EVALUATION OF RAIN CELL MODELS USING INDONESIAN METEOROLOGICAL RADAR DATA

RENY SAPUTRI

A project report submitted inpartial fulfilment of the requirements for the award of the degree of Master of Engineering (Eletrical-Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2015

Specially dedicated to *Abi Adib, Mama,* and *Papa* Thanks for all of your support.

ACKNOWLEDGEMENT

Assalamulaikum;

I want to express my full appreciation to my supervisor, Dr. Nor Hisham Hj. Khamis for the guidance, commentary and encouragement. His support makes the thesis can be completed.

I am very thankful to Mak Fiah and Ibu Lena for their assistance while helping me in Johor.

Finally, to all my family members in Padang, Sumbar Indonesia. Thank you for all your support to finish my thesis successfully.

ABSTRACT

Frequencies above 10 GHz are strongly affected by attenuation phenomena due to atmospheric impairments, among which rain plays the dominant role. Horizontal structure of rain fields is very complex due to its high space-time variability. Considering modelled cells which are described by a small number of parameters that would allow reduced computing time, storage problems, and multiply the system simulations to optimally define the system parameters. Radar image with range bin pixel up to 200 m, 0.5 degrees of elevation angle and about 100 km from radar site. Peak of rain intensity and the distances along elliptic shape of rain cells can obtained and also each model parameters. The EXCELL and HYCELL model has been fitted and compared to every rain cell. The result shows HYCELL model has good performance than EXCELL model.

ABSTRAK

Frekuensi melebihi 10 GHz amat dipengaruhi oleh fenomena pengecilan disebabkan gangguan atmosfera, antaranya hujan memainkan peranan yang dominan. Struktur mendatar bidang hujan adalah sangat kompleks kerana tinggi kepelbagaian ruang-masa. Memandangkan sel dimodelkan yang digambarkan oleh sebilangan kecil parameter yang akan membolehkan masa pengkomputeran dikurangkan, masalah penyimpanan, dan membiak simulasi sistem secara optimum menentukan parameter sistem. Imej radar dengan pelbagai bin piksel sehingga 200 m, 0.5 darjah sudut ketinggian dan kira-kira 100 km dari tapak radar. Puncak keamatan hujan dan jarak di sepanjang bentuk elips sel hujan boleh diperolehi dan juga setiap parameter model. The EXCELL dan HYCELL model telah dipasang dan dibandingkan dengan setiap sel hujan. Hasil kajian menunjukkan model HYCELL mempunyai prestasi yang baik dari pada model EXCELL.

TABLE OF CONTENTS

CHAPTER	TITLE							
	DECL	ARATION		ii				
	DEDI	CATION		iii				
	ACKN	NOWLEDGEME	NT	iv				
	ABST	RACT	V					
	ABST	RAK	vi					
	TABL	E OF CONTENI	S	vii				
	LIST	OF TABLES		Х				
	LIST	OF FIGURES		xi				
	LIST	OF ABBREVIAT	ION	xii				
	LIST	OF SYMBOL		xiv				
	LIST	OF APPENDICE	S	XV				
1	INTR	ODUCTION	1					
	1.1	Introduction		1				
	1.2	Problem Statem	ent	2				
	1.3	Research Object	tives	3				
	1.4	Scope of Work		3				
	1.5	Thesis Outline		4				
	1.6	Summary of Wo	ork	4				
2	LITE	RATURE REVIE	W	6				
	2.1	Introduction		6				

2.2	Fundamental of	RADAR	6					
	2.2.1	Beam Spreading	10					
	2.2.2	Base Reflectivity	10					
2.3	Radar Image		11					
2.4	Rainfall Rate 1							
2.5	Rain Cell Mode	91	14					
	2.5.1	The EXCELL Model	14					
	2.5.2	The HYCELL Model	16					
2.6	Rain in Indones	ia	19					
2.6	Summary		20					
METHODOLOGY								
3.1	Introduction		21					
3.2	Radar Data Specification							
3.3	Data Collection		23					
3.4	Rain Cell Identi	fication	24					
3.5	Rain Cell Mode	elling	25					
RESUI	LT AND ANALY	YSIS	27					
4.1	Introduction		27					
4.2	Peak Intensity		27					
4.3	EXCELL Mode	el	29					
4.4	HYCELL Mode	el	30					
4.6	Rain Intensity E	Error	31					

5	CON	CONCLUSION AND FUTURE WORKS						
	5.1	Conclusion	32					
	5.2	Future Works	33					
REFER	ENCES		34					
Appendi	ces A-C		36 - 77					

