
������������	
�	�	���	
�����
�	������	�������������	������

�����������������	�	
����������	���������	
������	���

�������	��
������
���

��	����	�	�����
�
�	�������	��

� �

i

TEST CASE PRIORITIZATION TECHNIQUE USING SEQUENCE DIAGRAM AND

LABELED TRANSITION SYSTEMS IN REGRESSION TESTING

NUR FATIMAH AS’SAHRA

A dissertation submitted in partial fulfilment of the

 requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY 2015

iii

I strongly dedicated this dissertation to my beloved parents for their supports,

encouragement and love.

iv

ACKNOWLEDGEMENT

 Alhamdulillah hirobbil ‘alamin, all praises to Allah SWT for giving me the strength

and health also His blessing in order to complete my dissertation entitled Test Case

Prioritization Technique using Sequence Diagram and Labeled Transition Systems in

Regression Testing.

 I owe my deepest gratitude to my supervisor Assoc. Prof. Dr. Dayang Norhayati

Abang Jawawi for her advice, guidance and support during my study at Universiti

Teknologi Malaysia. She inspired me greatly to work on this dissertation. I have learned a

lot from her and I am fortunate to have her as my mentor and supervisor.

 Besides, I would like to thank to my parents, Husin Syah and Sumiati. They are the

source of my power and they never stop giving me spiritually and physically support and

advice. Not forgotten, for my brother, Al-amin Mohammad Syah Reza, thank you for the

support.

 Last but not least, I would like to thank my dear friend Hosein

Abedinpourshotorban for the advice, ideas and helps that are priceless to me.

v

ABSTRACT

Model-Based Testing (MBT) utilizes the models of software to generate the test

cases. In line with this, Unified Modeling Language (UML) is widely adopted as a

modeling support for MBT and UML sequence diagram is one of the most important

diagram in the creation of test cases under MBT umbrella (aided by intermediate model).

However, MBT method in general tends to generate a large amount of test cases. It is

impractical in testing to execute all of the test cases, moreover if the size is large. Also, it

has a greater impact on model-based regression testing. Regression testing is a testing

process that is applied after software is modified. As a software evolves, some

modifications or new features are added to the software. Thus, it also tends to increase the

number of test cases. Retesting a large-size of test cases during regression testing stage is

even harder since the allocated time and cost are more limited. In order to overcome this

issue, a similarity-based selection technique based on Labeled Transition Systems (LTS)

intermediate model is introduced. It will select only the subset of test cases that are less

similar and has a larger coverage. Nevertheless, this technique still has a drawback. It does

not consider the modified parts of the software while selecting the test cases for regression

testing. Thus, this technique is against the goal of regression testing, which the test cases

supposed to target the modified part of the software. Therefore, a test case prioritization

technique is proposed. In the proposed technique, the generated test cases derived from

sequence diagram and LTS intermediate model are prioritized for regression testing. Also,

the evaluation of both techniques is done based on a set of two case studies. As a result, the

proposed technique is able to overcome the issues of original technique by maximizing

early coverage of the modified code in regression testing as well as achieve the early fault

detection.

vi

ABSTRAK

Ujian Berasaskan Model (MBT) menggunakan model perisian untuk menghasilkan

kes-kes ujian. Selaras dengan ini, Bahasa Pemodelan (UML) secara meluas dipakai untuk

pemodelan MBT dan UML rajah jujukan adalah salah satu gambarajah yang paling penting

untuk menghasilkan kes ujian dibawah payung MBT (dibantu oleh model perantaraan).

Namun, kaedah MBT umumnya cenderung menghasilkan kes ujian dalam jumlah yang

besar. Pengujian ini tidak dipraktikkan untuk dilakukan pada semua kes ujian, apalagi

sekiranya saiz adalah besar. Ia juga mempunyai impak yang besar pada model asas

pengujian regrasi. Pengujian regrasi adalah proses pengujian yang digunakan selepas

perisian diubahsuai. Beberapa pengubahsuaian atau ciri-ciri baru ditambah ke dalam

perisian. Oleh itu, ia cenderung untuk meningkatkan bilangan kes ujian. Pengujian semula

kes ujian bersaiz besar adalah lebih susah disebabkan masa dan kos yang diperuntukkan

adalah terhad. Untuk mengatasi masalah ini, satu teknik pemilihan berdasarkan persamaan

dalam model perantaraan Sistem Peralihan Lebel (LTS) diperkenalkan. Ia hanya memilih

sebahagian kecil dari kes-kes ujian yang lebih kurang sama dan mempunyai liputan yang

lebih besar. Namun, teknik ini masih mempunyai kelemahan. Ia tidak mengambil kira

pengubahsuian bahagian perisian semasa memilih kes ujian untuk pengujian regrasi. Oleh

itu, teknik ini adalah bertentangan dengan matlamat ujian regrasi, yang mana kes-kes ujian

sepatutnya mensasarkan bahagian perisian yang diubahsuai. Oleh itu, keutamaan teknik

kes ujian adalah dicadangkan. Kes-kes ujian diperolehi dari jujukan rajah dan pengantaraan

model LTS untuk ujian regrasi. Penilaian kedua-dua teknik dilakukan berdasarkan kepada

kedua kajian kes. Kesimpulannya, teknik yang dicadangkan mampu mengatasi isu teknik

asal dengan memaksimumkan liputan awal dalam mengubahsuai kod dalam pengujian

regrasi serta mencapai pengesanan kerosakan awal.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xiii

