
���������	
���
��
����
��
�
�������������
�
����

����������������������
�����

��
�����
����������������

���	
������
����������������

� �

i

BRANCH COVERAGE TEST CASE GENERATION USING GENETIC ALGORITHM

AND HARMONY SEARCH

HOSEIN ABEDINPOURSHOTORBAN

A dissertation submitted in partial fulfilment of the

 requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY 2015

iii

I strongly dedicated this dissertation to my beloved parents for their supports,

encouragement and love.

iv

ACKNOWLEDGEMENT

 I would like to thank my supervisor Assoc. Prof. Dr. Dayang Norhayati Abang

Jawawi, who has been an invaluable friend and mentor. Her gift for conceptualization, her

enduring encouragement, and her practical advice have been an inestimable source of

support for me during this research.

 Besides, my endless gratitude goes to my parents for their strong moral and

emotional support. I would also like to thank my dear friend Nur Fatimah As’Sahra who

shared this journey with me, and always supported me.

v

ABSTRACT

Due to the vital role of software in the modern world, there is a great demand for

reliability, and it can be achieved through the process of testing. White-Box testing is one

of the testing methods that aims to uncover errors of coding by investigating the internal

structure of the software. Moreover, generation of test cases for White-Box testing of

software can be done manually or automatically. However, due to possible mistakes and

expenses of manual test case generation, trend is toward making this activity automatic. So

far, proposed techniques for automatic test case generation are mostly based on Genetic

Algorithm (GA). However, existing GA techniques are quite slow and unable to achieve

full coverage when it comes to test case generation for complex software with a wide range

of inputs. Thus, in this research an improved fitness function is proposed based on Control

Dependence Graph (CDG) and branch distance that can improve the speed and coverage of

test cases generation by the means of evolutionary algorithms like GA. Also, a GA-based

branch coverage test case generation technique is proposed in this research that takes

advantage of our proposed fitness function, and comparison results based on two

benchmark case studies show that our proposed technique outperforms the original CDG

technique in speed and coverage of test case generation. In addition, we evaluated our

proposed fitness function with harmony search algorithm (HS), which is a more recent

optimization algorithm compared to GA, and find out that HS outperforms GA in speed of

test case generation for branch coverage of software code.

vi

ABSTRAK

Oleh kerana perisian memainkan peranan yang penting dalam dunia moden,

terdapat permintaan yang besar terhadap kemampuannya, dan ia boleh dicapai melalui

proses ujian. Ujian Kotak Putih merupakan salah satu kaedah ujian yang bertujuan untuk

mendedahkan kesilapan pengekodan dengan menyiasat struktur dalaman perisian. Selain

itu, generasi kes-kes ujian untuk ujian Kotak Putih terhadap perisian boleh dilakukan

secara manual ataupun secara automatik. Namun, disebabkan oleh kesilapan dan

penggunaan ujian manual generasi kes, haluan ke arah menjadikan aktiviti ini automatik.

Setakat ini, teknik yang dicadangkan untuk kes ujian generasi automatik kebanyakannya

berdasarkan Algoritma Genetik (GA). Namun, teknik GA sedia ada agak perlahan dan

tidak dapat mencapai liputan sepenuhnya apabila ia digunakan untuk menguji generasi kes

untuk perisian kompleks dengan pelbagai input. Oleh itu, dalam kajian ini fungsi

kecergasan yang lebih baik adalah dicadangkan berdasarkan Kawalan Kebergantungan

Graf (CDG) dan jarak cawangan yang boleh meningkatkan kelajuan dan liputan generasi

kes-kes ujian dengan cara-cara evolusi algoritma seperti GA. Tambahan lagi, satu cabang

ujian liputan teknik penjanaan kes berdasarkan GA dicadangkan dalam kajian ini yang

mengambil kesempatan daripada fungsi kecergasan yang kami dicadangkan, dan keputusan

perbandingan berdasarkan dua kajian kes penanda aras menunjukkan bahawa teknik yang

kami cadangkan melebihi prestasi teknik CDG asal dalam kelajuan dan liputan ujian

generasi kes. Selain itu, kami menilai fungsi kecergasan kami dengan algoritma pencarian

harmoni (HS), yang merupakan algoritma pengoptimuman yang lebih terkini berbanding

GA, dan kami mengetahui bahawa HS melebihi prestasi GA dalam kelajuan ujian generasi

kes untuk liputan cawangan kod perisian.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xiv