LIST OF TABLES

TABLE NO.	TITLE	PAGE		
2.1	Rainfall Intensity Scale Reference	6		
3.1	Radar Specifications	23		
3.2	Rain Rate in DKI Jakarta in 2012	24		
4.1	Peak Rain Intensity of Model compare to Data	29		

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Project Schedule	5
2.1	The Electromagnetic Spectrum (Courtesy of	7
	Wikipedia)	
2.2	Radar Image of Base Reflectivity	8
2.3	Rainfall Intensity Chart (Stull, 2000)	12
2.4	The EXCELL model: the vertical plane through the	15
	O _x axis. The Vertical axis is rain rate in mm/h; the	
	horizontal axis is distance in km	
2.5	The HYCELL model: the vertical plane along the Ox	18
	axis	
2.6	Pattern of Rainfall in Indonesia (BMG)	20
3.1	Flow chart of research design	22
3.2	Radar image with rainy cells	25
4.1	Model of EXCELL rain cell with the parameter R_E =	30
	49 mm/h, a_E =1.2 km, b_E =2.2 km	
4.2	Model of HYCELL rain cell with the parameter Rg=	31
	39 mm/h, a_G =2.42 km, b_G =3.02 km	
4.3	Rain intensity error HYCELL and EXCELL	32

LIST OF ABBREVIATIONS

RADAR	-	Radio Detecting and Ranging
BMKG	-	Badan Meteorologi Klimatologi dan Geofisika
FMT	-	Fade Mitigation Technique
CW	-	Continous Wave
PRF	-	Pulse Repetition Frequency
Z	-	Reflectivity
dBZ	-	Decible reflectivity
ITU	-	International Telecommunication Union
ITU-R	-	International Telecommunication Union - Recommendations
R	-	Rain Rate
$R_{\rm E}$	-	The EXCELL modeled rain-intensity mean value
a _E ,b _E	-	Distances along the O_x and O_y axes exponentially decay
Rr	-	The mean measured intensity in the cell
R _G ,	-	The HYCELL modeled rain-intensity mean value
ag, bg	-	Distances along the O_x and O_y axes for Gaussian component
R ₁	-	Separates Gaussian and Exponential Component

\mathbf{R}_2	-	Rain Rate threshold
R _{rms}	-	Normalized rain-intensitythe root mean square
G	-	Mean value of horizontal rain intensity gradient
G _{rms}	-	The horizontal rain intensity gradient the root mean square
Ar	-	Area of rainy pixels
er	-	Ellipticity of the cell

LIST OF SYMBOL

 ξ - The average rain intensity error

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Matlab Program		36
В	Radar Data Jakarta		43
С	Rain Rate Jakarta		77

CHAPTER 1

INTRODUCTION

1.1 Introduction

Rain attenuation is the most significant atmospheric impairment for radiocommunication systems operating at frequencies above 10 GHz (Capsoni, et al., 2006). A good knowledge of the structure of rain cells is important in the modeling of rain-induced propagation effects, this kind of experimental work can be performed only at few geographical locations, and for a limited number of frequencies and link geometries. Still, telecommunication system are expected to provide real time multimedia services, and consequently, to be reliable and guarantee the desired system availability.

Strong signal fades can no longer be overcome by making use of static power margins, but require the application of Fade Mitigation Techniques (FMTs) as a viable solution. Such as Dynamic resource allocation from onboard antenna of satellite (Paraboni et al., 2007) and site diversity are based on the knowledge of the rain fall spatial distribution (Goldhirsh et al., 1997).

Weather or meteorological radar data represent a valuable alternative in order to assess the performance of a desired FMT, as they inherently reflect the influence of the local climatology and topography on the rain field spatial distribution. The lack of worldwide comprehensive and reliable precipitation data has pushed towards the development of models aiming to represent at best the characteristics of the local rainfall process (Luinin and Capsoni, 2009).

Rain field modeling proposed among the various approaches so far in meteorological, statical, stochastic, fractal models and relying on the cellular representation of the rainfall process such as EXCELL and HYCELL are particularly suitable for the analysis of the issues related to the radio propagation through the atmosphere (Luini and Capsoni, 2009).

Tropical region suffers from heavy rainfall rates as compared to temperate regions. Such as Indonesia, rainfall region consist of 3 types such as Monsoon, Equatorial, and Local (Aldrian E., 2003). Department of Meteorological, Climatology and Geophysics of Indonesia (BMKG) operated 24 C-Band radars. This project used C-Band radar data of BMKG Kemayoran Jakarta.

