	12
2.5	Photocatalysit Conversion of Methane	15
2.6	Fundamentals of photocatalysis	16
2.7	Titanium Dioxide Semiconductor	18
	2.7.1 Improvemnet of TiO ₂ Photocataly	ytic 21
	Activity	
	2.7.1.1 Nanosized TiO ₂ materials	21
	2.7.1.2 Non- Metal Modify TiO ₂ Nanoca	talysts 22
2.8	Synthesis and Characterization of TiO ₂	23
	Nanocatalysts	
	2.8.1 Technologies for Developing	23
	Nanoparticles	
	2.8.2 Sol-Gel Synthesis of TiO ₂ Nanop	articles 23
2.9	Characterization of Nanocatalysts	29
	2.9.1 X-ray Diffraction (XRD)	29
	2.9.2 Scanning electron microscopy (Sl	EM) 30
	2.9.3 Transmission Electron Microscop	y 31
(TEM	1)	
	2.9.4 Fourier Transfer Infrared Spectro	scopy 31
	(FTIR)	
	2.9.5 Brunauer-Emmerr-Teller (BET) S	Surface 32
	Area	
	2.9.6 UV-Visible Spectrophotometer	32
		22
	THODOLOGY	33
3.1	Introduction	33
3.2	Materials of research	33
3.3	Synthesis of TiO_2 Nanoparticles	35
	3.3.1 Synthesis of N doped TiO ₂ Nanopa	
3.4	Photocatlytic Carbon Dioxide and Metha	ine 37

	Reductions into Fuel	
	3.4.1 Cell Type Phorocatalytic Reactor	37
3.5	Response Surface Methodology	38
RES	ULT AND DISCUSSION	41
4.1	Introduction	41
4.2	Characterization of Nanocatalysts	42
	4.2.1 X-ray Diffraction Analysis	42
	4.2.2 FESEM Analysis	43
	4.2.3 TEM Analysis	44
	4.2.4 FTIR Analysis	45
	4.2.5 Adsorption Isotherm, Surface Area and	46
	Pore Structure Analysis	
	4.2.6 DR UV-Vis Spectrophotometer	48
Anal	lysis	
4.3	Carbon Dioxide Reduction with Methane Using	50
	Cell Type Photoreactor	
	4.3.1 Effect of Nitrogen Loading on TiO ₂	50
	Photoactivity	
	4.3.2 Effect of CO ₂ /CH ₄ Feed Ratio on	51
	Hydrocarbon Yield	
	4.3.3 The effect of reaction Temperature on	52
	Yield of Product	
	4.3.4 Effect of Irradiation Time on	53
Hydr	rocarbon	
	Yield	
4.4	Mechanism of CO ₂ Photoreduction with CH ₄	54
4.5	Experimental Design and Optimization	55
	4.5.1 Central Composite Design Model	56
	Development and Validation	
	4.5.2 Analysis of Variance	58
	4.5.3 Effect of Variable as Response Surface	60
	and Counter Plots on Photocatalytic Process	

4

		4.5.4 Optimal Condition of Photocatalytic	63
		Reduction of CO ₂	
	4.6	Summary	64
5 CONCLUSION AND RECOMMENDATIONS		66	
	5.1	Conclusions	66
	5.2	Recommendation for Future Research	67
REFERENCES			69
Appendixes			75-78

LIST OF TABLE

TITLE

PAGE

1.1	Location of Natural Gas Reserves	2
2.1	Change of Gibbs free energy for various reactions	14
2.2	Properties of anatase, rutile and brookite [45]	20
2.3	TiO ₂ based photocatalytic synthesis method	24
2.4	Important element used in the various steps of a sol-gel process [45]	26
3.1	Type and characterization of materials used for catalyst synthesis	34
3.2	Types of gases used for experiments	34
4.1	The physiochemical characteristic of TiO_2 and N-doped TiO_2	48
4.2	Experimental range and levels of the independent variables	56
4.3	The 3-factor central composite design matrix and the value of response function	57
4.4	ANOVA for Response Surface Quadratic Model for Yield of Ethane	59
4.5	Optimization result using response surface method	64