 LIST OF ABBREVIATIONS xv

1 INTRODUCTION

1.1 Overview

1.2 Problem Background

1.3 Problem Statement

1.4 Research Aim and Objectives

1.5 Scope of the Study

1.6 Significance of Study

1.7 Dissertation Organization

1

2

7

8

9

9

9

2 LITERATURE REVIEW

2.1 Introduction

2.2 Overview of Software Testing

2.3 Model-Based Testing (MBT)

2.4 Unified Modelling Language (UML) Sequence Diagram

11

12

14

16

viii

2.5 Related Works on UML Sequence Diagram in MBT

2.6 Labeled Transition Systems (LTS) Intermediate Model

2.7 Test Case Generation by using Sequence Diagram and

LTS

2.7.1 Step I: Obtaining LTS form Sequence Diagram

2.7.2 Step II: Generating Test Cases from LTS

2.8 Techniques for Addressing the Test Suite Size Problem

2.8.1 Test Case Selection

2.8.2 Test Case Prioritization

2.8.3 Test Case Reduction

2.8.4 Comparison between Test Case Selection, Test

Case Prioritization and Test Case Reduction

Techniques

2.9 The Similarity-Based Selection Technique

2.10 Related Works on Prioritization Technique for Addressing

Test Suite Size Problem

2.11 Model-Based Prioritization Technique in Regression

Testing

2.12 The Prioritization Metric

2.13 Summary

21

27

28

29

30

32

33

34

35

36

38

43

46

48

49

 3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Process Flowchart

3.2.1 Phase One

3.2.2 Phase Two

3.2.3 Phase Three

3.3 Case Study

3.4 Research Design

3.5 Summary

50

50

52

53

54

55

55

57

4 THE PROPOSED TEST CASE PRIORITIZATION

TECHNIQUE FOR REGRESSION TESTING

4.1 Introduction

58

ix

4.2 The Original Technique

4.2.1 The Implementation of Case Studies

4.2.2 The Generation of Test Case

4.2.3 The Test Case Selection Technique by Cartaxo et

al. (2011)

4.2.3.1 The Shortcoming of Test Case Selection

Technique for Regression Testing

4.3 The Proposed Test Case Prioritization Technique

4.3.1 The Modified Labeled Transition System (MLTS)

4.3.2 The Proposed Test Case Prioritization Algorithm

4.3.3 Characteristics of the Proposed Test Case

Prioritization Technique

58

59

63

65

67

67

68

70

72

5 EVALUATION OF THE PROPOSED PRIORITIZATION

TECHNIQUE AND THE ORIGINAL SELECTION

TECHNIQUE

5.1 Introduction

5.2 The Results of the Proposed and Original Technique

5.2.1 MLTS of Case Study 1 and Case Study 2

5.2.2 Test Case Generation by Cartaxo et al. (2011)

5.2.3 Test Case Generation by the Proposed Test Case

Prioritization Technique

5.3.2.1 Test Case Prioritization for Case Study 1

(Borrowing Book)

5.3.2.2 Test Case Prioritization for Case Study 2

(ATM Withdrawal)

5.3 Comparison between the Original Selection Technique and

the Proposed Prioritization Technique

5.3.1 Discussion on the Results of the Original Selection

Technique and the Proposed Prioritization

Technique based on Case Studies

5.3.2 Discussion on the Comparison of the Original

Selection Technique, the Proposed Prioritization

Technique and One Existing Prioritization

74

74

75

78

80

80

83

86

88

x

Technique

5.4 Summary

89

91

6 CONCLUSION AND FUTURE WORK

6.1 Introduction

6.2 Summary

6.3 Research Contribution

6.4 Future Work

92

92

93

94

 REFERENCES 95-100

xi

LIST OF TABLES

TABLE NO TITLE

 PAGE

2.1

2.2

2.3

2.4

2.5

2.6(a)

2.6(b)

2.7

2.8

2.9

2.10

3.1

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

Comparison of Software Testing Methods

Comparison of UML Diagrams Adopted in MBT

Summary of the Reviewed Sequence Diagram Techniques

Comparison of the Intermediate Models based on Works in

Table 2.3

Path Table

Generated Test Cases from Path Table

Generated Test Cases from Path Table

Test Case Selection Class in MBT

Test Case Prioritization Goals

Comparison of the Technique that Address Test Suite Size

Problem

Summary of Works in Test Case Prioritization Techniques

Description of the Case Studies

Case Study 1 (Borrowing Book) Path Table

Case Study 2 (ATM Withdrawal) Path Table

Calculation of the Similarity Matrix

Modification List of Case Study 1 (Borrowing Book)

Modification List of Case Study 2 (ATM Withdrawal)

MLTS_PATHS_WEGHTS of Case Study 1 (Borrowing

Book)

