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ABSTRACT 

 

 

 

 

Petroleum-based accelerants such as diesel, gasoline, kerosene and others are 

usually related to fire debris analysis because they are inexpensive, readily available 

and commonly used to enhance the burning intensity of fire. However, combustion 

process and the presence of pyrolysis products can lead to misclassification of 

accelerants to the arson investigator. Furthermore, fire debris which has been 

exposed for several days may undergo some component lost and makes the detection 

more difficult. In this study, gas chromatography-mass spectrometry (GC-MS) was 

used to identify the accelerants present in simulated arson incidents. Total ion 

chromatogram and the peak area from the GC-MS data were used to perform 

chemometrics techniques which include principal component analysis (PCA), linear 

discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA) 

and support vector machine (SVM). The performance of these methods was further 

tested by analyzing samples which have been exposed for several days in the 

environment. Three accelerant classes were formed by these classification models 

which consist of gasoline, kerosene and diesel. Supervised pattern recognition 

technique showed satisfactory results, in terms of correctly classified samples, which 

were 90.4% (LDA), 85.3% (PLS-DA) and 96.7% (SVM) for training sets. A test set 

produced a value of 87.5% correct classification for LDA, 83.3% for PLS-DA while 

the best classification is 91.7% by SVM. Fire debris analysis using GC-MS with the 

aid of chemometrics methods give a promising result in the identification and 

classification of accelerants used to initiate the fire in arson cases. 
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ABSTRAK 

 

 

 

 

Bahan penggalak kebakaran berasaskan petroleum seperti diesel, petrol, 

minyak tanah dan lain-lain biasanya berkait rapat dengan analisis sisa kebakaran 

kerana bahan ini adalah murah, mudah didapati dan biasa digunakan untuk 

meningkatkan keamatan api pembakaran. Walau bagaimanapun, proses pembakaran 

dan kehadiran produk pirolisis boleh membawa kesan sampingan dalam pengkelasan 

bahan penggalak api oleh penyiasat kebakaran. Tambahan pula, sisa kebakaran yang 

telah terdedah beberapa hari boleh melalui proses kehilangan beberapa komponen 

dan menyukarkan pengesanannya. Dalam kajian ini, kromatografi gas-spektrometri 

jisim (GC-MS) telah digunakan untuk mengenal pasti kehadiran bahan penggalak 

pembakaran dalam simulasi insiden bahan terbakar. Kromatogram ion jumlah dan 

luas puncak daripada data GC-MS telah digunakan untuk melaksanakan teknik 

kimometrik termasuk analisis komponen utama (PCA), analisis diskriminan linear 

(LDA), analisis diskriminan-kuasa dua terkecil separa (PLS-DA) dan mesin vektor 

sokongan (SVM). Prestasi kaedah ini telah diuji dengan menganalisis sampel yang 

terdedah selama beberapa hari di alam sekitar. Tiga kelas bahan penggalak 

kebakaran telah dibentuk hasil daripada model klasifikasi yang terdiri daripada petrol, 

minyak tanah dan diesel. Teknik pengecaman corak berselia menunjukkan keputusan 

yang memuaskan, daripada segi pengkelasan sampel iaitu 90.4% (LDA), 85.3% 

(PLS-DA) dan 96.7% (SVM) untuk set latihan. Set ujian menghasilkan nilai 87.5% 

pengkelasan betul untuk LDA, 83.3% untuk PLS-DA sementara pengkelasan terbaik 

ialah 91.7% untuk SVM. Analisis sisa kebakaran menggunakan GC-MS dengan 

bantuan kaedah kimometrik memberikan keputusan yang baik dalam 

pengenalpastian dan pengkelasan bahan penggalak kebakaran yang digunakan untuk 

memulakan api dalam kes kebakaran.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Arson represents a serious problem which is defined as a criminal act of 

purposely setting fire to a house, building or other properties. Arsons are included as 

difficult crime to investigate and prosecute. It is because every fire scene need to be 

treated as a potential arson scene until clear proof of natural and accidental cause is 

discovered. Furthermore, the crime itself, if it is successful, destroys the physical 

evidence at its origin [1]. In some cases, the evidence is still there but it requires 

methodical and rigorous analysis. Arson is a crime that destroys evidence rather than 

creates one as it progresses and normally there is not much eyewitness evidence. 