1.2 Problem Statement

The followings are the problem statements for this project:-

- i. Telecommunication links operating at frequencies above 10Ghz are strongly affected by attenuation phenomena due to atmospheric impairments, the application of Fade mitigation Technique (FMT) become a viable solution.
- ii. Site diversity based on the knowledge of the rainfall spatial distribution, rain cell models represent the characteristics of the local rainfall process.

iii. Short-term forecasting of rain rate to derive estimate of rain-field attenuation, this can increase system uptime.

1.3 Research Objectives

The objectives of the project are:

- i. To study available rain cell models.
- ii. To compare the suitable of each models using meteorological radar data.
- To choose and improve the most suitable rain cell size model for tropical country e.g. Indonesia.

1.4 Scope of Work

The scope of study indicates the basic guidelines and techniques that this study examined in achieving the objectives. It also ensures that the work done stays within the intended study. Radar data gives the rainfall rate for a range-bin of 200 m each, up to 100 km. The Radar data is obtained from weather radar Doppler C-Band Kemayoran Jakarta Indonesia.

1.5 Thesis Outline

This thesis is systematized in FIVE (5) chapters. Chapter One gives an overview and the introduction of the project.

Chapter two consist of literature review of the study, fundamental of RADAR by focusing on beam spreading and base reflectivity, equation target of weather or meteorological data which is used in this project.

Chapter three discussed about the methodology of the project. Radar data format, determine the rain fall rates, and determine the rain cell models.

Chapter four represents the result and data analysis. Then, compare between models which one is suitable for local area.

Chapter five concludes the results and suggest for future study.

1.6 Summary of Work

The project schedule shows in Figure 1.1. The project begins with the literature review, followed by doing selecting data, simulation and evaluated the models parameters using Matlab. The final step is presentation and thesis writing.

PROJECT SCHEDULE																
MONTH	FEBRUARY			Y	MARCH			A	APRIL				MAY			
WEEK	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15
Research on related topic																
Literature review																
Methodology study																
Presentation																
Report writing																
						<u> </u>	I	1			<u> </u>		1			
MONTH	FE	EBR	UAI	RY	MARCH				APRIL			MAY				
WEEK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Collecting Data																
Simulations on MATLAB																
Presentation																
Thesis writing																

Figure 1.1: Project schedule.

References

- A. Paraboni, P. Gabellini, A. Martellucci, C. Capsoni, M. Buti, S. Bertorelli, N. Gatti, and P. Rinous, "Performance of a reconfigurable satellite antenna front-end as a countermeasure against tropospheric attenuation," presented at the 13th Ka and Broadband Communications Conf., Torino, Italy, Sep. 2007.
- V. Pastoriza, A. Nunez, P. Marino, F.P. Fontan, and U.-C. Fiebig, "Rain-Cell Identification and Modeling for Propagation Studies from Weather Radar Images", *IEEE Antennas and Propagation Magazine*, **52**, 5, October 2010, pp. 117-130.
- Edde, B. (1993). *RADAR Principles, Technology, Applications*. United State of America. PTR Prentice Hall, Inc.
- J. Goldhirsh, B. H. Musiani, A. W. Dissanayake, and L. KuanTing, "Threesite space-diversity experiment at 20 GHz using ACTS in the Eastern United States," *Proc. IEEE*, vol. 85, no. 6, pp. 970–980, Jun. 1997.
- J. Awaka, "A Three-Dimensional Rain Cell Model for the Study of Interference due to Hydrometer Scattering," Journal of the Communications Research Laboratory, 36, 147, March 1989, pp. 13-44.
- Aldrian E, Susanto D. (2003). Identification of Three Dominant Rainfall Regions Within Indonesia and Their Relationship to Sea Surface Temperature. International Journal of Climatology.

- Roland B. Stull. (2000). *Meteorology for Scientist and Engineers*. University of California. USA. Brooks/Cole.
- Mesnard, F., and H. Sauvageot, Structural characteristics of rain fields, J. Geophys., 108. Doi:10.1029/2002JD002808, in press, 2003.
- 9. Jeff, Duda. (2009). How to Use and Interpret Doppler Weather Radar. Retrieved from <u>http://www.meteor.iastate.edu/~jdduda/portfolio/How%20to%20read%20and</u> <u>%20interpret%20weather%20radar.pdf</u>
- Capsoni, C., F. Fedi, and A. Paraboni, "A comprehensive meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHz", *Radio Sci.*, 22(3), 387-393, 1987a.
- 11. Capsoni, C., F. Fedi, C. Magistroni, A. Paraboni, and A. Pawlina, "Data and theory for new model of the horizontal structure of rain cells for propagation applications", *Radio Sci.*, 22(3), 395-404, 1987b.