MLTS_PATHS_WEGHTS of Case Study 2 (ATM

Withdrawal)

Comparison of Result on Selection and Prioritization

 13

17

24

25

31

32

32

34

35

37

45

55

63

63

66

75

75

80

83

xii

5.6

Techniques

Comparison of the Original Selection, Proposed

Prioritization and Existing Prioritization Techniques

88

90

xiii

LIST OF FIGURES

FIGURE NO TITLE

 PAGE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8(a)

2.8(b)

2.8(c)

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7(a)

4.7(b)

The MBT Process

Component of Sequence Diagram

Sequence Diagram Example

The Components of LTS

Obtained LTS from Sequence Diagram

Sample of LTS Intermediate Model

The Generated Test Cases from Figure 2.6

Similarity Matrix

Path Length

Similarity Matrix (after elimination)

Research Process Flowchart

Process of Generating Test Cases from Sequence Diagram

Processes of Selecting Subset of Test Cases and the

Comparison

The Sequence Diagram of Borrowing Book

The Sequence Diagram of ATM Withdrawal

LTS of Borrowing Book Sequence Diagram

LTS of ATM Withdrawal Sequence Diagram

The Generated Test Cases for Case Study 1 (Borrowing

Book)

The Generated Test Cases for Case Study 2 (ATM

Withdrawal)

Path Length

Similarity Matrix

 15

19

20

28

30

40

41

41

42

42

51

56

56

59

60

61

62

64

65

66

66

xiv

5.1

5.2

5.3(a)

5.3(b)

5.3(c)

5.4(a)

5.4(b)

5.4(c)

5.4(d)

5.5

5.6

5.7

5.8

5.9

5.10

5.11

MLTS of Case Study 1 (Borrowing Book)

MLTS of Case Study 2 (ATM Withdrawal)

Path Length of Case Study 1

Similarity Matrix of Case Study 1

Similarity Matrix of Case Study 1 (after elimination)

Path Length of Case Study 2

Similarity Matrix of Case Study 2

Similarity Matrix of Case Study 2 (after first step

elimination)

Similarity Matrix of Case Study 2 (after second step

elimination)

Priority of Test Cases Based on Test Case Selection

Technique

Part1 of Prioritization Algorithm in Case Study 1

(Borrowing Book)

Part2 of Prioritization Algorithm in Case Study 1

(Borrowing Book)

Part1 of Prioritization Algorithm in Case Study 2 (ATM

Withdrawal)

Part2 of Prioritization Algorithm in Case Study 2 (ATM

Withdrawal)

Coverage Comparison of Case Study 1 (Borrowing Book)

Coverage Comparison of Case Study 2 (ATM

Withdrawal)

76

77

78

78

78

79

79

79

79

79

81

82

84

85

86

87

xv

LIST OF ABBREVIATIONS

AG - Activity Graph

ATM - Automatic Teller Machines

BFS - Breadth-First Search

BN - Bayesian Networks

CCFG - Concurrent Control Flow Graph

CCFP - Concurrent Control Flow Path

CCG - Concurrent Composite Graph

DFS - Depth-First Search

EFSM - Extended Finite State Machine

EOSDG - Extended Object-oriented System Dependence Graph

GA - Genetic Algorithm

LIS - Library Information System

LTS - Labeled Transition Systems

MBT - Model-Based Testing

MLTS - Modified Labeled Transition System

OCL - Object Constraint Language

OMG - Object Management Group

PTS - Prioritized of Test Suite

SCG - Structured Composite Graph

TC - Test Case

TS - Test Suite

UDG - Use case Dependency Graph

UML - Unified Modeling Language

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The number of people utilized computer was relatively small back in the 1970s. It

is inversely proportional to the situation today. Now, people can hardly complete their

tasks without utilizing computer. In line with this, software has emerged and touched

millions of people, assisting them to complete their tasks effectively and efficiently (Lyu,

2007).

However, software is a complex product that is hard to develop and test. Very

often, software exhibits unexpected and undesired behaviors that may even lead to severe

problems and damages (Fuggetta, 2000). Moreover, the accuracy of software applications’

functionality, performance and usability gives a crucial task in software quality (Qian and

Zheng, 2009). Therefore, software testing is vital means of software quality assurance that

validate whether software behaves as intended and identify potential malfunctions

(Bertolino, 2007). Also, Parvathi and Jenila (2011) added that testing is essential to

software development, and even more than 50% of total cost and time have been spent on

testing.

In addition, there are various methods to test the software. Generally, testing

methods are expressed as white-box testing or black-box testing (Panchapakesan et al.,

2

2013). Nevertheless, in recent years, Model-Based Testing (MBT) or grey-box testing has

progressively attracted the intention from various fields, such as industry and academia

(Utting and Legeard, 2010). It is an evolution of white-box and black-box testing (Repasi,

2009).

Even though MBT is a relatively new method, but it has already gained the

popularity. For instance, industries are adopting this method because of its advantages over

the development life cycle of the product. Since MBT associated with models, it is useful

in generating test cases at an early stage of software development. Besides, it helps to

reveal the faults in requirements faster (Boghdady et al., 2011). Furthermore, MBT method

can be used during development testing stage, regression testing stage or both. A main

difference between regression and development testing stage is that during regression

testing stage, an established test suite may be available for reuse (Rothermel and Harrold,

1997).