1 INTRODUCTION

1.1 Overview

1.2 Problem Background

1.3 Problem Statement

1.4 Research Aim

1.5 Research Objectives

1.6 Scope of the Study

1.7 Significance of Study

1.8 Dissertation Organization

1

4

7

8

8

8

9

9

2 LITERATURE REVIEW

2.1 Introduction

2.2 Software Testing Definition

2.3 Overview of Software Testing

11

11

13

viii

2.4 Basic Terminology for Software Testing

2.5 Undecidability of Software Testing

2.6 Software Testing Levels

2.7 Types of Testing

2.7.1 Static Techniques

2.7.2 Dynamics Techniques

2.8 White-Box Testing of Software Unit

2.9 Control-Flow Graph (CFG)

2.9.1 Overview of Code Coverage

2.9.2 Code Coverage Criteria (Metrics)

2.10 Relations between Software Testing Definitions

2.11 Test Case Generation

2.11.1 Random Test Data Generation

2.11.2 GA-Based Test Case Generation

2.12 Harmony Search Algorithm

2.13 Related Works

2.14 Tracey et al (1998) Technique for Branch Distance

Calculation

2.15 Pargas et al (1999) GA Technique for Software Testing

2.16 Criteria for Measuring Speed of GA-Based Test Case

Generation Technique

2.17 Characteristic of Effective Fitness Function

2.18 Summary

15

15

16

19

19

19

20

21

22

23

24

25

26

27

29

31

34

35

37

37

38

 3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Process Flowchart

3.3 Research Process

3.3.1 Phase One

3.3.2 Phase Two

3.3.3 Phase Three

3.3.4 Phase Fours

3.4 Benchmark Programs

3.5 Methodology Framework

39

39

41

42

42

43

44

45

46

ix

3.6 Summary 47

4 PROPOSED TECHNIQUE FOR TEST CASE

GENERATION

4.1 Introduction

4.2 Coding and CFG of Benchmark Programs

4.3 Pargas Technique(Original)

4.3.1 Control Dependence Graph

4.3.2 Example of Pargas Technique Fitness Evaluation

and Shortcoming

4.4 The Proposed Technique

4.4.1 Enhanced Fitness Function

4.4.1.1 Example of Fitness Evaluation by

Enhanced Fitness Function

4.4.2 Proposed Algorithm

4.4.2.1 Part 1: Initialization

4.4.2.2 Part 2: Test Case Generation

4.4.2.3 Part 3: Example of Test Case Generation

by Proposed Algorithm

4.5 Characteristics of Proposed Technique

48

49

51

51

53

54

54

58

58

60

60

60

62

5 COMPARISON OF PROPOSED TECHNIQUE AND

ORIGINAL TECHNIQUE

5.1 Introduction

5.2 Experimental Setup

5.3 Comparison of Proposed Technique and Pargas et al

(1999) Technique

5.3.1 Summary of Comparison between Proposed

Technique and Pargas et al (1999) Technique

5.4 Evaluation of Proposed Fitness Function

5.4.1 Comparison Summary of GA and HS for Branch

Coverage Test Case Generation

5.5 Summary

63

63

64

69

70

72

73

x

6 CONCLUSION AND FUTURE WORK

6.1 Introduction

6.2 Summary

6.3 Research Contribution

6.4 Future Work

74

74

75

76

 REFERENCES 77-81

xi

LIST OF TABLES

TABLE NO TITLE

 PAGE

2.1

2.2

3.1

5.1

5.2

Comparison Table of Coverage Criteria

Summary of Software Testing Techniques Based on GA

Comparison Table of Benchmark programs

Comparison between Proposed and Pargas et al (1999)

Techniques

Comparison table of GA and HS for Branch Coverage Test

Case Generation

 24

32

45

69

73

xii

LIST OF FIGURES

FIGURE NO TITLE

 PAGE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Defect Correction Cost-Escalation Factor Bohem (1978)

Cost Defect Correction Cost-Escalation Factor Boehm

and Basili (2001)

V-model of testing

Bottom-up

Top-Down

White-Box testing

Control-Flow of divisor program

Relations Between Software Testing Definitions

GA algorithm

HS Algorithm Procedure

Illustrations of CFG and Corresponding CDG

GenerateData Algorithm

Research Process Flowchart

Methodology Framework Diagram

Structure of Proposed Fitness Function

Triangle Classification Code and Related CFG

Rectangle Code and Related CFG

CDG of Triangle Classification Program

CDG of Rectangle Program

Discrete and Continuous Functions

Cost Function Calculation

Convergence Diagram of the Proposed Fitness Function

Result of Pargas et al (1999) technique on Triangle Case

 14

14

17

18

18

20

22

25

28

30

35

36

40

46

47

49

50

52

52

53

56

61

xiii

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Study with Input Range of Int16

