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ABSTRACT 

Due to the vital role of software in the modern world, there is a great demand for 

reliability, and it can be achieved through the process of testing. White-Box testing is one 

of the testing methods that aims to uncover errors of coding by investigating the internal 

structure of the software. Moreover, generation of test cases for White-Box testing of 

software can be done manually or automatically. However, due to possible mistakes and 

expenses of manual test case generation, trend is toward making this activity automatic. So 

far, proposed techniques for automatic test case generation are mostly based on Genetic 

Algorithm (GA). However, existing GA techniques are quite slow and unable to achieve 

full coverage when it comes to test case generation for complex software with a wide range 

of inputs. Thus, in this research an improved fitness function is proposed based on Control 

Dependence Graph (CDG) and branch distance that can improve the speed and coverage of 

test cases generation by the means of evolutionary algorithms like GA. Also, a GA-based 

branch coverage test case generation technique is proposed in this research that takes 

advantage of our proposed fitness function, and comparison results based on two 

benchmark case studies show that our proposed technique outperforms the original CDG 

technique in speed and coverage of test case generation. In addition, we evaluated our 

proposed fitness function with harmony search algorithm (HS), which is a more recent 

optimization algorithm compared to GA, and find out that HS outperforms GA in speed of 

test case generation for branch coverage of software code. 
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ABSTRAK 

Oleh kerana perisian memainkan peranan yang penting dalam dunia moden, 

terdapat permintaan yang besar terhadap kemampuannya, dan ia boleh dicapai melalui 

proses ujian. Ujian Kotak Putih merupakan salah satu kaedah ujian yang bertujuan untuk 

mendedahkan kesilapan pengekodan dengan menyiasat struktur dalaman perisian. Selain 

itu, generasi kes-kes ujian untuk ujian Kotak Putih terhadap perisian boleh dilakukan 

secara manual ataupun secara automatik. Namun, disebabkan oleh kesilapan dan 

penggunaan ujian manual generasi kes, haluan ke arah menjadikan aktiviti ini automatik. 

Setakat ini, teknik yang dicadangkan untuk kes ujian generasi automatik kebanyakannya 

berdasarkan Algoritma Genetik (GA). Namun, teknik GA sedia ada agak perlahan dan 

tidak dapat mencapai liputan sepenuhnya apabila ia digunakan untuk menguji generasi kes 

untuk perisian kompleks dengan pelbagai input. Oleh itu, dalam kajian ini fungsi 

kecergasan yang lebih baik adalah dicadangkan berdasarkan Kawalan Kebergantungan 

Graf (CDG) dan jarak cawangan yang boleh meningkatkan kelajuan dan liputan generasi 

kes-kes ujian dengan cara-cara evolusi algoritma seperti GA. Tambahan lagi, satu cabang 

ujian liputan teknik penjanaan kes berdasarkan GA dicadangkan dalam kajian ini yang 

mengambil kesempatan daripada fungsi kecergasan yang kami dicadangkan, dan keputusan 

perbandingan berdasarkan dua kajian kes penanda aras menunjukkan bahawa teknik yang 

kami cadangkan melebihi prestasi teknik CDG asal dalam kelajuan dan liputan ujian 

generasi kes. Selain itu, kami menilai fungsi kecergasan kami dengan algoritma pencarian 

harmoni (HS), yang merupakan algoritma pengoptimuman yang lebih terkini berbanding 

GA, dan kami mengetahui bahawa HS melebihi prestasi GA dalam kelajuan ujian generasi 

kes untuk liputan cawangan kod perisian. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview    

  Nowadays, software has various applications from computers and mobile phones 

to the airbag control systems and military (Qian and Zheng, 2009). Moreover, a 

considerable amount of software is used by corporations, which have major effects on their 

business (Sharma and Kumar, 2012). Also, prediction for the next decade is an exponential 

increase in software usage (Liggesmeyer and Trapp, 2009). Therefore, software has an 

enormous influence on our lives and play crucial part in it (Lyu, 2007). 

Caused by reasons mentioned above, the goal of the software industry is delivery of 

good quality software to the user. To achieve this goal, software testing is vital. Testing 

ensures meeting of user requirements and specifications. However, in software testing 

there are a lot of underlying issues that need to be considered. Tackling of these issues 

demand time, effort and cost (Sharma et al., 2013). In software development, more than 

50% of cost belongs to testing (Samuel et al., 2007). 