However, MBT method in general will derive huge number of test cases. It is

impractical in testing to execute all of the test cases, moreover if the size of test suite is

large (Cartaxo et al., 2011). In line with this, it has a greater impact on model-based

regression testing. Regression testing is defined as the testing process which will be

applied after software is modified. As a software evolves, some modifications or new

features are added to the software. Thus, it tends to increase the number of test cases in test

suite. Retesting a large-size of test suite during regression testing stage is even harder since

the allocated time and cost are more limited (Yoo and Harman, 2012). Therefore, many

researches have been conducted in order to address the issue of test suite size during

development or regression testing stage.

1.2 Problem Background

According to Myers et al. (2011), software testing becomes one of the most

challenging issues in software engineering domain. It is due to the vast array of operating

3

systems, programming languages, as well as hardware platforms that have evolved.

Thereby, conducting an appropriate testing that meet the quality of the software product is

essential. However, selecting the appropriate testing method is not an easy task. It needs to

be identified correctly because each technique will lead into different quality aspects of

software (Luo, 2001). (Myers et al., 2011).

As mentioned earlier, MBT is one of the testing methods that have already gained

the popularity among the researchers and industries. It utilizes the models of software in

order to derive the test cases (Anand et al., 2013). The Unified Modeling Language (UML)

or Non-UML models can be used as long as it depicts the behavior of software. However,

UML has become widely adopted as a modeling support for MBT (Gross, 2005). For

UML-based testing, the testing approaches are classified based on types of diagram. These

diagrams then need to be converted into intermediate model in order to generate test cases.

The reason is that even though UML diagrams are useful in depicting graphical

representations of the system specifications, but it is hard to be used directly to generate

test cases (Shirole and Kumar, 2013).

According to Kim et al. (2007), the most used UML diagram in MBT are sequence

diagram, activity diagram, state diagram, class diagram, and use case diagram. Among

these diagrams, the performance of the sequence diagram outperforms the others. For

instance, it is very useful for visualizing the way several objects collaborate to get a job

done. In addition, the sequence diagram (aided by intermediate model) is one of the most

important UML models in the creation of test cases under MBT umbrella (Samuel et al.,

2007). Furthermore, Shirole and Kumar (2013) stated that the behavioral model like

sequence a diagram has already become an extensive research and used by many

researchers so that the generation of test cases can be conducted more effectively.

One of the existing works that utilize sequence diagram to generate test cases is

proposed by Cartaxo et al. (2007). This work focused on generating functional test cases

for feature testing of mobile-based applications. In line with this, procedural of this work is

defined by converting sequence diagram into intermediate model namely Labeled

Transition Systems (LTS). All paths from LTS later will be used to generate test cases.

4

Hence, it is essential to identify each path properly. As a result, this work can reduce the

cost and time of testing as well as achieve the full coverage criteria.

Similarly, Khandai et al. (2011) proposed work that utilize sequence diagram in

order to generate test cases, especially to be used in concurrent systems. Thus, sequence

diagram is converted into Concurrent Composite Graph (CCG) intermediate model. Then,

both Breadth-First Search (BFS) and Depth First Search (DFS) traversal techniques are

used to traverse the paths in CCG using message sequence path criteria. In short, this work

is proven to control the test case explosion problem in concurrent systems effectively.

On the other hand, Swain et al. (2010) proposed work that utilizes both sequence

and use case diagram to generate test cases for integration as well as system testing. Thus,

it begins with constructing the Use case Dependency Graph (UDG) from use case diagram.

Subsequently, sequence diagram is converted to Concurrent Control Flow Graph (CCFG).

Lastly, test cases are generated based on the information gathered from previous steps. As

a result, this work can achieve the full predicate coverage criteria.

Even though various works proposed by researchers aimed to aid the test case

generation activities, but some limitations and challenges still exist in the existing works.

The major issue in MBT is the number of generated test cases in test suite is huge. It is

impractical to execute all of the test cases since the time and cost of testing are restricted.

In line with this, it has a greater impact on model-based regression testing as well since the

allocated time and cost to retest the test cases are even more limited.

Regression testing is a testing process which is applied after software is modified.

Usually, it is considered as a special type of testing activity (Yoo and Runeson, 2014). A

main difference between regression and development testing is that during regression

testing stage, an established test suite may be available for reuse (Rothermel and Harrold,

1997). Furthermore, it is conducted during software maintenance phase with the purpose to

validate the modifications introduced in software (Korel and Koutsogiannakis, 2009).

However, this gigantic task involves an infeasible number of test cases. As a software

5

evolves, some modifications or new features are added to the software. Thus, it tends to

increase the number of test cases in test suite. Similar to the testing conducted during

development testing stage, it is almost impossible to re-execute the entire test cases in a

test suite during regression testing, moreover if the size of test suite is large. Retesting the

large size of test suite during regression testing is very expensive and time-consuming.

