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ABSTRACT 

Model-Based Testing (MBT) utilizes the models of software to generate the test 

cases. In line with this, Unified Modeling Language (UML) is widely adopted as a 

modeling support for MBT and UML sequence diagram is one of the most important 

diagram in the creation of test cases under MBT umbrella (aided by intermediate model). 

However, MBT method in general tends to generate a large amount of test cases. It is 

impractical in testing to execute all of the test cases, moreover if the size is large. Also, it 

has a greater impact on model-based regression testing. Regression testing is a testing 

process that is applied after software is modified. As a software evolves, some 

modifications or new features are added to the software. Thus, it also tends to increase the 

number of test cases. Retesting a large-size of test cases during regression testing stage is 

even harder since the allocated time and cost are more limited. In order to overcome this 

issue, a similarity-based selection technique based on Labeled Transition Systems (LTS) 

intermediate model is introduced. It will select only the subset of test cases that are less 

similar and has a larger coverage. Nevertheless, this technique still has a drawback. It does 

not consider the modified parts of the software while selecting the test cases for regression 

testing. Thus, this technique is against the goal of regression testing, which the test cases 

supposed to target the modified part of the software. Therefore, a test case prioritization 

technique is proposed. In the proposed technique, the generated test cases derived from 

sequence diagram and LTS intermediate model are prioritized for regression testing. Also, 

the evaluation of both techniques is done based on a set of two case studies. As a result, the 

proposed technique is able to overcome the issues of original technique by maximizing 

early coverage of the modified code in regression testing as well as achieve the early fault 

detection. 
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ABSTRAK 

Ujian Berasaskan Model (MBT) menggunakan model perisian untuk menghasilkan 

kes-kes ujian. Selaras dengan ini, Bahasa Pemodelan (UML) secara meluas dipakai untuk 

pemodelan MBT dan UML rajah jujukan adalah salah satu gambarajah yang paling penting 

untuk menghasilkan kes ujian dibawah payung MBT (dibantu oleh model perantaraan). 

Namun, kaedah MBT umumnya cenderung menghasilkan kes ujian dalam jumlah yang 

besar. Pengujian ini tidak dipraktikkan untuk dilakukan pada semua kes ujian, apalagi 

sekiranya saiz adalah besar. Ia juga mempunyai impak yang besar pada model asas 

pengujian regrasi. Pengujian regrasi adalah proses pengujian yang digunakan selepas 

perisian diubahsuai. Beberapa pengubahsuaian atau ciri-ciri baru ditambah ke dalam 

perisian. Oleh itu, ia cenderung untuk meningkatkan bilangan kes ujian. Pengujian semula 

kes ujian bersaiz besar adalah lebih susah disebabkan masa dan kos yang diperuntukkan 

adalah terhad. Untuk mengatasi masalah ini, satu teknik pemilihan berdasarkan persamaan 

dalam model perantaraan Sistem Peralihan Lebel (LTS) diperkenalkan. Ia hanya memilih 

sebahagian kecil dari kes-kes ujian yang lebih kurang sama dan mempunyai liputan yang 

lebih besar. Namun, teknik ini masih mempunyai kelemahan. Ia tidak mengambil kira 

pengubahsuian bahagian perisian semasa memilih kes ujian untuk pengujian regrasi. Oleh 

itu, teknik ini adalah bertentangan dengan matlamat ujian regrasi, yang mana kes-kes ujian 

sepatutnya mensasarkan bahagian perisian yang diubahsuai. Oleh itu, keutamaan teknik 

kes ujian adalah dicadangkan. Kes-kes ujian diperolehi dari jujukan rajah dan pengantaraan 

model LTS untuk ujian regrasi. Penilaian kedua-dua teknik dilakukan berdasarkan kepada 

kedua kajian kes. Kesimpulannya, teknik yang dicadangkan mampu mengatasi isu teknik 

asal dengan memaksimumkan liputan awal dalam mengubahsuai kod dalam pengujian 

regrasi serta mencapai pengesanan kerosakan awal. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The number of people utilized computer was relatively small back in the 1970s. It 

is inversely proportional to the situation today. Now, people can hardly complete their 

tasks without utilizing computer. In line with this, software has emerged and touched 

millions of people, assisting them to complete their tasks effectively and efficiently (Lyu, 

2007). 

However, software is a complex product that is hard to develop and test. Very 

often, software exhibits unexpected and undesired behaviors that may even lead to severe 

problems and damages (Fuggetta, 2000). Moreover, the accuracy of software applications’ 

functionality, performance and usability gives a crucial task in software quality (Qian and 

Zheng, 2009). Therefore, software testing is vital means of software quality assurance that 

validate whether software behaves as intended and identify potential malfunctions 

(Bertolino, 2007). Also, Parvathi and Jenila (2011) added that testing is essential to 

software development, and even more than 50% of total cost and time have been spent on 

testing.  