LIST OF FIGURE

FIGURE NO.	TITLE	PAGE
1.1	World proven reserves of natural gas (1012 m ³) [1]	2
2.1	Schematic representation of band potential of several	17
	semicundactor [37]	
2.2	Mechanism and patways for photocatalytic oxidaction	18
	[39]	
2.3	Crystalline structure of TiO2 based maerials; Rutil,	20
	Antase, Brookite [45]	
2.4	Schematic Presentation of particle size on TiO_2	22
	photoactivity [49]	
3.1	sol-gel methods for preparation of TiO ₂ nanoparticles	35
3.2	sol-gel method for preparation of N doped TiO_2	36
	nanoparticles	
3.3	Schematic of cell type photoreactor system for CO_2	38
	reduction with CH ₄ to hydrocarbons	
3.4	Central composite designs for the optimization of: (a)	39
	two variables (b) three variables (\bullet) Points of factorial	
	design, (\circ) axial points and (\Box) [61]	
3.5	Flow chart of general research methodology	40
4.1	XRD pattern of anatase TiO_2 and N/TiO ₂ catalyst	42
4.2	FESM micrographs of TiO_2 nanoparticles (a-b) and N	43
	doped TiO ₂ nanoparticle (c-d) at different magnification	
4.3	TEM and HRTEM images of TiO_2 and N/TiO_2	44
	nanoparticles	
4.4	FTIR spectra of bare TiO_2 and 15% N/TiO ₂ catalysts	45

4.5	N_2 adsorption –desorption isotherms of TiO ₂ and	47
	N/TiO ₂ samples	
4.6	Pore size distribution of TiO ₂ and N/TiO ₂ samples	47
4.7	Uv-Vis absorption spectra of TiO ₂ and N modified TiO ₂	49
	nanocatalysts	
4.8	Effect of Nitrogen loading on TiO2 photoactivity for	51
	photocatalytic CO ₂ reduction (PCO ₂ = $.175$ bar, PCH ₄ =	
	0.175, reaction temperature 100 (°C), reaction time 3h)	
4.9	Yield of C ₂ H ₆ at various initial CO ₂ /CH ₄ feed ratio over	52
	15% N/TiO ₂ (Irradiation time 3h, reaction temperature	
	100 °C)	
4.10	Effect of temperature on photocatalytic CO ₂ reduction	53
	to C_2H_6 and C_3H_8 over 15% N/TiO2 photocatalyst	
	(reaction time 3h, CO ₂ /CH ₄ feed ratio 1)	
4.11	Effect of irradiation time on photocatalytic CO ₂	54
	reduction to C_2H_6 and C_3H_8 over 15% N/TiO ₂	
	photocatalyst (reaction temperature, CO ₂ /CH ₄ feed ratio	
	1)	
4.12	Comparison between predicted and observed Ethane	60
	yield (a), the predicted value and studentized residual	
	plot (b).	
4.13	The response surface and counter plots function of	61
	reaction temperature and irradiation time	
4.14	The response surface and counter plots function of	63
	nitrogen loading and reaction time	
4.15	Desirability ramp for optimal condition of model	64
4.16	Perturbation plot of reaction time, reaction temperature	65
	and nitrogen loading	

LIST OF SYMPOLS

α	-	Intensity factor
β	-	Full width at half maximum
С	-	Speed of light
D	-	Average Particle size
e	-	Electron
E_{gap}	-	Gap energy
E_{bg}	-	Energy band gap
Ε	-	Activation energy
E_p	-	Energy of photon
f	-	Photon flux
h	-	Planks constant
ΔH	-	Change in enthalpy of reaction (Kj/mole
h^+	-	Hole
Н	-	Heat of reaction
Ι	-	Light intensity (mW/cm ²)
I_p	-	Photon Irradiance
k	-	Reaction rate constant
k_l	-	Reduction rate constant
Kj	-	Kilo Joule
k_2	-	Oxidation rate constant
М	-	Metal
nm	-	Nanometer
Ν	-	Nitrogen
S	-	Active Site
TiO2	-	Titanium dioxide
Ti	-	Titanium