Therefore, an additional effort in addressing the test suite size problem is required

in order to improve software testing activity during development and regression testing

stage. A number of different techniques have been studied to address the test suite size

problem, which are test case selection, test case prioritization, and test case reduction

technique. Test case selection seeks to identify the test cases that are relevant to some set

of recent changes, while test case prioritization seeks to order test cases in such a way that

early fault detection is maximized. Finally, test case reduction seeks to eliminate redundant

test cases in order to reduce the number of test cases to run (Yoo and Harman, 2012).

These three techniques aim to keep the size of test cases in an intended size.

The researchers have proposed several works in this area. For instance, one of the

works on test case selection technique is proposed by Cartaxo et al. (2011). The strategy

presented in the work of Cartaxo et al. (2011) is actually originated from Cartaxo et al.

(2007) with preliminary experiments emphasizing on the use of sequence diagram and LTS

intermediate model in order to generate test cases. However, the problem exists while

applying this technique for bigger features with bigger LTS where the set of test cases will

be greater and application functionalities test coverage is hard to be achieved.

Therefore, Cartaxo et al. (2011) introduced a similarity-based selections technique

in MBT with an aim to overcome the test suite size problem that arises in its preliminary

work. It begins with utilizing the LTS intermediate model to obtain the test cases. Then,

the similarity-based selections technique will select the subset of test cases that are less

similar (the most different ones) in test suite based on a given coverage criteria. Thus, it

reduces the number of test cases to be executed.

6

On the other hand, as for the test case prioritization technique, Korel et al. (2007)

proposed one work called model-based test prioritization technique. This work integrated

both the original and modified system models together with information gathered during

execution of the modified model. Subsequently, all of this information is used to prioritize

test cases for retesting the modified software system. As a result, the goal of early fault

detection in the modified software is achieved.

Likewise, Panigrahi and Mall (2010) have presented work on model-based

regression test prioritization technique (M-RTP) in order to increase the rate of fault

detection. However, the main focus of this work is on the object-oriented programs. The

technique involves constructing a graph model of the source code to represent control and

data dependences, as well as static object relations such as inheritance, aggregation, and

association. When a change occurs in a program, both the original and modified programs

are compared by a code differencer to find the modified statements. The identified changes

are marked on the model. In line with this, a model namely Extended Object-oriented

System Dependence Graph (EOSDG) is introduced and followed by the construction of

forward and backward slice of the model. Lastly, a test case, that covers a maximum

number of affected model elements, will be assigned as a higher priority.

In addition, Mirarab and Tahvildari (2007) have also presented a work to prioritize

test cases in order to increase the rate of fault detection during regression testing stage.

However, this work is based on the probability theory that concerns on the probabilistic

specification of the problem. Thus, the test cases will be prioritized by using a special type

of probabilistic graphical models, namely Bayesian Networks (BN). It is used to integrate

source code changes, software fault-proneness, and test coverage data into a unified model.

Subsequently, the prioritization technique will order the test cases based on their success

probability.

Another interesting technique has also been proposed by Ma et al. (2005). This

work integrates Genetic Algorithm (GA) and test case reduction technique. Moreover, this

work is focused on code-based of regression testing. With an aim to reduce the cost of

regression testing, this technique will create a population according to test history. Then, it

7

computes the fitness value using cost and coverage information. Finally, breed the

successive generations using GA. This process will keep on repeating to find minimized

test cases. Thus, it helps to reduce the size of test cases, reduce the cost of regression

testing, and attain good cost-effectiveness. However, to the best of knowledge gathered in

this research, there is only code-based regression testing for test case reduction techniques.

There is no work has been found which use the test case reduction technique in MBT.

As a conclusion, even though various works, that address the test suite size problem

in MBT (either used during development or regression testing stage), have been proposed

by the researchers, some improvements are still needed in order to overcome the

limitations or challenges faced in existing works. It implies that it is still an open issue and

demand for more researches conducted in this area is needed.

1.3 Problem Statement

As a part of MBT method, the role of regression testing cannot simply be ignored.

Even though regression testing is considered as an expensive testing, but it holds a very

important role to validate that the modifications introduced in software are correct and do

not adversely affects the unchanged portion of the software (Elbaum et al., 2002).

Generally, MBT method is known to simply generate a large amount of test cases even

from small models (Grieskamp, 2006). It is impractical in testing to execute or re-execute

all of the test cases in the test suite, moreover if the size of test suite is large.

Therefore, various works that address the test suite size problem in MBT (either

used during development or regression testing stage) have been proposed. However, the

work presented by Cartaxo et al. (2011) still has a drawback. The similarity-based

selection technique in this work does not consider the modified parts of software in

selecting test cases for regression testing. Hence, this technique is unable to be used for

regression testing stage. This approach only focused on selecting the test cases based on

path coverage percentage criteria with similarity-based selection function. It means that it

8

will only select the test cases that has more coverage and less similar (the most different

ones) among each other. Therefore, this technique is against the goal of regression testing,

which the test cases should target the modified part of the software. In addition, this

selection technique is the only technique to address the test suite size problem of generated

test cases based on LTS intermediate model.