Result of Proposed Technique on Triangle Case Study

with Input Range of Int16

Convergence Comparison of the Proposed Technique and

the Original Technique

Result of Proposed Technique on Triangle Case Study

with Input Range of Int32

Result of Proposed Technique on Rectangle Case Study

with Input Range of Int16

Result of Proposed Technique on Rectangle Case Study

with Input Range of Int32

Comparison of Required Number of Fitness Function

Evaluations by HS and GA to Cover 100% of Branches of

Triangle Case Study with Input Range of Int32

Comparison of Required Number of Fitness Function

Evaluations by HS and GA to Cover 100% of Branches of

Rectangle Case Study with Input Range of Int32

Number of Fitness Function Evaluations by HS to Cover

100% of Branches of Rectangle Case Study with Input

Range of Int32

65

65

66

67

68

68

69

70

71

72

xiv

LIST OF ABBREVIATIONS

ACO - Ant Colony Optimization

AI - Artificial Intelligence

CDG - Control Dependence Graph

CFG - Control Flow Graph

DE - Deferential Evolution

GA - Genetic Algorithm

HMCR - Harmony Memory Consideration Rate

HMS - Harmony Memory Size

HS - Harmony Search

PAR - Pitch Adjustment Rate

SRS - Software Requirements Specifications

SUT - Software Under Testing

V&V - Verification and Validation

CHAPTER 1

INTRODUCTION

1.1 Overview

 Nowadays, software has various applications from computers and mobile phones

to the airbag control systems and military (Qian and Zheng, 2009). Moreover, a

considerable amount of software is used by corporations, which have major effects on their

business (Sharma and Kumar, 2012). Also, prediction for the next decade is an exponential

increase in software usage (Liggesmeyer and Trapp, 2009). Therefore, software has an

enormous influence on our lives and play crucial part in it (Lyu, 2007).

Caused by reasons mentioned above, the goal of the software industry is delivery of

good quality software to the user. To achieve this goal, software testing is vital. Testing

ensures meeting of user requirements and specifications. However, in software testing

there are a lot of underlying issues that need to be considered. Tackling of these issues

demand time, effort and cost (Sharma et al., 2013). In software development, more than

50% of cost belongs to testing (Samuel et al., 2007).

As a result of dramatic rise in the size and complexity of software, testing is an

indispensable activity of software development (Humphrey, 2001). In other words, testing

evaluate the software system execution to confirm whether it acts as intended. Testing has

 2

industrial usage for quality assurance by inspecting the execution of the software and

providing proper feedback on software behavior (Bertolino, 2007).

Testing is defined as the system execution toward the purpose of finding errors in

the system. It contains a broad range of various approaches with different motivations and

purpose. The test quality is measured by its ability to find errors. Therefore, tests must be

based on the requirements that domain experts defined for a system (Stahl and Voelter,

2006).

Software testing is a widely used term for a wide spectrum of different activities,

from the unit testing of code by the programmers, to the validation of a large system by

customer (acceptance testing), to the run-time monitoring of a service-oriented application.

Test cases can be generated for different objectives, such as measuring possession of user

requirements, or measuring robustness to heavy load situations or to invalid inputs, or

evaluating given attributes, such as usability or performance, or estimating the

trustworthiness of operations, etc. Besides, the testing can be carried based on a controlled

formal process, requiring exact documentation and planning, or rather informally

(exploratory testing) (Bertolino, 2007).

During software development, testing is one of the crucial activities and need to be

performed precisely. According to a study conducted by the National Institute of Standard

& Technology, software bugs cost the United States economy around $59.5 billion a year,

with one-third of this value being attributed to the poor software testing (Silva and van

Someren, 2010). Therefore, creation of a relevant subset of test cases is of great

importance. Faults should be exposed by the test cases which are used to examine the

software under testing (SUT) and the test cases should be based on possible inputs (Gupta

and Rohil, 2013). Quality of the testing is directly related and affected by the set of test

cases that are generated to perform testing (Gupta and Rohil, 2008).