Hg	-	mercury
V	-	Volt
W	-	Watt
λ	-	Wavelength

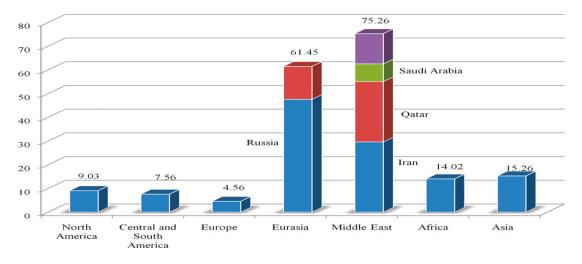
LIST OF ABBREVIATIONS

С	-	Concentration
CVD	-	Chemical vapor deposition
CSD	-	Chemical solvent deposition
GHG	-	Greenhouse gas
NHE	-	Normal Hydrogen Electrode
BET	-	Braunaure-Element-Teller
FTIR	-	Fourier Transform Infrared Spectroscopy
FESEM	-	Field Emission Scanning Electron Microscopy
HRTEM	-	High Resolution Transmission Electron Microscopy
SEM	-	Scanning Electron Microscopy
XRD	-	X-ray Diffraction
UV-Vis	-	Ultraviolent-Visible
VLR	-	Visible light responses
CCD	-	Central composite design
RSM	-	Response surface methodology
ANOVA	-	Analysis of variance

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Photographs of photocatalytic reactor	79
---	----


CHAPTER 1

INTRODUCTION

1.1 Background of Research

Currently, much of the energy used is produced by fossil fuels. Unfortunately, deposits of fossil fuels reducing too fast owing to industrial developments and other energy requirement. The use of fossil fuels increases air pollution problem, as well as the effect of climate change and global warming. To prevent environmental catastrophe and depleting of the fossil fuel resources a generating notice has developed to replace non-fossil and environmentally friendly energy sources.

Methane is introduced as a greenhouse gas. In the form of natural gas, capacious volumes of methane are extensively accessible in nature. The great supply of this gas cusses it attractive raw substance for fuels and chemical synthesis. Based on the newest reports presently, proven world natural gas supplies are approximate to 6609 trillion cubic feet or about 187 trillion cubic (Figure 1.1) [1]. Because of a large quantity of natural gas are predominantly found in far-off areas (Table 1), Therefore gas exploitation and transportation is so expensive. This problem raises the demand for converting gas into liquids on-site [2-6]. Pipeline and tanker can be transported natural gas liquefied by refrigeration. Though, compressed gas to 80 atm is necessary for transfer gas via these pipelines also for distant market it is possible sometimes pipeline not be accessed [2, 4].

Figure 1.1 World proven reserves of natural gas (10^{12} m^3) [1]

Type of location	1960	1970	1990
Easy onshore zones	15.8	27.5	60
offshore	1.6	4.5	25
Arctic and Siberia	0.1	7.5	42
Other difficult onshore		0.5	2
world	17.5	40.0	129
share of difficult zones (%)	10	31	53

Table 1.1:Location of Natural Gas Reserves (10¹² m³) [1]

The most common method for converting methane into higher oxygenates and hydrocarbons are not economical because these methods need to specific conditions like high pressure, temperature and particular catalyst. Thus Scientists encourage finding another method for conversion of carbon dioxide and methane to valuable compounds. Methanol is a favorable compound between the products of methane oxidation because it saves so much of energy of methane. In addition, carry out transportation and storage needs. Methanol can be transformed into useful product and oxygenated fuels or may be used straightly as fuel in industry [7]. Heterogeneous photocatalysis is a developing technology also significant for organic synthesis moreover for water and air cleaning. Scientists have worked in this field for years. Heterogeneous photocatalysis has developed as a specific technique for many usages, with the synthesis processing and characterization of new wide band gap and narrow band gap semiconductor materials. In photocatalysis the selectivity of light source is a very significant [7]. The main goal of this study is the reduction of CO_2 and CH_4 to higher hydrocarbon with mild condition using semiconductor photocatalyst and light.