As a result of dramatic rise in the size and complexity of software, testing is an 

indispensable activity of software development (Humphrey, 2001). In other words, testing 

evaluate the software system execution to confirm whether it acts as intended. Testing has 
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industrial usage for quality assurance by inspecting the execution of the software and 

providing proper feedback on software behavior (Bertolino, 2007). 

Testing is defined as the system execution toward the purpose of finding errors in 

the system. It contains a broad range of various approaches with different motivations and 

purpose. The test quality is measured by its ability to find errors. Therefore, tests must be 

based on the requirements that domain experts defined for a system (Stahl and Voelter, 

2006). 

Software testing is a widely used term for a wide spectrum of different activities, 

from the unit testing of code by the programmers, to the validation of a large system by 

customer (acceptance testing), to the run-time monitoring of a service-oriented application. 

Test cases can be generated for different objectives, such as measuring possession of user 

requirements, or measuring robustness to heavy load situations or to invalid inputs, or 

evaluating given attributes, such as usability or performance, or estimating the 

trustworthiness of operations, etc. Besides, the testing can be carried based on a controlled 

formal process, requiring exact documentation and planning, or rather informally 

(exploratory testing) (Bertolino, 2007). 

During software development, testing is one of the crucial activities and need to be 

performed precisely. According to a study conducted by the National Institute of Standard 

& Technology, software bugs cost the United States economy around $59.5 billion a year, 

with one-third of this value being attributed to the poor software testing (Silva and van 

Someren, 2010). Therefore, creation of a relevant subset of test cases is of great 

importance. Faults should be exposed by the test cases which are used to examine the 

software under testing (SUT) and the test cases should be based on possible inputs (Gupta 

and Rohil, 2013). Quality of the testing is directly related and affected by the set of test 

cases that are generated to perform testing (Gupta and Rohil, 2008). 

In the process of software development, generation of test cases is mostly a manual 

activity and the testers are responsible for doing it. Consequently, this part of software 
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development is extremely difficult, laborious, and expensive (McMinn, 2004). Automation 

of test case generation can improve the efficiency of software testing and certainly can 

reduce the designing expense of software, reduction of the time needed for development of 

software, and significantly improve the quality of software (Khamis et al., 2012). Mainly, 

automatic test case generation is done by test data generation methods that take advantage 

of soft computing algorithms like Genetic Algorithm (GA) (Sthamer et al., 2002).  

Software testing is based on three strategies: white-box testing, black-box testing, 

and gray-box testing. White-box testing is also known as structural testing that tests the 

SUT to gain as much coverage of the code as possible (Panchapakesan et al., 2013). Black 

box testing is known as functional testing, which tests the SUT to make sure that the 

software is loyal to the specifications (Panchapakesan et al., 2013). Grey-box testing is 

also known as model-based testing, which tests the SUT using generated test cases from 

design models. 

Among software testing techniques, White-Box testing of software unit is used to 

test components of software system and examine the internal structure and coding of the 

program. The goal is to execute every instruction in the code at least once (Myers et al., 

2011). In principle, unit testing is an important activity during testing and has a crucial role 

in finding bugs. In practice, unit testing is so costly and difficult and rarely done properly. 

As a consequence, lots of software bugs remain uncovered (Godefroid et al., 2005). In unit 

testing, test cases generally are generated based on some predefined testing criteria, for 

instance, path coverage or branch coverage (Baresel et al., 2002). 

As we discussed importance of White-Box testing, the focus of this research is on 

the test case generation for White-Box testing of software. But, complexity of finding test 

cases to satisfy testing criteria from wide range of software input domain causes most of 

the proposed methods in this area take advantage of soft computing algorithms which are 

designed for solving nondeterministic hard problems. Nowadays, many techniques have 

been suggested to address this issue based on GA. The reason for choosing GA among a 

broad range of soft computing algorithm is the ability of GA to avoid local minima and 
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finding good solution for hard problems. Therefore, the primary focus of this research is on 

test case generation for with box testing of software by the means of GA.   