In addition, there are various methods to test the software. Generally, testing 

methods are expressed as white-box testing or black-box testing (Panchapakesan et al., 
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2013). Nevertheless, in recent years, Model-Based Testing (MBT) or grey-box testing has 

progressively attracted the intention from various fields, such as industry and academia 

(Utting and Legeard, 2010). It is an evolution of white-box and black-box testing (Repasi, 

2009).  

Even though MBT is a relatively new method, but it has already gained the 

popularity. For instance, industries are adopting this method because of its advantages over 

the development life cycle of the product. Since MBT associated with models, it is useful 

in generating test cases at an early stage of software development. Besides, it helps to 

reveal the faults in requirements faster (Boghdady et al., 2011). Furthermore, MBT method 

can be used during development testing stage, regression testing stage or both. A main 

difference between regression and development testing stage is that during regression 

testing stage, an established test suite may be available for reuse (Rothermel and Harrold, 

1997). 

However, MBT method in general will derive huge number of test cases. It is 

impractical in testing to execute all of the test cases, moreover if the size of test suite is 

large (Cartaxo et al., 2011). In line with this, it has a greater impact on model-based 

regression testing. Regression testing is defined as the testing process which will be 

applied after software is modified. As a software evolves, some modifications or new 

features are added to the software. Thus, it tends to increase the number of test cases in test 

suite. Retesting a large-size of test suite during regression testing stage is even harder since 

the allocated time and cost are more limited (Yoo and Harman, 2012). Therefore, many 

researches have been conducted in order to address the issue of test suite size during 

development or regression testing stage. 

1.2 Problem Background  

According to Myers et al. (2011), software testing becomes one of the most 

challenging issues in software engineering domain. It is due to the vast array of operating 
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systems, programming languages, as well as hardware platforms that have evolved. 

Thereby, conducting an appropriate testing that meet the quality of the software product is 

essential. However, selecting the appropriate testing method is not an easy task. It needs to 

be identified correctly because each technique will lead into different quality aspects of 

software (Luo, 2001). (Myers et al., 2011). 

As mentioned earlier, MBT is one of the testing methods that have already gained 

the popularity among the researchers and industries. It utilizes the models of software in 

order to derive the test cases (Anand et al., 2013). The Unified Modeling Language (UML) 

or Non-UML models can be used as long as it depicts the behavior of software. However, 

UML has become widely adopted as a modeling support for MBT (Gross, 2005). For 

UML-based testing, the testing approaches are classified based on types of diagram. These 

diagrams then need to be converted into intermediate model in order to generate test cases. 

The reason is that even though UML diagrams are useful in depicting graphical 

representations of the system specifications, but it is hard to be used directly to generate 

test cases (Shirole and Kumar, 2013). 

According to Kim et al. (2007), the most used UML diagram in MBT are sequence 

diagram, activity diagram, state diagram, class diagram, and use case diagram. Among 

these diagrams, the performance of the sequence diagram outperforms the others. For 

instance, it is very useful for visualizing the way several objects collaborate to get a job 

done. In addition, the sequence diagram (aided by intermediate model) is one of the most 

important UML models in the creation of test cases under MBT umbrella (Samuel et al., 

2007). Furthermore, Shirole and Kumar (2013) stated that the behavioral model like 

sequence a diagram has already become an extensive research and used by many 

researchers so that the generation of test cases can be conducted more effectively. 

One of the existing works that utilize sequence diagram to generate test cases is 

proposed by Cartaxo et al. (2007). This work focused on generating functional test cases 

for feature testing of mobile-based applications. In line with this, procedural of this work is 

defined by converting sequence diagram into intermediate model namely Labeled 

Transition Systems (LTS). All paths from LTS later will be used to generate test cases. 
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Hence, it is essential to identify each path properly. As a result, this work can reduce the 

cost and time of testing as well as achieve the full coverage criteria. 

Similarly, Khandai et al. (2011) proposed work that utilize sequence diagram in 

order to generate test cases, especially to be used in concurrent systems. Thus, sequence 

diagram is converted into Concurrent Composite Graph (CCG) intermediate model. Then, 

both Breadth-First Search (BFS) and Depth First Search (DFS) traversal techniques are 

used to traverse the paths in CCG using message sequence path criteria. In short, this work 

is proven to control the test case explosion problem in concurrent systems effectively. 