1.2 Problem Statement of Research

Concerns of fossil fuel reserves depletion and environmental pollution problems have led to increased demand for alternative fuels. Therefore, methods for converting natural gas into useful fuels were considered. One of these methods which is our interest is the photocatalyst reduction of carbon dioxide and methane to hydrocarbons. However, breaking stable CO_2 molecule through thermal reforming requires higher energy. The basic problem in front in this study are explained as below:

- i. CO₂ reduction with CH₄ to hydrocarbon fuels is a two-step process which demanded higher energy. However, on industrial, input energy provided by composition of CH₄ causes more greenhouse gases effect, it is also uneconomical as well as unfriendly process to the environment.
- ii. CO₂ photocatalysts reduction to fuels have many advantages, yet photocatalysts and reactors under investigations have lower efficiency due to incompetent yield and repartition of light irradiation over the catalyst surface.
- TiO₂ semiconductor is widely studied due to great availability, cheap and many other benefits. It's also has lower light adsorption performance, obvious photoactivity and selectivity for photocatalytic CO₂ reduction to fuels

1.3 Objectives of Research

The following are the objectives of this research:

- i. To prepare, characterize and test the nitrogen modified TiO_2 nanocatalysts (N-TiO₂) for CO₂ reduction to fuels.
- ii. To investigate the effectiveness of various operating parameters on the photoactivity of nanocatalysts in terms of yield
- iii. To study central composite design matrix and response surface methodology to design the experiments and evaluate the interactive effects of the three most important operating variables.

1.4 Scope of Research

The following are the scope of this research:

- TiO₂ nanoparticle, N/TiO₂ nanoparticle are prepared using sol-gel single step method to study the path of CO₂ photoreduction to hydrocarbon fuels. Nanaocatalysts were characterized using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Electron Microscopy (HRTEM), Fourier Transfer infrared spectroscopy (FTIR), Brunauer-Emmerr-Teller (BET) Surface Area and UV-Visible Spectrophotometer
- Operating parameter such as light intensity, N loading, reaction temperature, feed ratio and irradiation time were investigated in cell photoreactor.
- iii. Design expert software was used to study the response surface methodology (RSM) and the effect of three most elements on yield of hydrocarbon and find optimum condition for CO_2 and CH_4 photoreduction.

1.5 Research Hypothesis

Developing photocatalytic system for efficiently converting CO_2 molecule to hydrocarbon fuels is the main focus of this study. Nanosized catalysts and good designed photoreactor could help to achieve this aim. Hence, most hypotheses of the research described as follows:

- i. The single step CO₂ reduction to hydrocarbon fuels is possible through photochemical process. Nanostructured semiconductor catalyst is organized to be designed in such a way which could enable to overcome obstacles by providing higher light absorption capacity, controlling of surface reaction for increasing selectivity and steps ahead toward higher CO₂ reduction. For this aim TiO₂ nanoparticles doped with structured material.
- ii. Improved photocativity of CO₂ reduction to hydrocarbon fuels will be possible by modified Nonmetal ions to titanium structure. Nitrogen was used because of their determine features and selective production of hydrocarbon fuels.

REFERENCES

1	U. S. Energy Information Administration, International Energy Outlook 2010
	(http://www.eia.gov/oiaf/ieo/index.html).
2	Lunsford, J. H. Catalytic Conversion of Methane to More Useful Chemicals
	and Fuels: A Challenge for the 21st Century. Catalysis Today 2000, 63: 165-
	174.
3	jeon, E. C., Myeong, S., Sa, J. W., Kim, J., and jeong, J. H. Greenhouse gas
	emission factor development for coal-fired power plants in Korea. Applied
	Energy. 2010. 87(1): 205-210.
4	Centi, G., Lanzaame, P. and Perathoner, S. Analysis of the alternative routes
	in the catalytic transformation of lignocellulosic materials. Catalysis Today.
	2011 167(1): 14-30.
5	Kleiman, A., Marquez, A., Vera, M. L., Meichtry, J. M. and Litter, M. I.
	Photocatalytic activity of TiO ₂ thin films deposited by cathodic arc. <i>Applied</i>
	Catalysis B: Environmetal. 2011. 101: 676-681.
6	York, A. P. E., Xiao, T. C., Green, M. L. H., Claridge, J. B. Methane
	Oxyforming for Synthesis Gas Production. Catalysis Reviwe Sci. Eng. 2007,
	49: 511–560.
7	Gondal, M. A., Hameed, A., Yamani, Z. H., Arfaj, A. Photocatalytic
	transformation of methane into methanol under UV laser irradiation over
	WO3, TiO ₂ and NiO catalysts. <i>Chemical physics Letters</i> . 2004, 392: 327-377.
8	Taylor. C. E. Methane conversion via photocatalytic reactions. Catalysis
	<i>Today.</i> 2003, 84: 9-15.
9	Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.,
	Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga,