Therefore, the research question posed is “How to prioritize the test cases for

regression testing to achieve the goal of early fault detection based on MBT?”

1.4 Research Aim and Objectives

The aim of this research is to propose a model-based test case prioritization

technique for regression testing in order to achieve early fault detection so that it is able to

address the shortcoming of test case selection technique for regression testing in the work

of Cartaxo et al. (2011).

Furthermore, this research consists of a set of objectives that lead to the research

process as follows:

• To identify the issue of test case selection technique for regression testing.

• To propose a test case prioritization technique for regression testing in order to

achieve early fault detection by using sequence diagram and labeled transition

systems.

• To compare the result of the proposed test case prioritization technique with the

original test case selection technique to support regression testing.

9

1.5 Scope of Study

In this research, the boundary of the research is defined. The following are

significant.

• This research focused on generated the test cases in MBT using UML sequence

diagrams and LTS intermediate model, leaving out the rest of the other models.

• This research focused on test case selection and test case prioritization techniques

in order to address the test suite size problem for regression testing.

• This research focused on comparing the original test case selection technique with

the proposed test case prioritization technique.

1.6 Significance of Study

As early fault detection can provide faster feedback on the system under regression

test and let software engineers begin locating and correcting faults earlier, then it helps the

software industries to reduce the required resources, such as cost, time, and effort while

conducting the testing activity (Elbaum et al., 2000).

Therefore, this research supports the software industries by achieving early fault

detection. Moreover, it is beneficial to the researchers, those who are interested in carrying

out the study in this area.

1.7 Dissertation Organization

This research is made up of six chapters. In Chapter 1, it discusses on the research

introduction, problem background, problem statement, aim, objectives, scope and

10

significance of the study. Similarly, Chapter 2 presents the overview of software testing,

further discussion on MBT, UML sequence diagram, LTS intermediate model, techniques

for addressing test suite size problem, as well as regression testing. In addition, the

literature review of the current works has been discussed as well. In Chapter 3, the

research methodology is explained in sequence of phases. Moreover, Chapter 4 presents

the proposed test case prioritization technique for regression testing. Furthermore, a

comparison between the original and the proposed technique have been illustrated in

Chapter 5. However, Chapter 6 presents the study contributions and future work.

95

REFERENCES

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., et al. 2013.

An orchestrated survey of methodologies for automated software test case

generation. Journal of Systems and Software, 86(8), 1978-2001.

Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I., and Williams, C.

2008. Model-driven testing: Springer.

Bertolino, A. 2007. Software testing research: Achievements, challenges, dreams. 2007

Future of Software Engineering, 85-103.

Binder, R. 2000. Testing object-oriented systems: models, patterns, and tools: Addison-

Wesley Professional.

Boberg, J. 2008. Early fault detection with model-based testing. Proceedings of the 7th

ACM SIGPLAN workshop on ERLANG, 9-20.

Boghdady, P. N., Badr, N. L., Hashim, M. A., and Tolba, M. F. 2011. An enhanced test

case generation technique based on activity diagrams. Computer Engineering &

Systems (ICCES), 2011 International Conference on, 289-294.

Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., and Utting, M. 2007. A

subset of precise UML for model-based testing. Proceedings of the 3rd international

workshop on Advances in model-based testing, 95-104.

Cartaxo, E. G., Machado, P. D., and Neto, F. G. O. 2011. On the use of a similarity

function for test case selection in the context of model‐based testing. Software

Testing, Verification and Reliability, 21(2), 75-100.

Cartaxo, E. G., Neto, F. G. O., and Machado, P. D. 2007. Test case generation by means of

UML sequence diagrams and labeled transition systems. SMC, 1292-1297.

Chen, T. Y., and Lau, M. F. 1998. A new heuristic for test suite reduction. Information and

software technology, 40(5), 347-354.

96

Chen, Y., Probert, R. L., and Ural, H. 2009. Regression test suite reduction based on SDL

models of system requirements. Journal of Software Maintenance and Evolution:

Research and Practice, 21(6), 379-405.

de Vries, R. G., and Tretmans, J. 2000. On-the-fly conformance testing using SPIN.

International Journal on Software Tools for Technology Transfer, 2(4), 382-393.

Dhir, S. 2012. Impact of UML Techniques in Test Case Generation. International Journal

of Engineering Science and Advanced Technology, 2(2), 214-217.

Dias Neto, A. C., Subramanyan, R., Vieira, M., and Travassos, G. H. 2007. A survey on

model-based testing approaches: a systematic review. Proceedings of the 1st ACM

international workshop on Empirical assessment of software engineering languages

and technologies: held in conjunction with the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE) 2007, 31-36.

Elbaum, S., Malishevsky, A. G., and Rothermel, G. 2000. Prioritizing test cases for

regression testing (Vol. 25): ACM.

Elbaum, S., Malishevsky, A. G., and Rothermel, G. 2002. Test case prioritization: A

family of empirical studies. Software Engineering, IEEE Transactions on, 28(2),

159-182.

Fenton, N. E., and Neil, M. 2000. Software metrics: roadmap. Proceedings of the

Conference on the Future of Software Engineering, 357-370.