On the other hand, Swain et al. (2010) proposed work that utilizes both sequence 

and use case diagram to generate test cases for integration as well as system testing. Thus, 

it begins with constructing the Use case Dependency Graph (UDG) from use case diagram. 

Subsequently, sequence diagram is converted to Concurrent Control Flow Graph (CCFG). 

Lastly, test cases are generated based on the information gathered from previous steps. As 

a result, this work can achieve the full predicate coverage criteria.  

Even though various works proposed by researchers aimed to aid the test case 

generation activities, but some limitations and challenges still exist in the existing works. 

The major issue in MBT is the number of generated test cases in test suite is huge. It is 

impractical to execute all of the test cases since the time and cost of testing are restricted. 

In line with this, it has a greater impact on model-based regression testing as well since the 

allocated time and cost to retest the test cases are even more limited.  

Regression testing is a testing process which is applied after software is modified. 

Usually, it is considered as a special type of testing activity (Yoo and Runeson, 2014). A 

main difference between regression and development testing is that during regression 

testing stage, an established test suite may be available for reuse (Rothermel and Harrold, 

1997). Furthermore, it is conducted during software maintenance phase with the purpose to 

validate the modifications introduced in software (Korel and Koutsogiannakis, 2009). 

However, this gigantic task involves an infeasible number of test cases. As a software 
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evolves, some modifications or new features are added to the software. Thus, it tends to 

increase the number of test cases in test suite.  Similar to the testing conducted during 

development testing stage, it is almost impossible to re-execute the entire test cases in a 

test suite during regression testing, moreover if the size of test suite is large. Retesting the 

large size of test suite during regression testing is very expensive and time-consuming. 

Therefore, an additional effort in addressing the test suite size problem is required 

in order to improve software testing activity during development and regression testing 

stage. A number of different techniques have been studied to address the test suite size 

problem, which are test case selection, test case prioritization, and test case reduction 

technique. Test case selection seeks to identify the test cases that are relevant to some set 

of recent changes, while test case prioritization seeks to order test cases in such a way that 

early fault detection is maximized. Finally, test case reduction seeks to eliminate redundant 

test cases in order to reduce the number of test cases to run (Yoo and Harman, 2012). 

These three techniques aim to keep the size of test cases in an intended size. 

The researchers have proposed several works in this area. For instance, one of the 

works on test case selection technique is proposed by Cartaxo et al. (2011). The strategy 

presented in the work of Cartaxo et al. (2011) is actually originated from Cartaxo et al. 

(2007) with preliminary experiments emphasizing on the use of sequence diagram and LTS 

intermediate model in order to generate test cases. However, the problem exists while 

applying this technique for bigger features with bigger LTS where the set of test cases will 

be greater and application functionalities test coverage is hard to be achieved.  

Therefore, Cartaxo et al. (2011) introduced a similarity-based selections technique 

in MBT with an aim to overcome the test suite size problem that arises in its preliminary 

work. It begins with utilizing the LTS intermediate model to obtain the test cases. Then, 

the similarity-based selections technique will select the subset of test cases that are less 

similar (the most different ones) in test suite based on a given coverage criteria. Thus, it 

reduces the number of test cases to be executed.  
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On the other hand, as for the test case prioritization technique, Korel et al. (2007) 

proposed one work called model-based test prioritization technique. This work integrated 

both the original and modified system models together with information gathered during 

execution of the modified model. Subsequently, all of this information is used to prioritize 

test cases for retesting the modified software system. As a result, the goal of early fault 

detection in the modified software is achieved. 

Likewise, Panigrahi and Mall (2010) have presented work on model-based 

regression test prioritization technique (M-RTP) in order to increase the rate of fault 

detection. However, the main focus of this work is on the object-oriented programs. The 

technique involves constructing a graph model of the source code to represent control and 

data dependences, as well as static object relations such as inheritance, aggregation, and 

association. When a change occurs in a program, both the original and modified programs 

are compared by a code differencer to find the modified statements. The identified changes 

are marked on the model. In line with this, a model namely Extended Object-oriented 

System Dependence Graph (EOSDG) is introduced and followed by the construction of 

forward and backward slice of the model. Lastly, a test case, that covers a maximum 

number of affected model elements, will be assigned as a higher priority. 

In addition, Mirarab and Tahvildari (2007) have also presented a work to prioritize 

test cases in order to increase the rate of fault detection during regression testing stage. 

However, this work is based on the probability theory that concerns on the probabilistic 

specification of the problem. Thus, the test cases will be prioritized by using a special type 

of probabilistic graphical models, namely Bayesian Networks (BN). It is used to integrate 

source code changes, software fault-proneness, and test coverage data into a unified model. 