	G., Schulz, M., and Van Dorland, R., Contribution of Working Group I to the
	Forth Assessment Report of the Intergovernmental Panel on Climate Change.
	The Physical Science Basis. 2007, 129–234.
10	Yuliatiw, L., Yoshida H. Photocatalytic conversion of methane. Chem. Soc.
	<i>Rev.</i> 2008, 37: 1592–1602.
11	Belgued, M., Amariglio, H., Pareja, P., Amariglio, A. and Saint-Just, J.
	Catalysis Today. 1992, 13: 437.
12	Zeng, J. L., Xiong, Z. T., Zhang, H. B., Lin, G. D. and Tsai, K. R. Catalysis
	Letter. 1998, 53: 119.
13	Gesser, H. D., Hunter N. R., and Prakash, C. B. The direct conversion of
	methane to methanol by controlled oxidation. Chemical. Review. 1985, 85(4):
	235.
14	Brown M. J., and Parkyns, N. D. Progress in the partial oxidation of methane
	to methanol and formaldehyde. Catalyst Today. 1991, 8(3): 305.
15	Su, Y. S., Ying, J. Y., and Green, W. H. Upper bound on the yield for
	oxidative coupling of methane. Journal of Catalysis. 2003, 218: 321.
16	Hu, Y. H., and Ruckenstein, E. Binary MgO-based solid solution catalysts for
	methane conversion to syngas. Catalyst Review. Sci. Eng., 2002, 44(3): 423.
17	Roh, H. S., Potdar, H. S., & Jun, K. W. Carbon dioxide reforming of methane
	over co-precipitated Ni-CeO ₂ , Ni-ZrO ₂ and Ni-Ce-ZrO ₂ catalysis. <i>Catalysis</i>
	Today. 2004, 93, 39-44.
18	Haslam, R., & Russell, R. Industrial high-pressure reactions-hydrogenation of
	petroleum. Industrial & Engineering Chemistry. 1930. 22(10), 1030-1037.
19	Roh, H. S., Jun, K. W., Dong, W. S., Park, S. E., & Baek, Y. S. Highly stable
	Ni catalyst supported on Ce–ZrO ₂ for oxy-steam reforming of methane.
	Catalysis letters, 2001. 74(1-2), 31-36.
20	Olah, G. A. Electrophilic methane conversion. Accounts of chemical research,
	1987, 20(11), 422-428.
21	Gondal, M. A., Hameed, A., Yamani, Z. H., & Arfaj, A. Photocatalytic
	transformation of methane into methanol under UV laser irradiation over
	WO ₃ , TiO ₂ and NiO catalysts. <i>Chemical physics letters</i> . 2004. 392(4), 372-
	377.

22	Maruthamuthu, P., Ashokkomar, M. Hydrogen production with visible light
	using metal loaded WO ₃ and MV2+ in aqueous medium, Int. J. Hydrogen
	Energy., 1989, 14: 275.
23	Gondal, M. A., Hameed, A., Yamani, Z. H., & Arfaj, A. Photocatalytic
	transformation of methane into methanol under UV laser irradiation over
	WO ₃ , TiO ₂ and NiO catalysts. Chemical physics letters, 2004.392(4), 372-
	377.
24	Serpone, N., Pelizzetti E. (Eds.). Photocatalysis, Fundamentals and
	Applications, Wiley, New York, 1989, 169-369.
25	Blake, D. M. Bibliography of Work on the Photocatalytic Removal of
	Hazardous Compounds from Warter and Air, Report: NREL/TP-340-22197,
	National Renewable Energy Laboratory, Golden Co., 1997.
26	Bamwenda, G. R., & Arakawa, H. The visible light induced photocatalytic
	activity of tungsten trioxide powders. Applied Catalysis A: General. 2001.
	210(1), 181-191.
27	Bamwenda, G. R., Sayama, K., & Arakawa, H. The effect of selected reaction
	parameters on the photoproduction of oxygen and hydrogen from a WO $_3$ –Fe $_2$
	Fe^3 aqueous suspension. Journal of Photochemistry and Photobiology A:
	Chemistry. 1999.122(3), 175-183.
28	Bamwenda, G. R., Uesigi, T., Abe, Y., Sayama, K., & Arakawa, H. The
	photocatalytic oxidation of water to O ₂ over pure CeO ₂ , WO ₃ , and TiO ₂ using
	Fe^{3+} and Ce^{4+} as electron acceptors. Applied catalysis. A, General. 2001.
	205(1-2), 117-128.
29	Taylor, C. E., & Noceti, R. P. New developments in the photocatalytic
	conversion of methane to methanol. Catalysis Today. 2000 55(3), 259-267.
30	Gondal, M. A., Hameed, A., Suwaiyan, A., in: 11th Saudi-Japanese
	Symposium on Catalysis in Petroleum Refining and Petrochemicals, Dhahran,
	2001.
31	Gondal, M. A., Hameedb, A., Suwaiyan, A. Photo-catalytic conversion of
	methane into methanol using visible laser, Applied Catalysis A: General.
	2003, 243: 165–174.
32	Gondal, M. A., Hameed, A., Yamani, Z. H., Arfaj, A. Photocatalytic
	transformation of methane into methanol under UV laser irradiation over
	<u> </u>