In the process of software development, generation of test cases is mostly a manual

activity and the testers are responsible for doing it. Consequently, this part of software

 3

development is extremely difficult, laborious, and expensive (McMinn, 2004). Automation

of test case generation can improve the efficiency of software testing and certainly can

reduce the designing expense of software, reduction of the time needed for development of

software, and significantly improve the quality of software (Khamis et al., 2012). Mainly,

automatic test case generation is done by test data generation methods that take advantage

of soft computing algorithms like Genetic Algorithm (GA) (Sthamer et al., 2002).

Software testing is based on three strategies: white-box testing, black-box testing,

and gray-box testing. White-box testing is also known as structural testing that tests the

SUT to gain as much coverage of the code as possible (Panchapakesan et al., 2013). Black

box testing is known as functional testing, which tests the SUT to make sure that the

software is loyal to the specifications (Panchapakesan et al., 2013). Grey-box testing is

also known as model-based testing, which tests the SUT using generated test cases from

design models.

Among software testing techniques, White-Box testing of software unit is used to

test components of software system and examine the internal structure and coding of the

program. The goal is to execute every instruction in the code at least once (Myers et al.,

2011). In principle, unit testing is an important activity during testing and has a crucial role

in finding bugs. In practice, unit testing is so costly and difficult and rarely done properly.

As a consequence, lots of software bugs remain uncovered (Godefroid et al., 2005). In unit

testing, test cases generally are generated based on some predefined testing criteria, for

instance, path coverage or branch coverage (Baresel et al., 2002).

As we discussed importance of White-Box testing, the focus of this research is on

the test case generation for White-Box testing of software. But, complexity of finding test

cases to satisfy testing criteria from wide range of software input domain causes most of

the proposed methods in this area take advantage of soft computing algorithms which are

designed for solving nondeterministic hard problems. Nowadays, many techniques have

been suggested to address this issue based on GA. The reason for choosing GA among a

broad range of soft computing algorithm is the ability of GA to avoid local minima and

 4

finding good solution for hard problems. Therefore, the primary focus of this research is on

test case generation for with box testing of software by the means of GA.

1.2 Problem Background

In the past, automatic test data generation methods have been used for the simple

programs using simple test criteria. Therefore, random test generation was sufficient for

these problems. Nevertheless, it seems impossible that random techniques would be able to

perform well on realistic and complicated test-generation problems, which usually needs

an intensive manual effort (Michael et al., 2001)

In recent years, usage of metaheuristic techniques for the automatic generation of

test data has been interesting for researchers. Existing random-based methods for

automation of the test case generation have limitations on the complexity and the size of

software. Therefore, metaheuristic search techniques are introduced to software testing to

solve these problems. Metaheuristic search techniques are high-level frameworks, which

use heuristics to find solutions for complex problems at a reasonable computational cost.

To date, metaheuristic search techniques have been used for automating test data

generation for structural and functional testing (McMinn, 2004).

Three metaheuristic algorithms have been used for software testing. First one is

“Hill Climbing" that is a well-known local search algorithm. Hill Climbing enhances a

randomly selected solution by investigating the neighborhood of the solution, if the

algorithm discovers a better solution, then better one replaces the existing solution. Second

one is “simulated annealing”, which in principle is similar to Hill Climbing. But, by the

chance of accepting poorer solutions, Simulated Annealing is less restricted compared to

Hill Climbing in movement around the search space (McMinn, 2004). However, the

mentioned algorithms are only useful in local searching and demonstrate poor performance

for global searching and cannot find test data for sophisticated application. Therefore,

 5

researchers emigrate to GA, which is a well-known algorithm for global searching and will

be discussed in detail in following.

Nowadays those techniques using metaheuristic methods are more advanced. GA is

the base of the majority of them, and it is proved that GA can at least perform like random

algorithms, yet it shows better performance in most cases (Briand et al., 2002).

The first group of methods used conventional GA like, Pargas et al. (1999) which

presents a goal-oriented technique for automatic test-data generation that uses a GA and

Control Dependence Graph (CDG) of software, and this algorithm is capable to be

executed in parallel on multiple processors to reduce the execution time. In another

approach an automatic test case generation method for structural testing of software is

proposed by Girigis (2005) that takes advantage of using GA and data flow dependencies

of the program using this algorithm they improve the effectiveness of test cases. Similarly,

another technique for structural testing of software by the means of GA is proposed by

Alzabidi et al. (2009). A path coverage criterion is used in this technique for testing

structure of software and fitness function of GA is improved in this technique. In another

work, Srivastava and Kim (2009) proposed a method that by recognizing most critical path

in software code can improve efficiency of software testing.