Subsequently, the prioritization technique will order the test cases based on their success 

probability. 

Another interesting technique has also been proposed by Ma et al. (2005). This 

work integrates Genetic Algorithm (GA) and test case reduction technique. Moreover, this 

work is focused on code-based of regression testing. With an aim to reduce the cost of 

regression testing, this technique will create a population according to test history. Then, it 
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computes the fitness value using cost and coverage information. Finally, breed the 

successive generations using GA. This process will keep on repeating to find minimized 

test cases. Thus, it helps to reduce the size of test cases, reduce the cost of regression 

testing, and attain good cost-effectiveness. However, to the best of knowledge gathered in 

this research, there is only code-based regression testing for test case reduction techniques. 

There is no work has been found which use the test case reduction technique in MBT.  

As a conclusion, even though various works, that address the test suite size problem 

in MBT (either used during development or regression testing stage), have been proposed 

by the researchers, some improvements are still needed in order to overcome the 

limitations or challenges faced in existing works. It implies that it is still an open issue and 

demand for more researches conducted in this area is needed. 

1.3 Problem Statement 

As a part of MBT method, the role of regression testing cannot simply be ignored. 

Even though regression testing is considered as an expensive testing, but it holds a very 

important role to validate that the modifications introduced in software are correct and do 

not adversely affects the unchanged portion of the software (Elbaum et al., 2002). 

Generally, MBT method is known to simply generate a large amount of test cases even 

from small models (Grieskamp, 2006). It is impractical in testing to execute or re-execute 

all of the test cases in the test suite, moreover if the size of test suite is large.  

Therefore, various works that address the test suite size problem in MBT (either 

used during development or regression testing stage) have been proposed. However, the 

work presented by Cartaxo et al. (2011) still has a drawback. The similarity-based 

selection technique in this work does not consider the modified parts of software in 

selecting test cases for regression testing. Hence, this technique is unable to be used for 

regression testing stage. This approach only focused on selecting the test cases based on 

path coverage percentage criteria with similarity-based selection function. It means that it 
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will only select the test cases that has more coverage and less similar (the most different 

ones) among each other. Therefore, this technique is against the goal of regression testing, 

which the test cases should target the modified part of the software. In addition, this 

selection technique is the only technique to address the test suite size problem of generated 

test cases based on LTS intermediate model. 

Therefore, the research question posed is “How to prioritize the test cases for 

regression testing to achieve the goal of early fault detection based on MBT?” 

1.4 Research Aim and Objectives 

The aim of this research is to propose a model-based test case prioritization 

technique for regression testing in order to achieve early fault detection so that it is able to 

address the shortcoming of test case selection technique for regression testing in the work 

of Cartaxo et al. (2011).  

Furthermore, this research consists of a set of objectives that lead to the research 

process as follows: 

 

• To identify the issue of test case selection technique for regression testing. 

• To propose a test case prioritization technique for regression testing in order to 

achieve early fault detection by using sequence diagram and labeled transition 

systems. 

• To compare the result of the proposed test case prioritization technique with the 

original test case selection technique to support regression testing. 
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1.5 Scope of Study 

In this research, the boundary of the research is defined. The following are 

significant. 

 

• This research focused on generated the test cases in MBT using UML sequence 

diagrams and LTS intermediate model, leaving out the rest of the other models.  

• This research focused on test case selection and test case prioritization techniques 

in order to address the test suite size problem for regression testing. 

• This research focused on comparing the original test case selection technique with 

the proposed test case prioritization technique. 

1.6 Significance of Study 

As early fault detection can provide faster feedback on the system under regression 

test and let software engineers begin locating and correcting faults earlier, then it helps the 

software industries to reduce the required resources, such as cost, time, and effort while 

conducting the testing activity (Elbaum et al., 2000). 

Therefore, this research supports the software industries by achieving early fault 

detection. Moreover, it is beneficial to the researchers, those who are interested in carrying 

out the study in this area.  

1.7 Dissertation Organization 

This research is made up of six chapters. In Chapter 1, it discusses on the research 

introduction, problem background, problem statement, aim, objectives, scope and 



10 

significance of the study. Similarly, Chapter 2 presents the overview of software testing, 

further discussion on MBT, UML sequence diagram, LTS intermediate model, techniques 

for addressing test suite size problem, as well as regression testing. In addition, the 

literature review of the current works has been discussed as well.  In Chapter 3, the 

research methodology is explained in sequence of phases. Moreover, Chapter 4 presents 

the proposed test case prioritization technique for regression testing. Furthermore, a 

comparison between the original and the proposed technique have been illustrated in 

Chapter 5. However, Chapter 6 presents the study contributions and future work. 
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