Moreover, the incendiary origin of the fire is often hard to prove.  

 

 

The main objectives of arson investigation are to determine the cause and 

origin of fire and also to identify the accelerants used to start the fire. However, fire 

investigator faced great challenges when there are lacking of physical evidence in the 

fire scene due to thermal degradation and combustion process. Besides that, complex 

nature of petroleum-based fire accelerants poses a problem for the arson investigator 

to determine the origin and the cause of the fire. Many accelerants composed of 

hundreds of compounds that can make identification of fire debris very difficult. The 

detection of fire accelerants becomes more difficult due to the contamination from 

the pyrolysis of common household items such as plastics, carpet and carpet padding 

at the fire scene [2-4]. 
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The study of weathering effect is important since the exposed accelerants will 

definitely have some changes in their chemical composition. Hence it will greatly 

affect the chromatographic data. The chromatographic data obtained from fire debris 

will be used to perform chemometric techniques to see the accelerants grouping. 

Studies on the evaporation effect on samples are necessary to avoid misinterpretation 

of accelerants [5, 6].  

 

 

Identification of petroleum-based accelerants are normally conducted 

according to chemical components of the accelerants. Chromatographic technique 

remains as the best method to analyze the components. Gas chromatography mass 

spectrometry (GC-MS) analysis of fire debris has been used to identify residues of 

fire accelerants. Identification of fire accelerants using GC-MS depends on two main 

types of pattern matching methods [7]. One approach makes use of extracted ion 

profile matching. With this method, intensity profiles for characteristic ions of fire 

debris samples are visually compared with the profile of known standard. Another 

method depends on target component analysis. A target compound chromatogram 

(TCC) is developed using the retention time and relative amount for each target 

compound. Visual pattern recognition is employed to confirm the fit to TCCs of 

known accelerant. This is done for the identification of an unknown accelerant. 

 

 

Both these methods require visual inspection for the identification of complex 

samples of fire accelerant. This process is time consuming and may lead to 

misclassification. Furthermore, the interpretation of the complex data obtained from 

arson suspected fire required the experience of a trained analyst. Hence, a powerful 

tool such as chemometrics method is essential in interpreting these complex data 

obtained from GC-MS to classify and identify fire accelerants present in arson crime 

scene. 

 

 

Preliminary work [8] on the classification of accelerants extracted from the 

fire debris produced promising results. Clusters which correspond to the type of 

accelerants were obtained by using principal components analysis (PCA). In the 

proposed study, more powerful pattern recognition method such as support vector 

machine [9] will be employed to develop classes using samples of fire debris with 
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known accelerants. The developed class will be validated by predicting the type of 

accelerants in the unknown samples. Furthermore, the effect of weathering on the 

classification will be studied.  

 

 

 

 

1.2 Problem Statement 

 

 

Petroleum-based accelerants are commonly associated with arson-related fire. 

In most arson cases, accelerants such as gasoline, kerosene and diesel are used to 

enhance the intensity and rate of fire. The complex nature of petroleum-based 

accelerants posed a problem for the arson investigator to determine the origin and the 

cause of the fire. The identification of fire accelerants become more difficult due to 

contamination from pyrolysis of common household items such as plastics, carpet 

and carpet padding at the fire scene. Furthermore, the weathering effect on the fire 

debris samples will alter the chemical composition due to the loss of light 

components via vaporization process. Therefore, correct identification of accelerants 

is crucial to arson investigation.  

 

 

In this study, the application of gas chromatography-mass spectrometry (GC-

MS) followed by data analysis using chemometric techniques were conducted. A 

comparatively new pattern recognition method, support vector machine (SVM) was 

applied to perform the non-linear classification of accelerants in fire debris analysis. 

Other chemometric methods such as soft independent model of class analogy 

(SIMCA) has been used to perform the classification of petroleum-based accelerants 

in previous study [8]. However the grouping was not clearly seen and there is 

difficulty in building the model. SIMCA is a linear supervised pattern recognition 

technique which performs the classification based on the model of known samples 

from principal component analysis. Perhaps the grouping of petroleum-based 

accelerants requires a non-linear classification technique. 

 

 

Hence, new pattern recognition technique is proposed to perform the analysis. 