Other techniques are combined GA with other search-based algorithms. Srivastava

et al. (2008) proposed a hybrid method for test case generation based on path coverage

criteria combined with Ant Colony Optimization algorithm and this algorithm prevent

trapping in infinite loop while generating test cases. Another hybrid technique proposed by

Zhang and Wang (2011) which takes advantage of “simulated anneal algorithm” combined

by GA for testing path in the program, and this algorithm has better speed in covering

objective path.

As we discussed earlier, there are two types of GA methods. The first group is

using conventional GA, and the second group is using hybrid GA. However, there are

some issues in each group, and we are going to mention them overly. First group suffer

 6

from slow convergence and is not able to fully cover a big application in finite time.

Moreover, the second group suffers from immature convergence that leads to the

generation of less effective test cases.

According to Pachauri and Srivastava (2013) there are three techniques using GA

for branch coverage of software code and the proposed a technique by Pargas et al. (1999)

is the latest one in this area. Although, research has been continuing, but most of the

researchers are focusing on improvement of proposed technique by Pargas et al. (1999).

For instance, Miller et al. (2006) proposed a method to deal with Boolean and enumerated

types. Furthermore, Arcuri (2010) focused on the effects of branch distance normalization

on fitness evaluation. In addition, Pachauri and Srivastava (2013) evaluated the impact of

branch selection on the speed of coverage. Although, the fitness function has a significant

effect on speed and coverage, there is no research on enhancing the proposed fitness

function by Pargas et al. (1999).

Majority of methods for test case generation are manually, and only a small number

of techniques are proposed for automated test generation. These automated techniques are

based on random, structural or path-oriented, analysis-oriented, and goal or branch-

oriented test-data generation. However, there are some limitations in these methods. For

instance, in random technique, lack of information about the objective of testing causes

generation of a big number of test cases and usually cannot satisfy the objective of testing.

Moreover, generation of path in a structural or path-oriented method sometimes is

impossible because of the inability of the generator to find an input to traverse the path.

Besides, analysis-oriented generators are highly relied upon the accuracy of design and

need lots of modeling using tools, which is impossible for some software systems. Hence,

the best method is branch-oriented technique due to the lower number of generated test

cases compared to other methods (Miller et al., 2006).

Pargas et al. (1999) achieved limited success in the generation of test cases for

branch coverage of small programs. However, there are still challenges in terms of

improving speed and coverage of this method, and there is need for researches to be

conducted in this area. Also, there are many optimization algorithms that have not been

 7

used for White-Box test case generation. Harmony Search (HS) is one of the recent

optimization algorithms that share many characteristic with GA and does not suffer from

slow convergence and recently have been used successfully in other areas of software

testing like interaction test data generation (Alsewari and Zamli, 2011).

1.3 Problem Statement

 In the effort to improve testing, a number of methods have been proposed to

automate the test case generation. However, the automation of test data generation is still a

topic under research. Recently GA have been used to automate the testing process (Silva

and van Someren, 2010). However, generating test cases to cover the code of big software

using current GA techniques is time-consuming, and for some cases even impossible due

to the limitation of testing time and speed of contemporary computers.

Also, there are many optimization algorithms that have not been exploited in the

area of White-Box testing, and most of the researchers are focused on GA. Therefore, there

is need for researches to be conducted on evaluation of the performance of other

optimization algorithms in this area. For instance, HS has been more successful than GA in

other areas of software testing like interaction test data generation but has not been used

for White-Box testing.

Therefore, the research question posed is “how can we improve the speed and the

coverage of test case generation for branch coverage of software code by enhancing an

existing technique?”

 8

1.4 Research Aim

The primary aim of this research is to identify limitations of GA-Based software

testing techniques. Also, to propose an enhanced method that would improve the

performance (speed and coverage) of GA for branch coverage test case generation, by

improving Pargas et al. (1999) technique. In addition, comparing the performance of GA

with another more recent optimization technique called HS for branch coverage test case

generation.

1.5 Research Objectives

In order to achieve the above-mentioned aim, the objectives of this research are as

follows:

• To identify contemporary limitations of existing GA-Based software testing

techniques.

• To improve performance of an existing test case generation technique based on GA

in terms of speed and coverage of test case generation.

• To compare the proposed technique with the original one (an existing technique

based on GA) based on the speed and the coverage of test case generation..