	WO ₃ , TiO ₂ and NiO, catalysts. Chemical Physics Letters., 2004, 392: 372-
	377.
33	Torabi, M., Sharifnia, S., Hosseini, S.N., Yazdanpour, N. Photocatalytic
	conversion of greenhouse gases (CO ₂ and CH ₄) to high value products using
	TiO ₂ nanoparticles supported on stainless steel webnet. Jornal of the Taiwan
	Institute of Chemical Engineering. 2013.44: 239-246.
34	Li, X., Zhuang, Z., Li, W., Pan, H. Photocatalytic reduction of CO ₂ over noble
	metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A:
	General. 2012. 429-430: 31-38.
35	Tahir, M., Saidina, N. photocatalytic reduction of carbon dioxide with water
	vapors over montmorillonite modified TiO ₂ nanocomposites. Applied
	Catalysis B: Enviromental. 2013. 142-143: 512-522.
36	Kabra, K., Chaudhary, R,. Sawhhney, R. L. Treatment of hazardous organic
	and inorganic componds through aqueous -phase photocatalysis: A review.
	Industerial Engineering Chemistry Resources. 2004. 43: 7683-7696
37	Yahaya, A., Gondal, M. A and Hamed, A. Selective laser enhanced
	photocatalytic conversion of CO ₂ into methanol. <i>Chemical physics Letters</i> .
	2004. 400(1-3): 206-212
38	Linsebigler, A. L., Lu, G., Yates, J. T. and Jr. photocatalysis on TiO ₂ surfaces:
	Principles, Mechanisms, and Selected Results. Chemical Reviews. 1995.
	95(3): 735-758.
39	Usubharatana, P., Macmartin, D,. Veawab, A. and Tontiwachwuthikul, P.
	Photocatalytic process for CO ₂ emission reduction from industrial flue gas
	streams. Industrial & Engineering Chemistry Research. 2006. 45(8): 2558-
	2568.
40	Smith, A. M. and Shuming, N. semiconductor Nanocrystals: Structure,
	Properties, and Band gap Engineering. Accounts of Chemical Research. 2010.
	43(2): 190-200.
41	Yacobi, B. G. Semiconductor Materials: An Introduction to Basic Principles,
	New York: Kluwer Academic Publisheres. 2003
42	Wang, J., Uma, S. and Klabunde, K. J. Visible light photocatalysis in
	transition metal incorporated titania-silica aerogels. Applied Catalysis B:
	Environmental. 2004. 48(2): 151-154