1.2 Problem Background  

In the past, automatic test data generation methods have been used for the simple 

programs using simple test criteria. Therefore, random test generation was sufficient for 

these problems. Nevertheless, it seems impossible that random techniques would be able to 

perform well on realistic and complicated test-generation problems, which usually needs 

an intensive manual effort (Michael et al., 2001) 

In recent years, usage of metaheuristic techniques for the automatic generation of 

test data has been interesting for researchers. Existing random-based methods for 

automation of the test case generation have limitations on the complexity and the size of 

software. Therefore, metaheuristic search techniques are introduced to software testing to 

solve these problems. Metaheuristic search techniques are high-level frameworks, which 

use heuristics to find solutions for complex problems at a reasonable computational cost. 

To date, metaheuristic search techniques have been used for automating test data 

generation for structural and functional testing (McMinn, 2004). 

Three metaheuristic algorithms have been used for software testing. First one is 

“Hill Climbing" that is a well-known local search algorithm. Hill Climbing enhances a 

randomly selected solution by investigating the neighborhood of the solution, if the 

algorithm discovers a better solution, then better one replaces the existing solution. Second 

one is “simulated annealing”, which in principle is similar to Hill Climbing. But, by the 

chance of accepting poorer solutions, Simulated Annealing is less restricted compared to 

Hill Climbing in movement around the search space (McMinn, 2004). However, the 

mentioned algorithms are only useful in local searching and demonstrate poor performance 

for global searching and cannot find test data for sophisticated application. Therefore, 



   5 

researchers emigrate to GA, which is a well-known algorithm for global searching and will 

be discussed in detail in following. 

Nowadays those techniques using metaheuristic methods are more advanced. GA is 

the base of the majority of them, and it is proved that GA can at least perform like random 

algorithms, yet it shows better performance in most cases (Briand et al., 2002). 

The first group of methods used conventional GA like, Pargas et al. (1999) which 

presents a goal-oriented technique for automatic test-data generation that uses a GA and 

Control Dependence Graph (CDG) of software, and this algorithm is capable to be 

executed in parallel on multiple processors to reduce the execution time. In another 

approach an automatic test case generation method for structural testing of software is 

proposed by Girigis (2005) that takes advantage of using GA and data flow dependencies 

of the program using this algorithm they improve the effectiveness of test cases. Similarly, 

another technique for structural testing of software by the means of GA is proposed by 

Alzabidi et al. (2009). A path coverage criterion is used in this technique for testing 

structure of software and fitness function of GA is improved in this technique. In another 

work, Srivastava and Kim (2009) proposed a method that by recognizing most critical path 

in software code can improve efficiency of software testing.  

Other techniques are combined GA with other search-based algorithms. Srivastava 

et al. (2008) proposed a hybrid method for test case generation based on path coverage 

criteria combined with Ant Colony Optimization algorithm and this algorithm prevent 

trapping in infinite loop while generating test cases. Another hybrid technique proposed by 

Zhang and Wang (2011) which takes advantage of “simulated anneal algorithm” combined 

by GA for testing path in the program, and this algorithm has better speed in covering 

objective path.  

As we discussed earlier, there are two types of GA methods. The first group is 

using conventional GA, and the second group is using hybrid GA. However, there are 

some issues in each group, and we are going to mention them overly. First group suffer 
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from slow convergence and is not able to fully cover a big application in finite time. 

Moreover, the second group suffers from immature convergence that leads to the 

generation of less effective test cases. 

According to Pachauri and Srivastava (2013) there are three techniques using GA 

for branch coverage of software code and the proposed a technique by Pargas et al. (1999) 

is the latest one in this area. Although, research has been continuing, but most of the 

researchers are focusing on improvement of proposed technique by Pargas et al. (1999). 

For instance, Miller et al. (2006) proposed a method to deal with Boolean and enumerated 

types. Furthermore, Arcuri (2010) focused on the effects of branch distance normalization 

on fitness evaluation. In addition, Pachauri and Srivastava (2013) evaluated the impact of 

branch selection on the speed of coverage. Although, the fitness function has a significant 

effect on speed and coverage, there is no research on enhancing the proposed fitness 

function by Pargas et al. (1999). 

Majority of methods for test case generation are manually, and only a small number 

of techniques are proposed for automated test generation. These automated techniques are 

based on random, structural or path-oriented, analysis-oriented, and goal or branch-

oriented test-data generation. However, there are some limitations in these methods. For 

instance, in random technique, lack of information about the objective of testing causes 

generation of a big number of test cases and usually cannot satisfy the objective of testing. 

Moreover, generation of path in a structural or path-oriented method sometimes is 

impossible because of the inability of the generator to find an input to traverse the path. 