• To compare the performance of GA with HS for branch coverage test case

generation.

1.6 Scope of the Study

This study is intended for several small to big-sized software applications that

require accuracy and consistency in their system functionality before they are released to

 9

the market, i.e. those where testing the accuracy for quality is vital. The following are

significant:

• This study only focuses on using of GA and HS for automatic test case generation.

• This study only focuses on the system unit level (White-Box) test case generation,

leaving out the rest areas.

• In this study we chose an existing technique using GA and try to enhance it in

terms of speed of test case generation.

• The enhanced test case generation technique is compared with the original one, an

already existing technique using GA.

• The performance of HS is investigated in the area of software testing.

1.7 Significance of the Study

Software testing is very expensive and laborious process, we intend to help the

software industry to reduce expenses and effort that is needed for software testing. In other

hand, because testing of the system based on human testing is error prone area we want to

reduce the possible fault in software testing with proposing automated approach. Also, it

will be beneficial to the researchers those who are interested in carrying out their research

in the area of software testing.

1.8 Dissertation Organization

This research is made up of six chapters. In Chapter 1, we discussed the research

introduction, problem background, problem statement and objectives of the study.

Similarly, Chapter 2 presents an overview of software testing with the focus on White-Box

testing, GA-based test case generation as well as the literature review of the study. In

Chapter 3, we explained the research methodology in sequence of phases. Moreover,

 10

Chapter 4 presents the proposed technique to improve the performance of test case

generation for branch coverage of software code.

Furthermore, in Chapter 5, we compare the proposed technique and original

technique based on speed and coverage. Also, we evaluate the performance of (HS + our

proposed fitness function) against the proposed GA for branch coverage test case

generation. In addition, Chapter 6 presents the study summary, contributions, and future

works.

 77

REFERENCES

Afzal, W. 2007. Metrics in software test planning and test design processes. MSE-2007, 2,

pp 111.

Aljahdali, S. H., Ghiduk, A. S., and El-Telbany, M. 2010. The limitations of genetic

algorithms in software testing. Computer Systems and Applications (AICCSA), 2010

IEEE/ACS International Conference on, pp 1-7.

Alsewari, A., and Zamli, K. Z. 2011. Interaction test data generation using harmony

search algorithm. Industrial Electronics and Applications (ISIEA), 2011 IEEE

Symposium on, pp 559-564.

Alzabidi, M., Kumar, A., and Shaligram, A. 2009. Automatic Software structural testing

by using Evolutionary Algorithms for test data generations. IJCNS International

Journal of Computer Science and Network Security, 9(4), pp 390-395.

Arcuri, A. 2010. It does matter how you normalise the branch distance in search based

software testing. Software Testing, Verification and Validation (ICST), 2010 Third

International Conference on, 205-214.

Ball, T. 1999. The concept of dynamic analysis. Software Engineering—ESEC/FSE’99, pp

216-234.

Baresel, A., Sthamer, H., and Schmidt, M. 2002. Fitness Function Design To Improve

Evolutionary Structural Testing. GECCO, pp 1329-1336.

Bertolino, A. 2007. Software testing research: Achievements, challenges, dreams. Future

of Software Engineering, 2007. FOSE'07, pp 85-103.

Bertolino, A., and Marchetti, E. 2005. A brief essay on software testing. Software

Engineering, 3rd edn. Development process, 1, pp 393-411.

Blackwell, B. M., Collen, J. P., Guzman Jr, L. R., Irwin, A. G., Kokke, B. M., and Lindsay,

J. D. 2009. Testing tool comprising an automated multidimensional traceability

matrix for implementing and validating complex software systems: Google Patents.

 78

Boehm, B., and Basili, V. R. 2007. Software defect reduction top 10 list. Software

engineering: Barry W. Boehm's lifetime contributions to software development,

management, and research, 34(1), pp 75.

Briand, L. C., Feng, J., and Labiche, Y. 2002. Using genetic algorithms and coupling

measures to devise optimal integration test orders. Proceedings of the 14th

international conference on Software engineering and knowledge engineering, pp 43-

50.

Buxton, J. N., and Randell, B. 1970. Software Engineering Techniques: Report on a

Conference Sponsored by the NATO Science Committee: NATO Science Committee;

available from Scientific Affairs Division, NATO.

Cai, X., and Lyu, M. R. 2005. The effect of code coverage on fault detection under

different testing profiles. ACM SIGSOFT Software Engineering Notes, pp 1-7.