Fraikin, F., and Leonhardt, T. 2002. SeDiTeC-testing based on sequence diagrams.

Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE

International Conference on, 261-266.

Fuggetta, A. 2000. Software process: a roadmap. Proceedings of the Conference on the

Future of Software Engineering, 25-34.

Grieskamp, W. 2006. Multi-paradigmatic model-based testing. In Formal Approaches to

Software Testing and Runtime Verification (pp. 1-19): Springer.

Gross, H.-G. 2005. Component-based software testing with UML (Vol. 44): Springer.

Hemmati, H., Briand, L., Arcuri, A., and Ali, S. 2010. An enhanced test case selection

approach for model-based testing: an industrial case study. Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of software

engineering, 267-276.

Herzner, W., Schlick, R., Ait Austrian, H. B., and Wiessalla, J. 2011. Towards Fault-based

Generation of Test Cases for Dependable Embedded Software.

97

Jard, C., and Jéron, T. 2005. TGV: theory, principles and algorithms. International Journal

on Software Tools for Technology Transfer, 7(4), 297-315.

Juristo, N., Moreno, A. M., and Strigel, W. 2006. Software testing practices in industry.

IEEE software, 23(4), 19-21.

Khandai, M., Acharya, A. A., and Mohapatra, D. P. 2011. A novel approach of test case

generation for concurrent systems using UML Sequence Diagram. Electronics

Computer Technology (ICECT), 2011 3rd International Conference on, 157-161.

Kim, H., Kang, S., Baik, J., and Ko, I. 2007. Test cases generation from UML activity

diagrams. Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International

Conference on, 556-561.

Kim, J.-M., and Porter, A. 2002. A history-based test prioritization technique for

regression testing in resource constrained environments. Software Engineering,

2002. ICSE 2002. Proceedings of the 24rd International Conference on, 119-129.

Korel, B., and Koutsogiannakis, G. 2009. Experimental comparison of code-based and

model-based test prioritization. Software Testing, Verification and Validation

Workshops, 2009. ICSTW'09. International Conference on, 77-84.

Korel, B., Koutsogiannakis, G., and Tahat, L. H. 2007. Model-based test prioritization

heuristic methods and their evaluation. Proceedings of the 3rd international

workshop on Advances in model-based testing, 34-43.

Korel, B., Koutsogiannakis, G., and Tahat, L. H. 2008. Application of system models in

regression test suite prioritization. Software Maintenance, 2008. ICSM 2008. IEEE

International Conference on, 247-256.

Korel, B., Tahat, L. H., and Harman, M. 2005, 26-29 Sept. 2005. Test prioritization using

system models. Software Maintenance, 2005. ICSM'05. Proceedings of the 21st

IEEE International Conference on, 559-568.

Leung, H. K., and White, L. 1989. Insights into regression testing [software testing].

Software Maintenance, 1989., Proceedings., Conference on, 60-69.

Li, B.-l., Li, Z.-s., Qing, L., and Chen, Y.-H. 2007, 15-19 Dec. 2007. Test Case Automate

Generation from UML Sequence Diagram and OCL Expression. Computational

Intelligence and Security, 2007 International Conference on, 1048-1052.

Luo, L. 2001. Software testing techniques. Institute for software research international

Carnegie mellon university Pittsburgh, PA, 15232(1-19), 19.

98

Lyu, M. R. 2007. Software Reliability Engineering: A Roadmap. 2007 Future of Software

Engineering.

Ma, X.-y., Sheng, B.-k., and Ye, C.-q. 2005. Test-Suite reduction using genetic algorithm.

In Advanced Parallel Processing Technologies (pp. 253-262): Springer.

Martin, S., Bleck, R., Dislis, C., and Farren, D. 1999, 1999. The evolution of a system test

process [for Motorola GSM products]. Test Conference, 1999. Proceedings.

International, 680-688.

Mirarab, S., and Tahvildari, L. 2007. A Prioritization Approach for Software Test Cases

Based on Bayesian Networks. In M. Dwyer and A. Lopes (Eds.), Fundamental

Approaches to Software Engineering (Vol. 4422, pp. 276-290): Springer Berlin

Heidelberg.

Myers, G. J., Sandler, C., and Badgett, T. 2011. The art of software testing: John Wiley &

Sons.

Naslavsky, L., Ziv, H., and Richardson, D. J. 2009, 20-26 Sept. 2009. A model-based

regression test selection technique. Software Maintenance, 2009. ICSM 2009.

IEEE International Conference on, 515-518.

Nayak, A., and Samanta, D. 2010. Automatic test data synthesis using uml sequence

diagrams. journal of Object Technology, 9(2), 75-104.

Nielsen, B. 2014. Towards a Method for Combined Model-based Testing and Analysis.

Proceedings of the 2nd International Conference on Model-Driven Engineering and

Software Development.

Nirpal, P. B., and Kale, K. 2011. A Brief Overview Of Software Testing Metrics.

International Journal on Computer Science & Engineering, 3(1).

Panchapakesan, A., Abielmona, R., and Petriu, E. 2013. Dynamic white-box software

testing using a recursive hybrid evolutionary strategy/genetic algorithm.