Support vector machine is a supervised pattern recognition technique which is 
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expected to give better results on the classification of accelerants in fire debris 

samples. This SVM model is developed from the linear classification model itself 

before transforming into higher dimensional space to create a non-linear boundary to 

perform the non-linear classification of petroleum-based accelerants. The non-linear 

classification model is supposed to provide better classification results than the linear 

technique.  

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objectives of the research are: 

  

1) to analyze petroleum-based accelerants in fire debris using gas 

chromatography-mass spectrometry (GC-MS). 

2) to study the grouping pattern of gas chromatographic data of accelerants. 

3) to classify the accelerants using supervised pattern recognition 

techniques namely LDA, PLS-DA and SVM. 

 

 

 

 

1.4 Scope of Study 

 

 

This study is based on petroleum-based accelerants. Accelerants such as 

gasoline, kerosene and diesel were collected from the petrol stations and nearby 

shops. This arson analysis is focused on classification of the sample of fire debris 

based on their accelerants group. Carpet was selected as the sample matrix. The 

extraction technique involved in this analysis was dynamic headspace adsorption 

using activated carbon as absorbent.  

 

 

Some of the fire debris samples were left for two days and five days after 

burnt (time variable) to investigate the weathering effect on the accelerants 

classification using chemometrics methods. The weathering effect on the fire debris 
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samples was expected to alter the results on the classification due to the loss of some 

volatile compounds to the surrounding. 

 

 

The analysis of chemical components in the fire debris was conducted by 

using GC-FID and GC-MS. The grouping of the accelerant is based on the data 

variables obtained from the extracted ion profile and target ion chromatogram. Next, 

pattern recognition techniques will be used to develop classes using samples of fire 

debris with known accelerants and identification of unknown accelerant. Principal 

component analysis, linear discriminant analysis and partial least square discriminant 

analysis will be used to perform the linear classification while support vector 

machine will be used to carry out the non-linear classification. 

 

 

The SVM classification model will be validated by predicting the accelerants 

used in the real sample. This supervised pattern recognition technique should 

demonstrate the clustering of real samples before further analysis is done for 

accelerant confirmation used.   

 

 

 

 

1.5 Significance of Study 

 

 

This study attempts to identify the type of accelerants used to start a fire in 

arson cases. The results obtained can be used in the forensic investigation and used 

as evidence to prosecute the arsonist. Basically, fire can be divided into several 

categories which are natural, accidental and incendiary [10]. The main role of fire 

investigators are to identify the causes of fire whether they are natural, accidental or 

incendiary in loses [11]. They utilized the evidence to make such determinations. 

 

 

Significant pieces of information at fire scene like the points of origin of the 

fire and how the fire starts [12] will be required as proof in arson cases. Normally, 

multiple points of origin are strongly indicative of an intentionally set fire. After 

obtaining the evidence, fire investigators have the responsibility to identify the 
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person who commit the arson intentionally when it comes to incendiary fire cases 

and provide proof to prosecute the arsonist. 

 

 

Analysis of fire debris using gas chromatography in conjunction with flame 

ionization detector (GC-FID) and mass spectrometry (GC-MS) will give detailed and 

accurate data to perform the accelerants classification. The large amount of target ion 

chromatogram data will be used to carry out the classification while the classification 

model from chemometric methods such as principal component analysis (PCA), 

linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-

DA) and support vector machine (SVM) will be useful to the party who are involved 

in arson cases like Jabatan Kimia Malaysia, Jabatan Bomba Malaysia or consultants 

from the private sector. It is hoped that this research will facilitate the analyst to 

make the identification and classification of fire accelerants from fire debris samples 

more accurately. 

 

 

 

 

1.6 Chapter Summary 

 

 

This chapter summarized the background details of fire debris analysis on 

identification and classification of petroleum-based accelerants. A few objectives 

were made to answer several research questions related to this study. New 

chemometric technique (SVM) is proposed and expected to give better results on the 

classification of accelerants. In addition, several researches are needed to compare 

and improve the findings. 

 

 

The next chapter will discuss further on other research works related to this 

study. Most of the literatures will be focused on the petroleum-based accelerants, 

chromatographic techniques, extraction methods and chemometrics techniques which 

later will be applied to the sample matrix. 
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