Besides, analysis-oriented generators are highly relied upon the accuracy of design and 

need lots of modeling using tools, which is impossible for some software systems. Hence, 

the best method is branch-oriented technique due to the lower number of generated test 

cases compared to other methods (Miller et al., 2006). 

Pargas et al. (1999) achieved limited success in the generation of test cases for 

branch coverage of small programs. However, there are still challenges in terms of 

improving speed and coverage of this method, and there is need for researches to be 

conducted in this area. Also, there are many optimization algorithms that have not been 
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used for White-Box test case generation. Harmony Search (HS) is one of the recent 

optimization algorithms that share many characteristic with GA and does not suffer from 

slow convergence and recently have been used successfully in other areas of software 

testing like interaction test data generation (Alsewari and Zamli, 2011). 

1.3 Problem Statement 

 In the effort to improve testing, a number of methods have been proposed to 

automate the test case generation. However, the automation of test data generation is still a 

topic under research. Recently GA have been used to automate the testing process (Silva 

and van Someren, 2010). However, generating test cases to cover the code of big software 

using current GA techniques is time-consuming, and for some cases even impossible due 

to the limitation of testing time and speed of contemporary computers. 

Also, there are many optimization algorithms that have not been exploited in the 

area of White-Box testing, and most of the researchers are focused on GA. Therefore, there 

is need for researches to be conducted on evaluation of the performance of other 

optimization algorithms in this area. For instance, HS has been more successful than GA in 

other areas of software testing like interaction test data generation but has not been used 

for White-Box testing. 

Therefore, the research question posed is “how can we improve the speed and the 

coverage of test case generation for branch coverage of software code by enhancing an 

existing technique?” 
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1.4 Research Aim 

The primary aim of this research is to identify limitations of GA-Based software 

testing techniques. Also, to propose an enhanced method that would improve the 

performance (speed and coverage) of GA for branch coverage test case generation, by 

improving Pargas et al. (1999) technique. In addition, comparing the performance of GA 

with another more recent optimization technique called HS for branch coverage test case 

generation. 

1.5 Research Objectives 

In order to achieve the above-mentioned aim, the objectives of this research are as 

follows: 

• To identify contemporary limitations of existing GA-Based software testing 

techniques. 

• To improve performance of an existing test case generation technique based on GA 

in terms of speed and coverage of test case generation. 

• To compare the proposed technique with the original one (an existing technique 

based on GA) based on the speed and the coverage of test case generation.. 

• To compare the performance of GA with HS for branch coverage test case 

generation. 

1.6 Scope of the Study 

This study is intended for several small to big-sized software applications that 

require accuracy and consistency in their system functionality before they are released to 
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the market, i.e. those where testing the accuracy for quality is vital. The following are 

significant: 

• This study only focuses on using of GA and HS for automatic test case generation. 

• This study only focuses on the system unit level (White-Box) test case generation, 

leaving out the rest areas. 

• In this study we chose an existing technique using GA and try to enhance it in 

terms of speed of test case generation. 

• The enhanced test case generation technique is compared with the original one, an 

already existing technique using GA. 

• The performance of HS is investigated in the area of software testing. 

1.7 Significance of the Study  

Software testing is very expensive and laborious process, we intend to help the 

software industry to reduce expenses and effort that is needed for software testing. In other 

hand, because testing of the system based on human testing is error prone area we want to 

reduce the possible fault in software testing with proposing automated approach. Also, it 

will be beneficial to the researchers those who are interested in carrying out their research 

in the area of software testing. 

1.8 Dissertation Organization 

This research is made up of six chapters. In Chapter 1, we discussed the research 

introduction, problem background, problem statement and objectives of the study. 

Similarly, Chapter 2 presents an overview of software testing with the focus on White-Box 

testing, GA-based test case generation as well as the literature review of the study. In 

Chapter 3, we explained the research methodology in sequence of phases. Moreover, 



   10 

Chapter 4 presents the proposed technique to improve the performance of test case 

generation for branch coverage of software code. 

Furthermore, in Chapter 5, we compare the proposed technique and original 

technique based on speed and coverage. Also, we evaluate the performance of (HS + our 

proposed fitness function) against the proposed GA for branch coverage test case 

generation. In addition, Chapter 6 presents the study summary, contributions, and future 

works. 
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