Evolutionary Computation (CEC), 2013 IEEE Congress on, 2525-2532.

Panigrahi, C. R., and Mall, R. 2010. Model-based regression test case prioritization. ACM

SIGSOFT Software Engineering Notes, 35(6), 1-7.

Parvathi, M., and Jenila, A. 2011. A survey of software testing in refactoring based

software models. Nanoscience, Engineering and Technology (ICONSET), 2011

International Conference on, 571-573.

Petre, M. 2013. UML in practice. Proceedings of the 2013 International Conference on

Software Engineering, 722-731.

99

Qian, H.-m., and Zheng, C. 2009. A Embedded Software Testing Process Model.

Computational Intelligence and Software Engineering, 2009. CiSE 2009.

International Conference on, 1-5.

Repasi, T. 2009. Software testing-state of the art and current research challanges. Applied

Computational Intelligence and Informatics, 2009. SACI'09. 5th International

Symposium on, 47-50.

Rodrigues Barbosa, J., Eduardo Delamaro, M., Carlos Maldonado, J., and Marcelo Rizzo

Vincenzi, A. 2011. Software Testing in Critical Embedded Systems: a Systematic

Review of Adherence to the DO-178B Standard. VALID 2011, The Third

International Conference on Advances in System Testing and Validation Lifecycle,

126-130.

Rothermel, G., and Harrold, M. J. 1997. A safe, efficient regression test selection

technique. ACM Transactions on Software Engineering and Methodology

(TOSEM), 6(2), 173-210.

Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. 1999. Test case prioritization: An

empirical study. Software Maintenance, 1999.(ICSM'99) Proceedings. IEEE

International Conference on, 179-188.

Sabharwal, S., Singh, S. K., Sabharwal, D., and Gabrani, A. 2010. An event-based

approach to generate test scenarios. Computer and Communication Technology

(ICCCT), 2010 International Conference on, 551-556.

Samuel, P., Mall, R., and Kanth, P. 2007. Automatic test case generation from UML

communication diagrams. Information and software technology, 49(2), 158-171.

Sawant, V., and Shah, K. 2011. Construction of Test Cases from UML Models. In K. Shah,

V. R. Lakshmi Gorty and A. Phirke (Eds.), Technology Systems and Management

(Vol. 145, pp. 61-68): Springer Berlin Heidelberg.

Schieferdecker, I. 2012. Model-Based Testing. IEEE software, 29(1).

Shirole, M., and Kumar, R. 2013. UML behavioral model based test case generation: a

survey. SIGSOFT Softw. Eng. Notes, 38(4), 1-13.

Singhal, A., Bansal, A., and Kumar, A. 2013. A critical review of various testing

techniques in aspect-oriented software systems. ACM SIGSOFT Software

Engineering Notes, 38(4), 1-9.

Swain, S. K., Mohapatra, D. P., and Mall, R. 2010a. Test case generation based on use case

and sequence diagram. International Journal of Software Engineering, IJSE, 3(2),

21-52.

100

Swain, S. K., Pani, S. K., and Mohapatra, D. P. 2010b. Model Based Object-Oriented

Software Testing. Journal of Theoretical & Applied Information Technology, 14.

Tassey, G. 2002. The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards and Technology, RTI Project, 7007(011).

Tretmans, J. 2008. Model based testing with labelled transition systems. In Formal

methods and testing (pp. 1-38): Springer.

Tretmans, J. 2011. Model-based testing and some steps towards test-based modelling. In

Formal Methods for Eternal Networked Software Systems (pp. 297-326): Springer.

Tsui, F. F. 2013. Essentials of software engineering: Jones & Bartlett Publishers.

Tucker, A. B. 2004. Computer science handbook: CRC press.

Utting, M. 2005. Position paper: Model-based testing. Verified Software: Theories, Tools,

Experiments. ETH Zürich, IFIP WG, 2.

Utting, M., and Legeard, B. 2010. Practical model-based testing: a tools approach:

Morgan Kaufmann.

Utting, M., Pretschner, A., and Legeard, B. 2012. A taxonomy of model‐based testing

approaches. Software Testing, Verification and Reliability, 22(5), 297-312.

Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and Roos, R. S. 2006. Timeaware test

suite prioritization. Proceedings of the 2006 international symposium on Software

testing and analysis, 1-12.

Wong, W. E., Horgan, J. R., London, S., and Agrawal, H. 1997. A study of effective

regression testing in practice. Software Reliability Engineering, 1997.

Proceedings., The Eighth International Symposium on, 264-274.

Yoo, S., and Harman, M. 2012. Regression testing minimization, selection and

prioritization: a survey. Software Testing, Verification and Reliability, 22(2), 67-

120.

Yoo, S., and Runeson, P. 2014. Guest editorial: special section on regression testing.

Software Quality Journal, 22(4), 699-699.

Zander-Nowicka, J., Pérez, A. M., Schieferdecker, I., and Du Dai, Z. 2007. Test design

patterns for embedded systems. 10th International Conference on Quality

Engineering in Software Technology, 183-200.