Craig, R. D., and Jaskiel, S. P. 2002. Systematic software testing: Artech House.

Geem, Z. W., Kim, J. H., and Loganathan, G. 2001. A new heuristic optimization

algorithm: harmony search. Simulation, 76(2), pp 60-68.

Ghiduk, A. S. 2014. Automatic generation of basis test paths using variable length genetic

algorithm. Information Processing Letters.

Girgis, M. R. 2005. Automatic Test Data Generation for Data Flow Testing Using a

Genetic Algorithm. J. UCS, 11(6), pp 898-915.

Glinz, M. 2011. A glossary of requirements engineering terminology. Standard Glossary

of the Certified Professional for Requirements Engineering (CPRE) Studies and

Exam, Version, pp 1.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: directed automated random testing.

ACM Sigplan Notices, pp 213-223.

Gupta, N. K., and Rohil, M. K. 2008. Using genetic algorithm for unit testing of object

oriented software. Emerging Trends in Engineering and Technology, 2008.

ICETET'08. First International Conference on, pp 308-313.

Gupta, N. K., and Rohil, M. K. 2013. Improving GA based automated test data generation

technique for object oriented software. Advance Computing Conference (IACC),

2013 IEEE 3rd International, pp 249-253.

Harman, M., and McMinn, P. 2010. A theoretical and empirical study of search-based

testing: Local, global, and hybrid search. Software Engineering, IEEE Transactions

on, 36(2), pp 226-247.

 79

Humphrey, W. S. 2001. The future of software engineering: I. Watts New Column, News at

SEI, 4(1).

Jin, R., Jiang, S., and Zhang, H. 2011. Generation of test data based on genetic algorithms

and program dependence analysis. Cyber Technology in Automation, Control, and

Intelligent Systems (CYBER), 2011 IEEE International Conference on, pp 116-121.

Khamis, A. M., Girgis, M. R., and Ghiduk, A. S. 2012. Automatic software test data

generation for spanning sets coverage using genetic algorithms. Computing and

Informatics, 26(4),pp 383-401.

Khan, M. 2011. Different Approaches to White Box Testing Technique for Finding Errors.

International Journal of Software Engineering & Its Applications, 5(3).

Khan, M. E., and Khan, F. 2012. A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques. International Journal of Advanced Computer Sciences and

Applications, 3(6), pp 12-15.

Liggesmeyer, P., and Trapp, M. 2009. Trends in embedded software engineering.

Software, IEEE, 26(3), pp 19-25.

Lin, J.-C., and Yeh, P.-L. 2001. Automatic test data generation for path testing using GAs.

Information Sciences, 131(1), pp 47-64.

Lyu, M. R. 2007. Software reliability engineering: A roadmap. 2007 Future of Software

Engineering, pp 153-170.

Machado, P., Vincenzi, A., and Maldonado, J. C. 2010. Software testing: an overview. In

Testing Techniques in Software Engineering (pp. 1-17): Springer.

Marick, B. 1999. New models for test development. Testing Foundations.

McMinn, P. 2004. Search‐based software test data generation: a survey. Software Testing,

Verification and Reliability, 14(2), pp 105-156.

Michael, C. C., McGraw, G., and Schatz, M. A. 2001. Generating software test data by

evolution. Software Engineering, IEEE Transactions on, 27(12), pp 1085-1110.

Miller, J., Reformat, M., and Zhang, H. 2006. Automatic test data generation using genetic

algorithm and program dependence graphs. Information and Software Technology,

48(7), pp 586-605.

Misurda, J. 2011. Efficient branch and node testing. University of Pittsburgh.

Myers, G. J., Sandler, C., and Badgett, T. 2011. The art of software testing: John Wiley &

Sons.

 80

Pachauri, A., and Srivastava, G. 2013. Automated test data generation for branch testing

using genetic algorithm: An improved approach using branch ordering, memory and

elitism. Journal of Systems and Software, 86(5), pp 1191-1208.

Panchapakesan, A., Abielmona, R., and Petriu, E. 2013. Dynamic white-box software

testing using a recursive hybrid evolutionary strategy/genetic algorithm.

Evolutionary Computation (CEC), 2013 IEEE Congress on, pp 2525-2532.

Pargas, R. P., Harrold, M. J., and Peck, R. R. 1999. Test-data generation using genetic

algorithms. Software testing verification and reliability, 9(4), pp 263-282.