43	Taranto, J., Frochot, D. and Pichat, P. Photocatalytic treatment of air:
	comparision of various TiO_2 , coating methods, and supports using methanol
	or n-Octane as test pollutant. Industrial and Engineering <i>Chemistry Research</i> .
	2009. 48: 6229-6236
44	Zhang, Y. Q., Zhou, W., LiU, S. and Navrotsky, A. Controollable morphology
	of Engelhard titanium silicates ETS-4: Photocatalytic, and calorimetric
	studies. Chemistry of Materials. 2012, 19(8): 675-678.
45	Nolan, N. T. Sol-gel synthesis and characterization of novel metal oxide
	nanomaterials for photocatalytic applications. <i>Dublin Institute of Technology</i> ;
	2010.
46	Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. Titania
	nanotubes prepared by chemical processing. Advanced Materials. 1999.
	11(15): 1307-13011.
47	Shi, J. A. and Wang, X. D. Growth of rutile titanium dioxide nanowires by
	pulsed chemical vapor deposition. Crystal Growth & Design. 2011. 11(4):
	949-954.
48	Muhammad Tahir. Carbon Dioxide Reduction to Fuels Using Modified
	Titanium Nanocatalysts in Monolith Photoreactor. Ph.D. Thesis. Universiti
	Teknologi Malaysia; 2013.
49	Koc, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., jirkovsky, J. and
	Solcov, O. Effect of TiO_2 particle size on the photocatalytic reduction of CO_2 .
	Applied Catalysis B: Environmental. 2009. 89: 494-502.
50	Zhu, L., Cui, X., Shen, J., Yang, X., & Zhang, Z. Visible Light
	Photoelectrochemical Response of Carbon-Doped TiO ₂ Thin Films Prepared
	by DC Reactive Magnetron Sputtering. Acta Physico-Chimica Sinica. 2007.
	23(11), 1662-1666.
51	Li Puma, G., Bono, A., Krishnaiah, D. and Collin, J. G. Preparation of
	titanium dioxide photocatalyst loaded in to activated carbon support using
	chemical vapor deposition: a review paper. Journal of Hazardous Materials.
	2008. 157(2-3): 209-219.
52	Demyodv, D.V. Nanosized alkaline earth metal titanates: effects of size on
	Photocatalytic and dielectric properties. Kansasa State University; 2006.

53	Akpan, U.G. and Hameed, B. H. The advancements in sol-gel method of
	doped- TiO2 photocatalysts. Applied Catalysis A: General. 2010. 375:1-11.
54	Kim, S. J., Yun, S. M., Kim, H., Kim, J. G., & Lee, Y. S. Preparation and
	photocatalytic activity of multi-elements codoped TiO ₂ made by sol-gel
	method and microwave treatment. Carbon Letter. 2009. 10(2), 123-30.
55	Asahi, R. Y. O. J. I., Morikawa, T. A. K. E. S. H. I., Ohwaki, T., Aoki, K., &
	Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides.
	science, 2001, 293(5528), 269-271.
56	Irie, H., Washizuka, S., Yoshino, N., & Hashimoto, K. Visible-light induced
	hydrophilicity on nitrogen-substituted titanium dioxide films. Chemical
	Communications. 2003 (11), 1298-1299.
57	Li, D., Haneda, H., Hishita, S., & Ohashi, N. Visible-light-driven NF-codoped
	TiO ₂ photocatalysts Optical characterization, photocatalysis, and potential
	application to air purification. Chemistry of Materials. 2005. 17(10), 2596-
	2602.
58	Cong, Y., Chen, F., Zhang, J., & Anpo, M. Carbon and nitrogen-codoped
	TiO ₂ with high visible light photocatalytic activity. <i>Chemistry Letters</i> . 2006,
	35(7), 800-801.
59	Zhang, G., Ding, X., Hu, Y., Huang, B., Zhang, X., Qin, X., Xie, J.
	Photocatalytic degradation of 4BS dye by N, S-codoped TiO ₂ pillared
	montmorillonite photocatalysts under visible-light irradiation. The Journal of
	Physical Chemistry. 2008 112(46), 17994-17997.
60	Changlin, Y. u ., Jimmy, C. Y. u. A Simple Way to Prepare C–N-Codoped
	TiO ₂ Photocatalyst with Visible-Light Activity. <i>Catal Letter</i> . 2009, 129: 462–
<u>(1</u>	470.
61	Wade, J. An investigation of TiO ₂ -ZnFe ₂ O ₄ nanocomposites for visible light
(2)	photocatalysis Ph.D. Thesis, <i>University of South Florida</i> . 2005.
62	Dharma, J., Pisal, A., & Shelton, C. T. Simple Method of Measuring the Band
	Gap Energy Value of TiO ₂ in the Powder Form using a UV/Vis/NIR
63	Spectrometer. Application Note. 2009.
05	Demirel, M., Kayan, B. Application of response surface methodology and
	central composite design for the optimization of textile dye degradation by air oxidation <i>International Journal of Industrial Chamistry</i> 2012 3:24, 1-10
	oxidation. International Journal of Industrial Chemistry. 2012. 3:24, 1-10.