Qian, H.-m., and Zheng, C. 2009. A Embedded Software Testing Process Model.

Computational Intelligence and Software Engineering, 2009. CiSE 2009.

International Conference on, pp 1-5.

Rajappa, V., Biradar, A., and Panda, S. 2008. Efficient software test case generation using

genetic algorithm based graph theory. Emerging Trends in Engineering and

Technology, 2008. ICETET'08. First International Conference on, pp 298-303.

Rakitin, S. R. 2001. Software verification and validation for practitioners and managers:

Artech House, Inc.

Rathore, A., Bohara, A., Prashil, R. G., Prashanth, T., and Srivastava, P. R. 2011.

Application of genetic algorithm and tabu search in software testing. Proceedings of

the Fourth Annual ACM Bangalore Conference, 23.

Ribeiro, J. C. B., Rela, M. Z., and de Vega, F. F. 2008. A strategy for evaluating feasible

and unfeasible test cases for the evolutionary testing of object-oriented software.

Proceedings of the 3rd international workshop on Automation of software test, pp

85-92.

Roger, S. 2005. Software Engineering a Practitioner's Approach. McGrow-Hill

International Edition.

Samuel, P., Mall, R., and Kanth, P. 2007. Automatic test case generation from UML

communication diagrams. Information and software technology, 49(2), pp 158-171.

Sharma, C., Sabharwal, S., and Sibal, R. 2013. A Survey on Software Testing Techniques

using Genetic Algorithm.

Sharma, M. A. K., and Kumar, D. 2012. User Acceptance of Desktop Based Computer

Software Using UTAUT Model and addition of New Moderators.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., et al. 2002. What

we have learned about fighting defects. Software Metrics, 2002. Proceedings. Eighth

IEEE Symposium on, pp 249-258.

 81

Silva, L. S., and van Someren, M. 2010. Evolutionary testing of object-oriented software.

Proceedings of the 2010 ACM Symposium on Applied Computing, pp 1126-1130.

Sofokleous, A. A., and Andreou, A. S. 2008. Automatic, evolutionary test data generation

for dynamic software testing. Journal of Systems and Software, 81(11), 1883-1898.

Srivastava, P. R., and Kim, T.-h. 2009. Application of genetic algorithm in software

testing. International Journal of software Engineering and its Applications, 3(4), pp

87-96.

Srivastava, P. R., Ramachandran, V., Kumar, M., Talukder, G., Tiwari, V., and Sharma, P.

2008. Generation of test data using meta heuristic approach. TENCON 2008-2008

IEEE Region 10 Conference, pp 1-6.

Stahl, T., and Voelter, M. 2006. Model-driven software development: John Wiley & Sons

Chichester.

Sthamer, H., Wegener, J., and Baresel, A. 2002. Using evolutionary testing to improve

efficiency and quality in software testing. Proceedings of the 2nd Asia-Pacific

Conference on Software Testing Analysis and Review (AsiaSTAR).

Tracey, N., Clark, J., Mander, K., and McDermid, J. 1998. An automated framework for

structural test-data generation. Automated Software Engineering, 1998.

Proceedings. 13th IEEE International Conference on, pp 285-288.

Wang, X., and Yan, X. 2013. Global best harmony search algorithm with control

parameters co-evolution based on PSO and its application to constrained optimal

problems. Applied Mathematics and Computation, 219(19), pp10059-10072.

Xiang, W.-l., An, M.-q., Li, Y.-z., He, R.-c., and Zhang, J.-f. 2014. An improved global-

best harmony search algorithm for faster optimization. Expert Systems with

Applications, 41(13), pp5788-5803.

Yang, Q., Li, J. J., and Weiss, D. M. 2009. A survey of coverage-based testing tools. The

Computer Journal, 52(5), pp 589-597.

Zhang, B., and Wang, C. 2011. Automatic generation of test data for path testing by

adaptive genetic simulated annealing algorithm. Computer Science and Automation

Engineering (CSAE), 2011 IEEE International Conference on, pp 38-42.

Zhao, S.-Z., Suganthan, P. N., Pan, Q.-K., and Fatih Tasgetiren, M. 2011. Dynamic multi-

swarm particle swarm optimizer with harmony search. Expert Systems with

Applications, 38(4), pp 3735-3742.

Zhu, H., Hall, P. A., and May, J. H. 1997. Software unit test coverage and adequacy. Acm

computing surveys (csur), 29(4), pp 366-427.

